Skip to content
2000
Volume 30, Issue 33
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The purpose of this review is to correlate the probable causes of anxiety disorders with the imbalance of neurotransmitters in the brain and also highlight the drugs for these mental disorders that have been discovered based on the biosynthesis and catabolism of these brain chemicals. Peer-reviewed journal’s articles, news and books published in English between 1997 and 2023 describing the role of neurotransmitters in anxiety disorders were searched in Google Scholar, Research Gate and PubMed databases. The contents were carefully analyzed by the authors and understood and compiled to build a concise perspective on the role of biosynthesis and catabolism of neurotransmitters in anxiety and depression. Anxiety disorders are reported to be common patterns of psychological symptoms that impact multiple areas of life. Anxiety and depression are prevalent worldwide and are significantly contributing towards the global health burden. Genetic determinants are believed to play an important role in these disorders. According to modern medicine, one of the most important aspects that is known to be crucial for these disorders is the imbalance of neurotransmitters in the brain. The biosynthesis and catabolism of neurotransmitters have been extensively targeted for innovative drug discovery approaches at various steps that have led to the discovery of many drugs for these psychological disorders. The biosynthetic and catabolic reaction cycles of neurotransmitters and the discovery of drugs based on these hypotheses are discussed. To the best of the authors’ knowledge, this review compiles already known descriptive knowledge on “relation of neurotransmitter imbalance with anxiety disorders” in a precise way that will provide readers with an overview of the vast literature.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128309913240704095334
2024-07-23
2024-11-14
Loading full text...

Full text loading...

References

  1. KesslerR.C. ChiuW.T. DemlerO. WaltersE.E. WaltersE.E. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication.Arch. Gen. Psychiatry200562661762710.1001/archpsyc.62.6.61715939839
    [Google Scholar]
  2. BhattN.V. BakerM.J. JainV.B. Anxiety Disorders.2019Available from: https://emedicine.medscape.com/article/286227- overview
  3. Vahia VN. American Psychiatric Association. Cautionary statement for forensic use of DSM-5. Diagnostic and statistical manual of mental disorders. 2013.10.1176/appi.books.9780890425596.744053
  4. SantomauroD.F. Mantilla HerreraA.M. ShadidJ. ZhengP. AshbaughC. PigottD.M. AbbafatiC. AdolphC. AmlagJ.O. AravkinA.Y. Bang-JensenB.L. BertolacciG.J. BloomS.S. CastellanoR. CastroE. ChakrabartiS. ChattopadhyayJ. CogenR.M. CollinsJ.K. DaiX. DangelW.J. DapperC. DeenA. EricksonM. EwaldS.B. FlaxmanA.D. FrostadJ.J. FullmanN. GilesJ.R. GirefA.Z. GuoG. HeJ. HelakM. HullandE.N. IdrisovB. LindstromA. LinebargerE. LotufoP.A. LozanoR. MagistroB. MaltaD.C. MånssonJ.C. MarinhoF. MokdadA.H. MonastaL. NaikP. NomuraS. O’HalloranJ.K. OstroffS.M. PasovicM. PenberthyL. ReinerR.C.Jr ReinkeG. RibeiroA.L.P. SholokhovA. SorensenR.J.D. VaravikovaE. VoA.T. WalcottR. WatsonS. WiysongeC.S. ZiglerB. HayS.I. VosT. MurrayC.J.L. WhitefordH.A. FerrariA.J. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic.Lancet2021398103121700171210.1016/S0140‑6736(21)02143‑734634250
    [Google Scholar]
  5. NasirM. TrujilloD. LevineJ. DwyerJ.B. RuppZ.W. BlochM.H. Glutamate systems in DSM-5 anxiety disorders: Their role and a review of glutamate and GABA psychopharmacology.Front. Psychiatry20201154850510.3389/fpsyt.2020.54850533329087
    [Google Scholar]
  6. COVID-19 pandemic triggers 25% increase in prevalence of anxiety and depression worldwide.Available from: https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-anxiety-and-depression-worldwide
  7. COVID-19: Depression, anxiety soared 25 per cent in a year. Available from: https://news.un.org/en/story/2022/03/1113162
  8. Natasha T. Relationship between depression and anxiety. Available from: https://www.healthyplace.com/depression/anxiety-and-depression/relationship-between-depression-and-anxiety#:~:text=While%20depression%20is%20often%20considered,even%20leading%20to%20panic%20attacks.
