Skip to content
2000
Volume 30, Issue 36
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

In order to improve the treatment of lung cancer, this paper looks at the development of cisplatin-based liposomal nanocarriers. It focuses on addressing the drawbacks of conventional cisplatin therapy, including systemic toxicity, inadequate tumor targeting, and drug resistance. Liposomes, or spherical lipid vesicles, offer a potentially effective way to encapsulate cisplatin, enhancing its transport and minimizing harmful effects on healthy tissues. The article discusses many liposomal cisplatin formulations, including pH-sensitive liposomes, sterically stabilized liposomes, and liposomes coupled with specific ligands like EGFR antibodies. These novel formulations show promise in reducing cisplatin resistance, optimizing pharmacokinetics, and boosting therapeutic results in the two and models. They also take advantage of the enhanced permeability and retention (EPR) effect in the direction of improved tumor accumulation. The study highlights the need for more investigation to move these liposomal formulations from experimental to clinical settings, highlighting their potential to offer less harmful and more effective cancer therapy alternatives.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128304923240704113319
2024-07-24
2025-01-27
Loading full text...

Full text loading...

References

  1. ArrigoniR. BalliniA. SantacroceL. Another look at dietary polyphenols: Challenges in cancer prevention and treatment.Curr. Med. Chem.20222961061108210.2174/1875533XMTE3kMjUp2 34375181
    [Google Scholar]
  2. OzkanE. Bakar-AtesF. Ferroptosis: A trusted ally in combating drug resistance in cancer.Curr. Med. Chem.2022291415510.2174/0929867328666210810115812 34375173
    [Google Scholar]
  3. SahooB.M. BanikB.K. BorahP. JainA. Reactive oxygen species (ROS): Key components in cancer therapies.Anticancer. Agents Med. Chem.2022222215222
    [Google Scholar]
  4. UllahA. UllahN. NawazT. AzizT. Molecular mechanisms of Sanguinarine in cancer prevention and treatment.Anticancer. Agents Med. Chem.2023237765778
    [Google Scholar]
  5. FatimaM. IqubalM.K. IqubalA. Current insight into the therapeutic potential of phytocompounds and their nanoparticle-based systems for effective management of lung cancer.Anticancer. Agents Med. Chem.2022224668686
    [Google Scholar]
  6. FatimaN. AshiqueS. UpadhyayA. Current landscape of therapeutics for the management of hypertension: A review.Curr. Drug Deliv.202421566268210.2174/1567201820666230623121433 37357524
    [Google Scholar]
  7. AoC. GaoL. YuL. Research progress in predicting DNA methylation modifications and the relation with human diseases.Curr. Med. Chem.202229582283610.2174/0929867328666210917115733 34533438
    [Google Scholar]
  8. PohankaM. New uses of melatonin as a drug; A review.Curr. Med. Chem.202229203622363710.2174/0929867329666220105115755 34986763
    [Google Scholar]
  9. RostánS. MahlerG. OteroL. Selenosemicarbazone metal complexes as potential metal-based drugs.Curr. Med. Chem.202330555857210.2174/0929867329666211222115035 34951353
    [Google Scholar]
  10. RazaF. SiyuL. ZafarH. Recent advances in gelatin-based nanomedicine for targeted delivery of anti-cancer drugs.Curr. Pharm. Des.202228538039410.2174/1381612827666211102100118 34727851
    [Google Scholar]
  11. GarshasbiH.R. NaghibS.M. Smart stimuli-responsive alginate nanogels for drug delivery systems and cancer therapy: A review.Curr. Pharm. Des.202329443546356210.2174/0113816128283806231211073031 38115614
    [Google Scholar]
  12. SantegoetsS. WeltersM. van der BurgS. Monitoring of the immune dysfunction in cancer patients.Vaccines2016432910.3390/vaccines4030029 27598210
    [Google Scholar]
  13. AlshahraniM.Y. AlkhathamiA.G. AlmoyadM.A.A. Phytochemicals as potential inhibitors of interleukin-8 for anticancer therapy: In silico evaluation and molecular dynamics analysis.J. Biomol. Struct. Dyn.2023202311210.1080/07391102.2023.2294387 38116764
    [Google Scholar]
  14. SinghH. ChopraH. SinghI. Molecular targeted therapies for cutaneous squamous cell carcinoma: Recent developments and clinical implications.EXCLI J.202423300334 38655092
    [Google Scholar]
  15. SalehiS. NaghibS.M. GarshasbiH.R. GhorbanzadehS. ZhangW. Smart stimuli-responsive injectable gels and hydrogels for drug delivery and tissue engineering applications: A review.Front. Bioeng. Biotechnol.202311110412610.3389/fbioe.2023.1104126 36911200
    [Google Scholar]
  16. ShahidiM. AbazariO. DayatiP. Aptamer-functionalized chitosan-coated gold nanoparticle complex as a suitable targeted drug carrier for improved breast cancer treatment.J Nanotechnol Rev202211128752890
    [Google Scholar]
  17. WoodmanC. VunduG. GeorgeA. WilsonC.M. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer, Seminars in cancer biology.Elsevier2021349364
    [Google Scholar]
  18. UnnisaA. ChettupalliA.K. HussainT. KamalM.A. Recent advances in epidermal growth factor receptor inhibitors (EGFRIs) and their role in the treatment of cancer: A review.Anticancer. Agents Med. Chem.2022222033703381
    [Google Scholar]
  19. MehrajU. QayoomH. ShafiS. FarhanaP. AsdaqS. MirM.A. Cryptolepine targets TOP2A and inhibits tumor cell proliferation in breast cancer cells-an in vitro and in silico study.Anticancer. Agents Med. Chem.2022221730253037
    [Google Scholar]
  20. Shams ul Hassan S, Abbas SQ, Hassan M, Jin H-Z. Computational exploration of anti-cancer potential of guaiane dimers from Xylopia vielana by targeting B-RAF kinase using chemo-informatics, molecular docking, and MD simulation studies.Anticancer. Agents Med. Chem.2022224731746
    [Google Scholar]
  21. CriscitielloC. Guerini-RoccoE. VialeG. Immunotherapy in breast cancer patients: A focus on the use of the currently available biomarkers in oncology.Anticancer. Agents Med. Chem.2022224787800
    [Google Scholar]
  22. RahmanianM. Sartipzadeh HematabadO. AskariE. A micropillar array-based microfluidic chip for label-free separation of circulating tumor cells: The best micropillar geometry?J. Adv. Res.20234710512110.1016/j.jare.2022.08.005 35964874
    [Google Scholar]
  23. AlbainK.S. SwannR.S. RuschV.W. Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: A phase III randomised controlled trial.Lancet2009374968737938610.1016/S0140‑6736(09)60737‑6 19632716
    [Google Scholar]
  24. TimmermanR. PaulusR. GalvinJ. Stereotactic body radiation therapy for inoperable early stage lung cancer.JAMA2010303111070107610.1001/jama.2010.261 20233825
    [Google Scholar]
  25. BradleyJ. ThorstadW.L. MuticS. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer.Int. J. Radiat. Oncol. Biol. Phys.20045917886
    [Google Scholar]
  26. DiavatiS. SagrisM. Terentes-PrintziosD. VlachopoulosC. Anticoagulation treatment in venous thromboembolism: Options and optimal duration.Curr. Pharm. Des.202228429630510.2174/1381612827666211111150705 34766887
    [Google Scholar]
  27. WaheedA. ZameerS. AshrafiK. Insights into pharmacological potential of apigenin through various pathways on a nanoplatform in multitude of diseases.Curr. Pharm. Des.202329171326134010.2174/1381612829666230529164321 37254541
    [Google Scholar]
  28. ReckM. Rodríguez-AbreuD. RobinsonA.G. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer.N. Engl. J. Med.2016375191823183310.1056/NEJMoa1606774 27718847
    [Google Scholar]
  29. BrahmerJ. ReckampK.L. BaasP. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer.N. Engl. J. Med.2015373212313510.1056/NEJMoa1504627 26028407
    [Google Scholar]
  30. YeM. ZhangJ. ZhangJ. MiaoQ. YaoL. ZhangJ. Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer.Cancer Lett.2015357119620510.1016/j.canlet.2014.11.028 25444916
    [Google Scholar]
  31. RoointanA. Sharifi-RadM. BadrzadehF. Sharifi-RadJ. A comparison between PLGA-PEG and NIPAAm-MAA nanocarriers in curcumin delivery for hTERT silencing in lung cancer cell line.Cell. Mol. Biol.20166295156 27585262
    [Google Scholar]
  32. WernerM.E. CummingsN.D. SethiM. Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer.Int. J. Radiat. Oncol. Biol. Phys.2013863463468
    [Google Scholar]
  33. FerlayJ. ColombetM. SoerjomataramI. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.Int. J. Cancer201914481941195310.1002/ijc.31937 30350310
    [Google Scholar]
  34. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  35. OudkerkM. LiuS. HeuvelmansM.A. WalterJ.E. FieldJ.K. Lung cancer LDCT screening and mortality reduction evidence, pitfalls and future perspectives.Nat. Rev. Clin. Oncol.202118313515110.1038/s41571‑020‑00432‑6 33046839
    [Google Scholar]
  36. NorouziM. HardyP. Clinical applications of nanomedicines in lung cancer treatment.Acta Biomater.202112113414210.1016/j.actbio.2020.12.009 33301981
    [Google Scholar]
  37. WuY. ZhangJ. ZhaoJ. WangB. Folate-modified liposomes mediate the co-delivery of cisplatin with miR-219a-5p for the targeted treatment of cisplatin-resistant lung cancer.BMC Pulm. Med.202424115910.1186/s12890‑024‑02938‑6 38561695
    [Google Scholar]
  38. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.20107 21296855
    [Google Scholar]
  39. RamalingamS.S. OwonikokoT.K. KhuriF.R. Lung cancer: New biological insights and recent therapeutic advances.CA Cancer J. Clin.20116129111210.3322/caac.20102 21303969
    [Google Scholar]
  40. AhmadJ. AkhterS. RizwanullahM. Nanotechnology-based inhalation treatments for lung cancer: State of the art.Nanotechnol. Sci. Appl.201585566 26640374
    [Google Scholar]