  9. KalueffA.V. NuttD.J. Role of GABA in anxiety and depression.Depress. Anxiety200724749551710.1002/da.2026217117412
    [Google Scholar]
  10. AlbertP.R. BenkelfatC. DescarriesL. The neurobiology of depression-revisiting the serotonin hypothesis. I. Cellular and molecular mechanisms.Philos. Trans. R. Soc. Lond. B Biol. Sci.201236716012378238110.1098/rstb.2012.019022826338
    [Google Scholar]
  11. SartoriS.B. SingewaldN. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders.Pharmacol. Ther.201920410740210743410.1016/j.pharmthera.2019.10740231470029
    [Google Scholar]
  12. WongE.H.F. YoccaF. SmithM.A. LeeC.M. Challenges and opportunities for drug discovery in psychiatric disorders: The drug hunters’ perspective.Int. J. Neuropsychopharmacol.20101391269128410.1017/S146114571000086620716397
    [Google Scholar]
  13. GarakaniA. MurroughJ.W. FreireR.C. ThomR.P. LarkinK. BuonoF.D. IosifescuD.V. Pharmacotherapy of anxiety disorders: Current and emerging treatment options.Front. Psychiatry20201159558459560410.3389/fpsyt.2020.59558433424664
    [Google Scholar]
  14. VasiliuO. Investigational drugs for the treatment of depression (Part 1): Monoaminergic, orexinergic, GABA-Ergic, and anti-inflammatory agents.Front. Pharmacol.20221388414310.3389/fphar.2022.88414335774601
    [Google Scholar]
  15. MartinE.I. ResslerK.J. BinderE. NemeroffC.B. The neurobiology of anxiety disorders: Brain imaging, genetics, and psychoneuroendocrinology.Psychiatr. Clin. North Am.200932354957510.1016/j.psc.2009.05.00419716990
    [Google Scholar]
  16. PurvesD. AugustineG.J. FitzpatrickD. KatzL.C. LaMantiaA-S. McNamaraJ.O. WilliamsS.M. Neurotransmitter Receptors and Their Effects.Neuroscience.2nd Sunderland (MA)Sinauer Associates2001Available from: https://www.ncbi.nlm.nih.gov/books/NBK11099/
    [Google Scholar]
  17. Biology of Depression: Neurotransmitters.Available from: https://www.mentalhelp.net/depression/biology-of-depression-neurotransmitters/#:~:text=Serotonin%20is%20produced%20by%20serotonergic,some%20people%20to%20feel%20suicidal
  18. CervenkaS. FrickA. BodénR. LubberinkM. Application of positron emission tomography in psychiatry-methodological developments and future directions.Transl. Psychiatry202212124810.1038/s41398‑022‑01990‑235701411
    [Google Scholar]
  19. CeccariniJ. LiuH. Van LaereK. MorrisE.D. SanderC.Y. Methods for quantifying neurotransmitter dynamics in the living brain with PET imaging.Front. Physiol.20201179210.3389/fphys.2020.0079232792972
    [Google Scholar]
  20. AryutovaK. StoyanovD. Pharmaco-magnetic resonance as a tool for monitoring the medication-related effects in the brain may provide potential biomarkers for psychotic disorders.Int. J. Mol. Sci.20212217930910.3390/ijms2217930934502214
    [Google Scholar]
  21. FinnemaS.J. ScheininM. ShahidM. LehtoJ. BorroniE. Bang-AndersenB. SallinenJ. WongE. FardeL. HalldinC. GrimwoodS. Application of cross-species PET imaging to assess neurotransmitter release in brain.Psychopharmacology201523221-224129415710.1007/s00213‑015‑3938‑625921033
    [Google Scholar]
  22. GryglewskiG. LanzenbergerR. KranzG.S. CummingP. Meta-analysis of molecular imaging of serotonin transporters in major depression.J. Cereb. Blood Flow Metab.20143471096110310.1038/jcbfm.2014.8224802331
    [Google Scholar]
  23. ErritzoeD. AshokA.H. SearleG.E. ColasantiA. TurtonS. LewisY. HuibanM. MozS. PasschierJ. SaleemA. BeaverJ. Lingford-HughesA. NuttD.J. HowesO.D. GunnR.N. KnudsenG.M. RabinerE.A. Serotonin release measured in the human brain: A PET study with [11C]CIMBI-36 and d-amphetamine challenge.Neuropsychopharmacology202045580481010.1038/s41386‑019‑0567‑531715617
    [Google Scholar]
  24. JenkinsB.G. Pharmacologic magnetic resonance imaging (phMRI): Imaging drug action in the brain.Neuroimage20126221072108510.1016/j.neuroimage.2012.03.07522495143
    [Google Scholar]
  25. YoungS.N. How to increase serotonin in the human brain without drugs.J. Psychiatry Neurosci.200732639439910.1016/B978‑0‑444‑64125‑0.00036‑018043762
    [Google Scholar]
  26. GershonM.D. TackJ. The serotonin signaling system: From basic understanding to drug development for functional GI disorders.Gastroenterology2007132139741410.1053/j.gastro.2006.11.00217241888
    [Google Scholar]
  27. Capítuloen. BryanL.R. The Serotonin Receptors: From Molecular Pharmacology to Human TherapeuticsTotowa; NJHumana Press200631936410.1007/978‑1‑59745‑080‑5
    [Google Scholar]
  28. GiorgettiM. TecottL.H. Contributions of 5-HT2C receptors to multiple actions of central serotonin systems.Eur. J. Pharmacol.20044881-31910.1016/j.ejphar.2004.01.03615044029
    [Google Scholar]
  29. GrayJ.A. RothB.L. The pipeline and future of drug development in schizophrenia.Mol. Psychiatry2007121090492210.1038/sj.mp.400206217667958
    [Google Scholar]
  30. FrazerA. HenslerJ.G. Serotonin. Basic neurochemistry: Molecular, cellular and medical aspects. 6th ed. Philadelphia: Lippincott-Raven 1999. Available from: https://www.ncbi.nlm.nih.gov/books/NBK20375/
    [Google Scholar]
  31. GlennonR.A. DukatM.A. Serotonin receptors and drugs affecting serotonergic neurotransmission.Foye’s Textbook of Medicinal Chemistry2002365396
    [Google Scholar]
  32. EdinoffA.N. AkulyH.A. HannaT.A. OchoaC.O. PattiS.J. GhaffarY.A. KayeA.D. ViswanathO. UritsI. BoyerA.G. CornettE.M. KayeA.M. Selective serotonin reuptake inhibitors and adverse effects: A narrative review.Neurol. Int.202113338740110.3390/neurolint1303003834449705
    [Google Scholar]
  33. HashimotoY. SuzukiT. HashimotoK. Mechanisms of action of fluvoxamine for COVID-19: A historical review.Mol. Psychiatry20222741898190710.1038/s41380‑021‑01432‑334997196
    [Google Scholar]
  34. ShoarN.S. FaribaK.A. PadhyR.K. Citalopram.Treasure Island, FLStatPearls Publishing2021Available from: https://www.ncbi.nlm.nih.gov/books/NBK482222/
    [Google Scholar]
  35. RowethH.G. CookA.A. MoroiM. BonnaA.M. JungS.M. BergmeierW. SageS.O. JarvisG.E. Two novel, putative mechanisms of action for citalopram-induced platelet inhibition.Sci. Rep.2018811667710.1038/s41598‑018‑34389‑530420683
    [Google Scholar]
  36. SánchezC. BøgesøK.P. EbertB. ReinesE.H. BraestrupC. Escitalopram versus citalopram: The surprising role of the R-enantiomer.Psychopharmacology2004174216317610.1007/s00213‑004‑1865‑z15160261
    [Google Scholar]
  37. OwensM.J. KnightD.L. NemeroffC.B. Second-generation SSRIs: Human monoamine transporter binding profile of escitalopram and R-fluoxetine.Biol. Psychiatry200150534535010.1016/S0006‑3223(01)01145‑311543737
    [Google Scholar]