  41. LiQ.C. LiC. ZhangW. PiW. HanN. Potential effects of exosomes and their MicroRNA carrier on osteoporosis.Curr. Pharm. Des.2022281189990910.2174/1381612828666220128104206 35088659
    [Google Scholar]
  42. ZielińskaA. EderP. RannierL. Hydrogels for modified-release drug delivery systems.Curr. Pharm. Des.202228860961810.2174/1381612828666211230114755 34967292
    [Google Scholar]
  43. BraunwaldE. FauciA.S. KasperD.L. HauserS.L. LongoD.L. JamesonJ.L. Harrison’s Principles of Internal Medicine.McGraw-Hill2001
    [Google Scholar]
  44. MossW.T. CoxJ.D. Moss’ radiation oncology: Rationale, technique, results.No Title1994
    [Google Scholar]
  45. SteinmaurerA. WimmerI. BergerT. RommerP.S. SellnerJ. Bruton’s tyrosine kinase inhibition in the treatment of preclinical models and multiple sclerosis.Curr. Pharm. Des.202228643744410.2174/1381612827666210701152934 34218776
    [Google Scholar]
  46. FerlayJ. SoerjomataramI. ErvikM. GLOBOCAN 2012 v10 Cancer Incidence and Mortality Worldwide: IARC Cancer Base Number 11.Lyon, FranceInternational Agency for Research on Cancer2013
    [Google Scholar]
  47. AshrafiA. AkterZ. ModareszadehP. Current landscape of therapeutic resistance in lung cancer and promising strategies to overcome resistance.Cancers20221419456210.3390/cancers14194562 36230484
    [Google Scholar]
  48. Lemjabbar-AlaouiH. HassanO.U. YangY-W. BuchananP. Lung cancer: Biology and treatment options.Biochim. Biophys. Acta201518562189210
    [Google Scholar]
  49. ZhouJ. HuangQ. HuangZ. LiJ. Combining immunotherapy and radiotherapy in lung cancer: A promising future?J. Thorac. Dis.20201284498450310.21037/JTD‑2019‑ITM‑001 32944363
    [Google Scholar]
  50. EberhardtW.E.E. De RuysscherD. WederW. 2nd ESMO consensus conference in lung cancer: Locally advanced stage III non-small-cell lung cancer.Ann. Oncol.20152681573158810.1093/annonc/mdv187 25897013
    [Google Scholar]
  51. RemonJ. SoriaJ.C. PetersS. Early and locally advanced non-small-cell lung cancer: An update of the ESMO Clinical Practice Guidelines focusing on diagnosis, staging, systemic and local therapy.Ann. Oncol.202132121637164210.1016/j.annonc.2021.08.1994 34481037
    [Google Scholar]
  52. Renault-MahieuxM. SeguinJ. VieillardV. Co-encapsulation of fisetin and cisplatin into liposomes: Stability considerations and in vivo efficacy on lung cancer animal model.Int. J. Pharm.202465112374410.1016/j.ijpharm.2023.123744 38145778
    [Google Scholar]
  53. ZahednezhadF. Zakeri-MilaniP. Shahbazi MojarradJ. ValizadehH. The latest advances of cisplatin liposomal formulations: Essentials for preparation and analysis.Expert Opin. Drug Deliv.202017452354110.1080/17425247.2020.1737672 32116060
    [Google Scholar]
  54. RosenbergB. Van CampL. KrigasT. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode.Nature1965205497269869910.1038/205698a0 14287410
    [Google Scholar]
  55. HuangZ. HuangY. The change of intracellular pH is involved in the cisplatin-resistance of human lung adenocarcinoma A549/DDP cells.Cancer Invest.2005231263210.1081/CNV‑46353 15779865
    [Google Scholar]
  56. WangD. LippardS.J. Cellular processing of platinum anticancer drugs.Nat. Rev. Drug Discov.20054430732010.1038/nrd1691 15789122
    [Google Scholar]
  57. JamiesonE.R. LippardS.J. Structure, recognition, and processing of cisplatin DNA adducts.Chem. Rev.19999992467249810.1021/cr980421n 11749487
    [Google Scholar]
  58. PavanS.R. PrabhuA. Advanced cisplatin nanoformulations as targeted drug delivery platforms for lung carcinoma treatment: A review.J. Mater. Sci.20225734161921622710.1007/s10853‑022‑07649‑z
    [Google Scholar]
  59. ChouguleM. PatelA.R. SachdevaP. JacksonT. SinghM. Anticancer activity of Noscapine, an opioid alkaloid in combination with Cisplatin in human non-small cell lung cancer.Lung Cancer201171327128210.1016/j.lungcan.2010.06.002 20674069
    [Google Scholar]
  60. SukumarU.K. BhushanB. DubeyP. MataiI. SachdevA. PackirisamyG. Emerging applications of nanoparticles for lung cancer diagnosis and therapy.Int. Nano Lett.2013314510.1186/2228‑5326‑3‑45
    [Google Scholar]
  61. FelipE. StahelR.A. PavlidisN. ESMO minimum clinical recommendations for diagnosis, treatment and follow-up of non-small-cell lung cancer (NSCLC).Ann. Oncol.200516Suppl. 1i28i2910.1093/annonc/mdi821 15888743
    [Google Scholar]
  62. VisbalA.L. LeighlN.B. FeldR. ShepherdF.A. Adjuvant chemotherapy for early-stage non-small cell lung cancer.Chest200512842933294310.1378/chest.128.4.2933 16236970
    [Google Scholar]
  63. JohnsonB.E. RabinM.S. Patient subsets benefiting from adjuvant therapy following surgical resection of non-small cell lung cancer.Clin. Cancer Res.200511135022s5026s10.1158/1078‑0432.CCR‑05‑9001 16000607
    [Google Scholar]