  38. RaffaeleR. VecchioI. GiammonaG. PolizziA. RuggieriM. MalaguarneraM. RampelloL. NicolettiF. Citalopram in the treatment of depression in the elderly.Arch. Gerontol. Geriatr.20023530330810.1016/S0167‑4943(02)00113‑914764407
    [Google Scholar]
  39. NevelsR.M. GontkovskyS.T. WilliamsB.E. Paroxetine-the antidepressant from hell? Probably not, but caution required.Psychopharmacol. Bull.20164617710427738376
    [Google Scholar]
  40. BourinM. ChueP. GuillonY. Paroxetine: A review.CNS Drug Rev.200171254710.1111/j.1527‑3458.2001.tb00189.x11420571
    [Google Scholar]
  41. ColemanJ.A. NavratnaV. AntermiteD. YangD. BullJ.A. GouauxE. Chemical and structural investigation of the paroxetine-human serotonin transporter complex.eLife20209e5642710.7554/eLife.5642732618269
    [Google Scholar]
  42. RichelsonE. Pharmacology of antidepressants characteristics of the ideal drug.Mayo Clin. Proc.199469111069108110.1016/S0025‑6196(12)61375‑57967761
    [Google Scholar]
  43. AmidfarM. KimY.K. Recent developments on future antidepressant-related serotonin receptors.Curr. Pharm. Des.201824222541254810.2174/138161282466618080311124030073919
    [Google Scholar]
  44. WongD.T. BymasterF.P. ReidL.R. FullerR.W. PerryK.W. Inhibition of serotonin uptake by optical isomers of fluoxetine.Drug Dev. Res.19856439740310.1002/ddr.430060412
    [Google Scholar]
  45. WongD.T. ThrelkeldP.G. RobertsonD.W. Affinities of fluoxetine, its enantiomers, and other inhibitors of serotonin uptake for subtypes of serotonin receptors.Neuropsychopharmacology19915143471930610
    [Google Scholar]
  46. BorysD.J. SetzerS.C. LingL.J. ReisdorfJ.J. DayL.C. KrenzelokE.P. The effects of fluoxetine in the overdose patient.J. Toxicol. Clin. Toxicol.199028333134010.3109/155636590089944342231832
    [Google Scholar]
  47. SinghH.K. SaadabadiA. Sertraline.Treasure Island, FLStatPearls Publishing2023Available from: https://www.ncbi.nlm.nih.gov/books/NBK547689/
    [Google Scholar]
  48. LewisG. DuffyL. AdesA. AmosR. ArayaR. BrabynS. ButtonK.S. ChurchillR. DerrickC. DowrickC. GilbodyS. FawsittC. HollingworthW. JonesV. KendrickT. KesslerD. KounaliD. KhanN. LanhamP. PervinJ. PetersT.J. RiozzieD. SalaminiosG. ThomasL. WeltonN.J. WilesN. WoodhouseR. LewisG. The clinical effectiveness of sertraline in primary care and the role of depression severity and duration (PANDA): A pragmatic, double-blind, placebo-controlled randomised trial.Lancet Psychiat.201961190391410.1016/S2215‑0366(19)30366‑931543474
    [Google Scholar]
  49. IronsJ. Fluvoxamine in the treatment of anxiety disorders.Neuropsychiatr. Dis. Treat.20051428929918568110
    [Google Scholar]
  50. SukhatmeV.P. ReiersenA.M. VayttadenS.J. SukhatmeV.V. Fluvoxamine: A review of its mechanism of action and its role in COVID-19.Front. Pharmacol.20211265268810.3389/fphar.2021.65268833959018
    [Google Scholar]
  51. New Serotonin Findings Could Help Treat Depression, Anxiety.Available from: https://news.cornell.edu/stories/2022/10/new-serotonin-findings-could-help-treat-depression-anxiety
  52. BrileyM. ChantalM. The importance of norepinephrine in depression.Neuropsychiatr. Dis. Treat.20117191310.2147/NDT.S1961921750623
    [Google Scholar]
  53. WassallR.D. TeramotoN. CunnaneT.C. Noradrenaline.Encyclopedia of Neuroscience.Elsevier20091221123010.1016/B978‑008045046‑9.00681‑1
    [Google Scholar]