  64. ArriagadaR. DunantA. PignonJ.P. Long-term results of the international adjuvant lung cancer trial evaluating adjuvant Cisplatin-based chemotherapy in resected lung cancer.J. Clin. Oncol.2010281354210.1200/JCO.2009.23.2272 19933916
    [Google Scholar]
  65. HartmannJ.T. LippH.P. Toxicity of platinum compounds.Expert Opin. Pharmacother.20034688990110.1517/14656566.4.6.889 12783586
    [Google Scholar]
  66. SastryJ. KellieS.J. Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine.Pediatr. Hematol. Oncol.200522544144510.1080/08880010590964381 16020136
    [Google Scholar]
  67. DuanX. HeC. KronS.J. LinW. Nanoparticle formulations of cisplatin for cancer therapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20168577679110.1002/wnan.1390 26848041
    [Google Scholar]
  68. MandriotaG. Di CoratoR. BenedettiM. De CastroF. FanizziF.P. RinaldiR. Design and application of cisplatin-loaded magnetic nanoparticle clusters for smart chemotherapy.ACS Appl. Mater. Interfaces20191121864187510.1021/acsami.8b18717 30580523
    [Google Scholar]
  69. HumesH.D. Insights into ototoxicity.Ann. N. Y. Acad. Sci.19998841151810.1111/j.1749‑6632.1999.tb00278.x 10842580
    [Google Scholar]
  70. AranyI. SafirsteinR.L. Cisplatin nephrotoxicity, Seminars in nephrology.Elsevier2003460464
    [Google Scholar]
  71. StathopoulosG.P. AntoniouD. DimitroulisJ. StathopoulosJ. MarosisK. MichalopoulouP. Comparison of liposomal cisplatin versus cisplatin in non-squamous cell non-small-cell lung cancer.Cancer Chemother. Pharmacol.201168494595010.1007/s00280‑011‑1572‑5 21301848
    [Google Scholar]
  72. KöberleB. TomicicM.T. UsanovaS. KainaB. Cisplatin resistance: Preclinical findings and clinical implications.Biochim. Biophys. Acta201018062172182 20647037
    [Google Scholar]
  73. MarracheS. PathakR.K. DharS. Detouring of cisplatin to access mitochondrial genome for overcoming resistance.Proc. Natl. Acad. Sci.201411129104441044910.1073/pnas.1405244111 25002500
    [Google Scholar]
  74. CleareM.J. HydesP.C. MalerbiB.W. WatkinsD.M. Anti-tumour platinum complexes: Relationships between chemical properties and activity.Biochimie197860983585010.1016/S0300‑9084(78)80568‑9
    [Google Scholar]
  75. CalvertA.H. NewellD.R. GumbrellL.A. Carboplatin dosage: Prospective evaluation of a simple formula based on renal function.J. Clin. Oncol.19897111748175610.1200/JCO.1989.7.11.1748 2681557
    [Google Scholar]
  76. RaymondE FaivreS WoynarowskiJM ChaneySG Oxaliplatin: Mechanism of action and antineoplastic activity.Semin Oncol1998252)(54129609103
    [Google Scholar]
  77. AminA. BuratovichM. New platinum and ruthenium complexes the latest class of potential chemotherapeutic drugs: A review of recent developments in the field.Mini Rev. Med. Chem.20099131489150310.2174/138955709790361566 20205631
    [Google Scholar]
  78. ZhouX. WangJ. WuJ. Preparation and evaluation of a novel liposomal formulation of cisplatin.Eur. J. Pharm. Sci.201566909510.1016/j.ejps.2014.10.004 25446511
    [Google Scholar]
  79. GhaferiM. AsadollahzadehM.J. AkbarzadehA. Ebrahimi ShahmabadiH. AlaviS.E. Enhanced efficacy of PEGylated liposomal cisplatin: In vitro and in vivo evaluation.Int. J. Mol. Sci.202021255910.3390/ijms21020559 31952316
    [Google Scholar]
  80. AlaviS.E. MansouriH. EsfahaniM.K.M. MovahediF. AkbarzadehA. ChianiM. Archaeosome: As new drug carrier for delivery of Paclitaxel to breast cancer.Indian J. Clin. Biochem.201429215015310.1007/s12291‑013‑0305‑4 24757295
    [Google Scholar]
  81. PatraJ.K. DasG. FracetoL.F. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  82. IinumaH. MaruyamaK. OkinagaK. Intracellular targeting therapy of cisplatin‐encapsulated transferrin‐polyethylene glycol liposome on peritoneal dissemination of gastric cancer.Int. J. Cancer200299113013710.1002/ijc.10242 11948504
    [Google Scholar]
  83. AshiqueS. UpadhyayA. GulatiM. SinghD. ChawlaP.A. ChawlaV. One-dimensional polymeric nanocomposites in drug delivery systems.Curr. Nanosci.202319682583910.2174/1573413719666230110110706
    [Google Scholar]
  84. NagS. MitraO. TripathiG. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives.Photodiagn. Photodyn. Ther.20244510395910.1016/j.pdpdt.2023.103959 38228257
    [Google Scholar]
  85. GholapA.D. KapareH.S. PagarS. Exploring modified chitosan-based gene delivery technologies for therapeutic advancements.Int. J. Biol. Macromol.2024260Pt 212958110.1016/j.ijbiomac.2024.129581 38266848
    [Google Scholar]
  86. WuJ. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application.J. Pers. Med.202111877110.3390/jpm11080771 34442415
    [Google Scholar]
  87. HolderJ.E. FergusonC. OliveiraE. The use of nanoparticles for targeted drug delivery in non-small cell lung cancer.Front. Oncol.202313115431810.3389/fonc.2023.1154318 36994202