  54. ChenX. WernerR.A. JavadiM.S. MayaY. DeckerM. LapaC. HerrmannK. HiguchiT. Radionuclide imaging of neurohormonal system of the heart.Theranostics20155654555810.7150/thno.1090025825596
    [Google Scholar]
  55. HussainL.S. ReddyV. MaaniC.V. Physiology, noradrenergic Synapse.Treasure Island, FLStatPearls Publishing2022Available from: https://www.ncbi.nlm.nih.gov/books/NBK540977/
    [Google Scholar]
  56. SunZ. BoQ. MaoZ. LiF. HeF. PaoC. LiW. HeY. MaX. WangC. Reduced plasma dopamine-β-hydroxylase activity is associated with the severity of bipolar disorder: A pilot study.Front. Psychiatry20211256609110.3389/fpsyt.2021.56609133995135
    [Google Scholar]
  57. ChoH.U. KimS. SimJ. YangS. AnH. NamM.H. JangD.P. LeeC.J. Redefining differential roles of MAO-A in dopamine degradation and MAO-B in tonic GABA synthesis.Exp. Mol. Med.20215371148115810.1038/s12276‑021‑00646‑334244591
    [Google Scholar]
  58. LabanT.S. SaadabadiA. Monoamine oxidase inhibitors (MAOI).Treasure Island, FLStatPearls Publishing2022Available from: https://www.ncbi.nlm.nih.gov/books/NBK539848/
    [Google Scholar]
  59. RiedererP. LachenmayerL. LauxG. Clinical applications of MAO-inhibitors.Curr. Med. Chem.200411152033204310.2174/092986704336477515279566
    [Google Scholar]
  60. GarciaE. SantosC. Monoamine oxidase inhibitor toxicity.Treasure Island, FLStatPearls Publishing2022Available from: https://www.ncbi.nlm.nih.gov/books/NBK459386/
    [Google Scholar]
  61. ChamberlainS.R. BaldwinD.S. Monoamine oxidase inhibitors (MAOIs) in psychiatric practice: How to use them safely and effectively.CNS Drugs202135770371610.1007/s40263‑021‑00832‑x34240393
    [Google Scholar]
  62. Giorgi-CollS. AmaralA.I. HutchinsonP.J.A. KotterM.R. CarpenterK.L.H. Succinate supplementation improves metabolic performance of mixed glial cell cultures with mitochondrial dysfunction.Sci. Rep.201771100310.1038/s41598‑017‑01149‑w28432362
    [Google Scholar]
  63. DingledineR. McBainC.J. Three classes of ionotropic glutamate receptor. Basic Neurochemistry: Molecular, Cellular and Medical Aspects.6th ed SiegelG.J. AgranoffB.W. AlbersR.W. PhiladelphiaLippincott-Raven1999Available from: https://www.ncbi.nlm.nih.gov/books/NBK20385
    [Google Scholar]
  64. SwansonC.J. BuresM. JohnsonM.P. LindenA.M. MonnJ.A. SchoeppD.D. Metabotropic glutamate receptors as novel targets for anxiety and stress disorders.Nat. Rev. Drug Discov.20054213114410.1038/nrd163015665858
    [Google Scholar]
  65. AmielJ.M. MathewS.J. Glutamate and anxiety disorders.Curr. Psychiatry Rep.20079427828310.1007/s11920‑007‑0033‑717880858
    [Google Scholar]
  66. FDA Approves 'Rapid-Acting' Oral Drug for Major Depression.Available from: https://www.medscape.com/viewarticle/979568?form=fpf
  67. StahlS.M. Dextromethorphan/bupropion: A novel oral NMDA (N-methyl-d-aspartate) receptor antagonist with multimodal activity.CNS Spectr.201924546146610.1017/S109285291900147031566163
    [Google Scholar]
  68. ZanosP. MoaddelR. MorrisP.J. RiggsL.M. HighlandJ.N. GeorgiouP. PereiraE.F.R. AlbuquerqueE.X. ThomasC.J. ZarateC.A.Jr GouldT.D. Ketamine and ketamine metabolite pharmacology: Insights into therapeutic mechanisms.Pharmacol. Rev.201870362166010.1124/pr.117.01519829945898
    [Google Scholar]
  69. SinghI. MorganC. CurranV. NuttD. SchlagA. McShaneR. Ketamine treatment for depression: Opportunities for clinical innovation and ethical foresight.Lancet Psychiat.20174541942610.1016/S2215‑0366(17)30102‑528395988
    [Google Scholar]
  70. Machado-VieiraR. BaumannJ. Wheeler-CastilloC. LatovD. HenterI.D. SalvadoreG. ZarateC.A.Jr The timing of antidepressant effects: A comparison of diverse pharmacological and somatic treatments.Pharmaceuticals201031194110.3390/ph301001927713241
    [Google Scholar]
  71. NewportD.J. CarpenterL.L. McDonaldW.M. PotashJ.B. TohenM. NemeroffC.B. Ketamine and other NMDA antagonists: Early clinical trials and possible mechanisms in depression.Am. J. Psychiatry20151721095096610.1176/appi.ajp.2015.1504046526423481
    [Google Scholar]
  72. BanovM.D. YoungJ.R. DunnT. SzaboS.T. Efficacy and safety of ketamine in the management of anxiety and anxiety spectrum disorders: A review of the literature.CNS Spectr.202025333134210.1017/S109285291900123831339086
    [Google Scholar]
  73. Ketamine Therapy for Anxiety.Available from: https://www.healthline.com/health/anxiety/ketamine-for-anxiety
  74. NuttD. Science and non-science in UK drug policy.Addiction20101057115410.1111/j.1360‑0443.2010.02965.x20642504
    [Google Scholar]
  75. MillerR.G. MitchellJ.D. LyonM. MooreD.H. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND).Cochrane Database Syst. Rev.200711CD00144710.1002/14651858.CD001447.pub217253460
    [Google Scholar]
  76. BansalY. FeeC. MisquittaK.A. CodeluppiS.A. SibilleE. BermanR.M. CoricV. SanacoraG. BanasrM. Prophylactic efficacy of riluzole against anxiety- and depressive-like behaviors in two rodent stress models.Complex Psychiatry202391-4576910.1159/00052953437101541
    [Google Scholar]
  77. clinicaltrials.NCT038292412024Available from: https://clinicaltrials.gov/ct2/show/NCT03829241
  78. RogawskiM.A. WenkG.L. The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease.CNS Drug Rev.20039327530810.1111/j.1527‑3458.2003.tb00254.x14530799
    [Google Scholar]
  79. MatsunagaS. KishiT. IwataN. Memantine monotherapy for Alzheimer’s disease: A systematic review and meta-analysis.PLoS One2015104e012328910.1371/journal.pone.012328925860130
    [Google Scholar]
  80. RobinsonD.M. KeatingG.M. Memantine.Drugs200666111515153410.2165/00003495‑200666110‑0001516906789
    [Google Scholar]
  81. YangZ. ZhouX. ZhangQ. Effectiveness and safety of memantine treatment for Alzheimer’s disease.J. Alzheimers Dis.201336344545810.3233/JAD‑13039523635410
    [Google Scholar]
  82. MatsunagaS. KishiT. NomuraI. SakumaK. OkuyaM. IkutaT. IwataN. The efficacy and safety of memantine for the treatment of Alzheimer’s disease.Expert Opin. Drug Saf.201817101053106110.1080/14740338.2018.152487030222469
    [Google Scholar]
  83. ReisbergB. DoodyR. StöfflerA. SchmittF. FerrisS. MöbiusH.J. Memantine in moderate-to-severe Alzheimer’s disease.N. Engl. J. Med.2003348141333134110.1056/NEJMoa01312812672860
    [Google Scholar]
  84. SchwartzT.L. SiddiquiU.A. RazaS. Memantine as an augmentation therapy for anxiety disorders.Case Rep. Psychiatry201220121310.1155/2012/74979622937414
    [Google Scholar]
  85. MöhlerH. The GABA system in anxiety and depression and its therapeutic potential.Neuropharmacology2012621425310.1016/j.neuropharm.2011.08.04021889518
    [Google Scholar]