    [Google Scholar]
  88. HaniU. GowdaB.H.J. HaiderN. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review.AAPS PharmSciTech202324823310.1208/s12249‑023‑02670‑0 37973643
    [Google Scholar]
  89. MerinoM. LozanoT. CasaresN. Dual activity of PD-L1 targeted Doxorubicin immunoliposomes promoted an enhanced efficacy of the antitumor immune response in melanoma murine model.J. Nanobiotechnol.202119110210.1186/s12951‑021‑00846‑z 33849551
    [Google Scholar]
  90. GunasekaranK. VasamsettiB.M.K. ThangaveluP. Cytotoxic effects of nanoliposomal cisplatin and diallyl disulfide on breast cancer and lung cancer cell lines.Biomedicines2023114102110.3390/biomedicines11041021 37189638
    [Google Scholar]
  91. FantiniM. GianniL. SantelmoC. Lipoplatin treatment in lung and breast cancer.Chemother. Res. Pract.201120111710.1155/2011/125192 22295201
    [Google Scholar]
  92. TanS. WangG. Lung cancer targeted therapy: Folate and transferrin dual targeted, glutathione responsive nanocarriers for the delivery of cisplatin.Biomed. Pharmacother.2018102556310.1016/j.biopha.2018.03.046 29549729
    [Google Scholar]
  93. XuB. ZengM. ZengJ. FengJ. YuL. Meta-analysis of clinical trials comparing the efficacy and safety of liposomal cisplatin versus conventional nonliposomal cisplatin in nonsmall cell lung cancer (NSCLC) and squamous cell carcinoma of the head and neck (SCCHN).Medicine20189746e1316910.1097/MD.0000000000013169 30431590
    [Google Scholar]
  94. CrousA. AbrahamseH. Photodynamic therapy of lung cancer, where are we?Front. Pharmacol.20221393209810.3389/fphar.2022.932098 36110552
    [Google Scholar]
  95. GuoS. WangY. MiaoL. Lipid-coated Cisplatin nanoparticles induce neighboring effect and exhibit enhanced anticancer efficacy.ACS Nano20137119896990410.1021/nn403606m 24083505
    [Google Scholar]
  96. NishiyamaN. OkazakiS. CabralH. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice.Cancer Res.2003632489778983 14695216
    [Google Scholar]
  97. KesharwaniP. Nanotechnology-based targeted drug delivery systems for lung cancer.Academic Press2019
    [Google Scholar]
  98. Ram PrasadR.P. Rishikesh PandeyR.P. Ajit VarmaA.V. Ishan BarmanI.B. Polymer-based nanoparticles for drug delivery systems and cancer therapeutics.In: Natural polymers for drug delivery.UKCABI Wallingford20175370
    [Google Scholar]
  99. AgarwalA. AsthanaA. GuptaU. JainN.K. Tumour and dendrimers: A review on drug delivery aspects.J. Pharm. Pharmacol.201060667168810.1211/jpp.60.6.0001 18498702
    [Google Scholar]
  100. MayaS. SarmentoB. NairA. RejinoldN. NairS. JayakumarR. Smart stimuli sensitive nanogels in cancer drug delivery and imaging: A review.Curr. Pharm. Des.201319417203721810.2174/138161281941131219124142 23489200
    [Google Scholar]
  101. NagS. BhattM. GhoshS. Drug Delivery for Neurological Disorders Using Nanotechnology, Theranostic Applications of Nanotechnology in Neurological Disorders.Springer2024135165
    [Google Scholar]
  102. Scioli MontotoS. MuracaG. RuizM.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects.Front. Mol. Biosci.2020758799710.3389/fmolb.2020.587997 33195435
    [Google Scholar]
  103. HuaS. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives.Front. Pharmacol.2015621910.3389/fphar.2015.00219 26483690
    [Google Scholar]
  104. KhanM.S. MohapatraS. GuptaV. Potential of lipid-based nanocarriers against two major barriers to drug delivery-skin and blood-brain barrier.Membranes202313334310.3390/membranes13030343 36984730
    [Google Scholar]
  105. MovahediF. Ebrahimi ShahmabadiH. AlaviS.E. Koohi Moftakhari EsfahaniM. Release modeling and comparison of nanoarchaeosomal, nanoliposomal and pegylated nanoliposomal carriers for paclitaxel.Tumour Biol.20143598665867210.1007/s13277‑014‑2125‑4 24867099
    [Google Scholar]
  106. Al HarthiS. AlaviS.E. RadwanM.A. El KhatibM.M. AlSarraI.A. Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer’s disease.Sci. Rep.201991956310.1038/s41598‑019‑46032‑y 31266990
    [Google Scholar]
  107. GribkoA. KünzelJ. WünschD. Is small smarter? Nanomaterial-based detection and elimination of circulating tumor cells: Current knowledge and perspectives.Int. J. Nanomedicine2019144187420910.2147/IJN.S198319 31289440
    [Google Scholar]
  108. EssaM.L. El-KemaryM.A. Ebrahem SaiedE.M. LeporattiS. Nemany HanafyN.A. Nano targeted therapies made of lipids and polymers have promising strategy for the treatment of lung cancer.Materials20201323539710.3390/ma13235397 33261031
    [Google Scholar]
  109. PattniB.S. ChupinV.V. TorchilinV.P. New developments in liposomal drug delivery.Chem. Rev.201511519109381096610.1021/acs.chemrev.5b00046 26010257
    [Google Scholar]
  110. WhiteS.C. LoriganP. MargisonG.P. Phase II study of SPI-77 (sterically stabilised liposomal cisplatin) in advanced non-small-cell lung cancer.Br. J. Cancer200695782282810.1038/sj.bjc.6603345 16969346
    [Google Scholar]
  111. YNDou Thermosensitive Liposome Formulation of Cisplatin for Cancer Treatment.CanadaUniversity of Toronto2017
    [Google Scholar]
  112. BoulikasT. StathopoulosG.P. VolakakisN. VougioukaM. Systemic lipoplatin infusion results in preferential tumor uptake in human studies.Anticancer Res.200525430313039 16080562
    [Google Scholar]
  113. Skupin-MrugalskaP. Liposome-based drug delivery for lung cancer, Nanotechnology-based Targeted Drug Delivery Systems for Lung Cancer.Elsevier2019123160
    [Google Scholar]
  114. XuH. NiuM. YuanX. WuK. LiuA. CD44 as a tumor biomarker and therapeutic target.Exp. Hematol. Oncol.2020913610.1186/s40164‑020‑00192‑0 33303029
    [Google Scholar]
  115. StathopoulosG.P. AntoniouD. DimitroulisJ. Liposomal cisplatin combined with paclitaxel versus cisplatin and paclitaxel in non-small-cell lung cancer: A randomized phase III multicenter trial.Ann. Oncol.201021112227223210.1093/annonc/mdq234 20439345
    [Google Scholar]
  116. BoulikasT. Low toxicity and anticancer activity of a novel liposomal cisplatin (Lipoplatin) in mouse xenografts.Oncol. Rep.200412131210.3892/or.12.1.3 15201951
    [Google Scholar]
  117. DevarajanP. TarabishiR. MishraJ. Low renal toxicity of lipoplatin compared to cisplatin in animals.Anticancer Res.200424421932200 15330160
    [Google Scholar]
  118. WuH. JinH. WangC. Synergistic cisplatin/doxorubicin combination chemotherapy for multidrug-resistant cancer via polymeric nanogels targeting delivery.ACS Appl. Mater. Interfaces20179119426943610.1021/acsami.6b16844 28247750
    [Google Scholar]
  119. KriegerM.L. EcksteinN. SchneiderV. Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro.Int. J. Pharm.20103891-2101710.1016/j.ijpharm.2009.12.061 20060458
    [Google Scholar]
  120. MallickA. MoreP. GhoshS. Dual drug conjugated nanoparticle for simultaneous targeting of mitochondria and nucleus in cancer cells.ACS Appl. Mater. Interfaces20157147584759810.1021/am5090226 25811662
    [Google Scholar]
  121. YangY.T. ShiY. JayM. Di PasquaA.J. Enhanced toxicity of cisplatin with chemosensitizer phenethyl isothiocyanate toward non-small cell lung cancer cells when delivered in liposomal nanoparticles.Chem. Res. Toxicol.201427694694810.1021/tx5001128 24836554
    [Google Scholar]
  122. WittgenB.P.H. KunstP.W.A. van der BornK. Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung.Clin. Cancer Res.20071382414242110.1158/1078‑0432.CCR‑06‑1480 17438100
    [Google Scholar]
  123. FooteR.L. KasperbauerJ.L. OkunoS.H. A pilot study of high‐dose intraarterial cisplatin chemotherapy with concomitant accelerated radiotherapy for patients with previously untreated T4 and selected patients with T3N0-N3M0 squamous cell carcinoma of the upper aerodigestive tract.Cancer2005103355956810.1002/cncr.20803 15597408
    [Google Scholar]
  124. OsakiT. HanagiriT. NakanishiR. YoshinoI. TagaS. YasumotoK. Bronchial arterial infusion is an effective therapeutic modality for centrally located early-stage lung cancer: Results of a pilot study.Chest199911551424142810.1378/chest.115.5.1424 10334163
    [Google Scholar]
  125. AlbertsD.S. LiuP.Y. HanniganE.V. Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer.N. Engl. J. Med.1996335261950195510.1056/NEJM199612263352603 8960474
    [Google Scholar]
  126. MaischB. RistićA.D. PankuweitS. NeubauerA. MollR. Neoplastic pericardial effusion. Efficacy and safety of intrapericardial treatment with cisplatin.Eur. Heart J.200223201625163110.1053/euhj.2002.3328 12323163
    [Google Scholar]
  127. MarkmanM. ClearyS. PfeifleC. HowellS.B. Cisplatin administered by the intracavitary route as treatment for malignant mesothelioma.Cancer1986581182110.1002/1097‑0142(19860701)58:1<18::AID‑CNCR2820580105>3.0.CO;2‑C 3708543
    [Google Scholar]
  128. MarkmanM. Intraperitoneal therapy of ovarian cancer.Oncologist199611-2182110.1634/theoncologist.1‑1‑18 10387964
    [Google Scholar]
  129. RuschV.W. FiglinR. GodwinD. PiantadosiS. Intrapleural cisplatin and cytarabine in the management of malignant pleural effusions: A Lung Cancer Study Group trial.J. Clin. Oncol.19919231331910.1200/JCO.1991.9.2.313 1988578
    [Google Scholar]
  130. DuvillardC. RomanetP. BeaudouinN. CosmidisA. ChauffertB. Phase 2 study of intratumoral cisplatin and epinephrine treatment for locally recurrent head and neck tumors.Ann. Otol. Rhinol. Laryngol.2004113322923310.1177/000348940411300312 15053208
    [Google Scholar]
  131. GoldbergE.P. HadbaA.R. AlmondB.A. MarottaJ.S. Intratumoral cancer chemotherapy and immunotherapy: Opportunities for nonsystemic preoperative drug delivery.J. Pharm. Pharmacol.201054215918010.1211/0022357021778268 11848280