  86. ShelpB. BownA.W. McLeanM.D. Metabolism and functions of gamma-aminobutyric acid.Trends Plant Sci.199941144645210.1016/S1360‑1385(99)01486‑710529826
    [Google Scholar]
  87. BownA.W. ShelpB.J. The metabolism and functions of [gamma]-aminobutyric acid.Plant Physiol.199711511510.1104/pp.115.1.112223787
    [Google Scholar]
  88. OlsenR.W. DeLoreyT.M. GABA synthesis, uptake and release. Basic Neurochemistry: Molecular, Cellular and Medical Aspects.6th ed SiegelG.J. AgranoffB.W. AlbersR.W. PhiladelphiaLippincott-Raven1999Available from: https://www.ncbi.nlm.nih.gov/books/NBK27979/
    [Google Scholar]
  89. SieghartW. Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes.Pharmacol. Rev.19954721812347568326
    [Google Scholar]
  90. NuttD. GABAA receptors: Subtypes, regional distribution, and function.J. Clin. Sleep Med.200622S7S1110.5664/jcsm.2652517557501
    [Google Scholar]
  91. NuttD.J. MaliziaA.L. New insights into the role of the GABAA-benzodiazepine receptor in psychiatric disorder.Br. J. Psychiatry2001179539039610.1192/bjp.179.5.39011689393
    [Google Scholar]
  92. CalcaterraN.E. BarrowJ.C. Classics in chemical neuroscience: Diazepam (valium).ACS Chem. Neurosci.20145425326010.1021/cn500005624552479
    [Google Scholar]
  93. SillsG. The mechanisms of action of gabapentin and pregabalin.Curr. Opin. Pharmacol.20066110811310.1016/j.coph.2005.11.00316376147
    [Google Scholar]
  94. LeungJ.G. Hall-FlavinD. NelsonS. SchmidtK.A. SchakK.M. The role of gabapentin in the management of alcohol withdrawal and dependence.Ann. Pharmacother.201549889790610.1177/106002801558584925969570
    [Google Scholar]
  95. FasipeO.J. AgedeO.A. EnikuomehinA.C. Announcing the novel class of GABA-A receptor selective positive allosteric modulator antidepressants.Future Sci. OA202172FSO65410.2144/fsoa‑2020‑010833437518
    [Google Scholar]
  96. AzharY. DinA.U. Brexanolone.Treasure Island, FLStatPearls Publishing2022Available from: https://www.ncbi.nlm.nih.gov/books/NBK541054/
    [Google Scholar]
  97. DeligiannidisK.M. Meltzer-BrodyS. Gunduz-BruceH. DohertyJ. JonasJ. LiS. SankohA.J. SilberC. CampbellA.D. WerneburgB. KanesS.J. LasserR. Effect of Zuranolone vs. placebo in postpartum depression: A randomized clinical trial.JAMA Psychiatry202178995195910.1001/jamapsychiatry.2021.155934190962
    [Google Scholar]
  98. SalwanA. MaroneyM. TremayneL. Patient-reported perceptions of brexanolone in the treatment of postpartum depression: A qualitative analysis.Ment. Health Clin.202212634234910.9740/mhc.2022.12.34236644587
    [Google Scholar]
  99. PanchalN. SaundersH. RudowitzR. CoxC. The implications of COVID-19 for mental health and substance use.2023Available from: https://www.kff.org/coronavirus-COVID-19/issue-brief/the-implications-of-covid-19-for-mental-health-and-substance-use/
  100. TeepeG.W. GlaseE.M. ReipsU.D. Increasing digitalization is associated with anxiety and depression: A Google Ngram analysis.PLoS One2023184e028409110.1371/journal.pone.028409137027368
    [Google Scholar]
  101. KalinN.H. The critical relationship between anxiety and depression.Am. J. Psychiatry2020177536536710.1176/appi.ajp.2020.2003030532354270
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128309913240704095334
Loading
/content/journals/cpd/10.2174/0113816128309913240704095334
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test