    [Google Scholar]
  132. Renault-MahieuxM. VieillardV. SeguinJ. Co-encapsulation of fisetin and cisplatin into liposomes for glioma therapy: From formulation to cell evaluation.Pharmaceutics202113797010.3390/pharmaceutics13070970 34206986
    [Google Scholar]
  133. LiuZ. ChuW. SunQ. Micelle-contained and PEGylated hybrid liposomes of combined gemcitabine and cisplatin delivery for enhancing antitumor activity.Int. J. Pharm.202160212061910.1016/j.ijpharm.2021.120619 33887396
    [Google Scholar]
  134. Ocaña-ArakachiK. Martínez-HerculanoJ. JuradoR. Llaguno-MuniveM. Garcia-LopezP. Pharmacokinetics and anti-tumor efficacy of PEGylated liposomes co-loaded with cisplatin and mifepristone.Pharmaceuticals20231610133710.3390/ph16101337 37895808
    [Google Scholar]
  135. LiuJ. WangZ. LiF. GaoJ. WangL. HuangG. Liposomes for systematic delivery of vancomycin hydrochloride to decrease nephrotoxicity: Characterization and evaluation.Asian J Pharm Sci2015103212222
    [Google Scholar]
  136. HuC.M.J. ZhangL. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer.Biochem. Pharmacol.20128381104111110.1016/j.bcp.2012.01.008 22285912
    [Google Scholar]
  137. FotsisT. PepperM.S. AktasE. Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis.Cancer Res.1997571429162921 9230201
    [Google Scholar]
  138. BhatT.A. NambiarD. PalA. AgarwalR. SinghR.P. Fisetin inhibits various attributes of angiogenesis in vitro and in vivo implications for angioprevention.Carcinogenesis201233238539310.1093/carcin/bgr282 22139440
    [Google Scholar]
  139. TouilY.S. FellousA. SchermanD. ChabotG.G. Flavonoid-induced morphological modifications of endothelial cells through microtubule stabilization.Nutr. Cancer200961331032110.1080/01635580802521346 19373604
    [Google Scholar]
  140. ParkJ.H. JangY.J. ChoiY.J. Fisetin inhibits matrix metalloproteinases and reduces tumor cell invasiveness and endothelial cell tube formation.Nutr. Cancer20136581192119910.1080/01635581.2013.828090 24099040
    [Google Scholar]
  141. SeguinJ. BrulléL. BoyerR. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy.Int. J. Pharm.20134441-214615410.1016/j.ijpharm.2013.01.050 23380621
    [Google Scholar]
  142. TouilY.S. SeguinJ. SchermanD. ChabotG.G. Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice.Cancer Chemother. Pharmacol.201168244545510.1007/s00280‑010‑1505‑8 21069336
    [Google Scholar]
  143. AnsóE. ZuazoA. IrigoyenM. UrdaciM.C. RouzautA. Martínez-IrujoJ.J. Flavonoids inhibit hypoxia-induced vascular endothelial growth factor expression by a HIF-1 independent mechanism.Biochem. Pharmacol.201079111600160910.1016/j.bcp.2010.02.004 20153296
    [Google Scholar]
  144. SahuB.D. KalvalaA.K. KoneruM. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence.PLoS One201499e10507010.1371/journal.pone.0105070 25184746
    [Google Scholar]
  145. SinghaiM. PandeyV. AshiqueS. Design and evaluation of SLNs encapsulated curcumin-based topical formulation for the management of cervical cancer.Anticancer. Agents Med. Chem.2023231618661879
    [Google Scholar]
  146. ChiR.A. van der WattP. WeiW. BirrerM.J. LeanerV.D. Inhibition of Kpnβ1 mediated nuclear import enhances cisplatin chemosensitivity in cervical cancer.BMC Cancer202121110610.1186/s12885‑021‑07819‑3 33530952
    [Google Scholar]
  147. AktepeO.H. ŞahinT.K. GünerG. ArikZ. YalçinŞ. Lycopene sensitizes the cervical cancer cells to cisplatin via targeting nuclear factor-kappa B (NF-κB) pathway.Turk. J. Med. Sci.202151136837410.3906/sag‑2005‑413 32718121
    [Google Scholar]
  148. LiH. ZhangY. LanX. Halofuginone sensitizes lung cancer organoids to cisplatin via suppressing PI3K/AKT and MAPK signaling pathways.Front. Cell Dev. Biol.2021977304810.3389/fcell.2021.773048 34901018
    [Google Scholar]
  149. NanayakkaraA.K. FollitC.A. ChenG. WilliamsN.S. VogelP.D. WiseJ.G. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells.Sci. Rep.20188196710.1038/s41598‑018‑19325‑x 29343829
    [Google Scholar]
  150. YardleyD.A. Drug resistance and the role of combination chemotherapy in improving patient outcomes.Int. J. Breast Cancer2013201311510.1155/2013/137414 23864953
    [Google Scholar]
  151. Segovia-MendozaM. JuradoR. MirR. MedinaL.A. Prado-GarciaH. Garcia-LopezP. Antihormonal agents as a strategy to improve the effect of chemo-radiation in cervical cancer: In vitro and in vivo study.BMC Cancer20151512110.1186/s12885‑015‑1016‑4 25622528
    [Google Scholar]
  152. JuradoR. Lopez-FloresA. AlvarezA. García-LópezP. Cisplatin cytotoxicity is increased by mifepristone in cervical carcinoma: An in vitro and in vivo study.Oncol. Rep.200922512371245 19787245
    [Google Scholar]
  153. ZamboniW.C. GervaisA.C. EgorinM.J. Inter- and intratumoral disposition of platinum in solid tumors after administration of cisplatin.Clin. Cancer Res.20028929922999 12231546
    [Google Scholar]
  154. Ramón-LópezA. Escudero-OrtizV. CarbonellV. Pérez-RuixoJ.J. ValenzuelaB. Population pharmacokinetics applied to optimising cisplatin doses in cancer patients.Farmacia Hospitalaria: Organo Oficial de Expresion Cientifica de la Sociedad Espanola de Farmacia Hospitalaria2012365392402 22402361
    [Google Scholar]
  155. KarasawaT. Sibrian-VazquezM. StronginR.M. SteygerP.S. Identification of cisplatin-binding proteins using agarose conjugates of platinum compounds.PLoS One201386e6622010.1371/journal.pone.0066220 23755301
    [Google Scholar]
  156. ChangQ. OrnatskyO.I. SiddiquiI. StrausR. BaranovV.I. HedleyD.W. Biodistribution of cisplatin revealed by imaging mass cytometry identifies extensive collagen binding in tumor and normal tissues.Sci. Rep.2016613664110.1038/srep36641 27812005
    [Google Scholar]
  157. SarkarN.N. Mifepristone: Bioavailability, pharmacokinetics and use-effectiveness.Eur. J. Obstet. Gynecol. Reprod. Biol.2002101211312010.1016/S0301‑2115(01)00522‑X 11858883
    [Google Scholar]
  158. Abdel-HamidN.M. AbassS.A. EldomanyR.A. Abdel-KareemM.A. ZakariaS. Dual regulating of mitochondrial fusion and Timp-3 by leflunomide and diallyl disulfide combination suppresses diethylnitrosamine-induced hepatocellular tumorigenesis in rats.Life Sci.202229412036910.1016/j.lfs.2022.120369 35120919
    [Google Scholar]
  159. Abdel-DaimM.M. Abdel-RahmanH.G. DessoukiA.A. Impact of garlic (Allium sativum) oil on cisplatin-induced hepatorenal biochemical and histopathological alterations in rats.Sci. Total Environ.202071013633810.1016/j.scitotenv.2019.136338 31923684
    [Google Scholar]
  160. HarringtonK.J. LewanskiC.R. NorthcoteA.D. Phase I-II study of pegylated liposomal cisplatin (SPI-077™) in patients with inoperable head and neck cancer.Ann. Oncol.200112449349610.1023/A:1011199028318 11398881
    [Google Scholar]
  161. JungJ. JeongS.Y. ParkS.S. A cisplatin-incorporated liposome that targets the epidermal growth factor receptor enhances radiotherapeutic efficacy without nephrotoxicity.Int. J. Oncol.20154631268127410.3892/ijo.2014.2806 25544240
    [Google Scholar]
  162. GhafooriP. MarksL.B. VujaskovicZ. KelseyC.R. Radiation-induced lung injury. Assessment, management, and prevention.Oncology20082213747 18251282
    [Google Scholar]
  163. GravesE.E. MaityA. LeQ-T. The tumor microenvironment in non-small-cell lung cancer, Seminars in radiation oncology.Elsevier2010156163
    [Google Scholar]
  164. BaasP. BelderbosJ.S.A. van den HeuvelM. Chemoradiation therapy in nonsmall cell lung cancer.Curr. Opin. Oncol.201123214014910.1097/CCO.0b013e328341eed6 21178617
    [Google Scholar]
  165. GiacconeG. Twenty-five years of treating advanced NSCLC: What have we achieved?Ann. Oncol.200415Suppl. 4iv81iv8310.1093/annonc/mdh908 15477340
    [Google Scholar]
  166. SongS. LiuD. PengJ. Peptide ligand-mediated liposome distribution and targeting to EGFR expressing tumor in vivo.Int. J. Pharm.20083631-215516110.1016/j.ijpharm.2008.07.012 18692120
    [Google Scholar]
  167. JeongS.Y. ParkS.J. YoonS.M. Systemic delivery and preclinical evaluation of Au nanoparticle containing β-lapachone for radiosensitization.J. Control. Release2009139323924510.1016/j.jconrel.2009.07.007 19619590
    [Google Scholar]
  168. van der MeelR. OliveiraS. AltintasI. Tumor-targeted nanobullets: Anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor for cancer treatment.J. Control. Release2012159228128910.1016/j.jconrel.2011.12.027 22227023
    [Google Scholar]
  169. LiangK. AngK.K. MilasL. HunterN. FanZ. The epidermal growth factor receptor mediates radioresistance.Int. J. Radiat. Oncol. Biol. Phys.2003571246254
    [Google Scholar]
  170. BaumannM. KrauseM. DikomeyE. EGFR-targeted anti-cancer drugs in radiotherapy: Preclinical evaluation of mechanisms.Radiother. Oncol.200783323824810.1016/j.radonc.2007.04.006 17502118
    [Google Scholar]
  171. AnsellS.M. HarasymT.O. TardiP.G. BuchkowskyS.S. BallyM.B. CullisP.R. Antibody conjugation methods for active targeting of liposomes.Methods Mol. Med.20005168
    [Google Scholar]
  172. KolhatkarR. LoteA. KhambhatiH. Active tumor targeting of nanomaterials using folic acid, transferrin and integrin receptors.Curr. Drug Discov. Technol.20118319720610.2174/157016311796799044 21696360
    [Google Scholar]
  173. SharmaA. ShambhwaniD. PandeyS. Advances in lung cancer treatment using nanomedicines.ACS Omega202381104110.1021/acsomega.2c04078 36643475
    [Google Scholar]
  174. VhoraI. KhatriN. DesaiJ. ThakkarH.P. Caprylate-conjugated Cisplatin for the development of novel liposomal formulation.AAPS PharmSciTech201415484585710.1208/s12249‑014‑0106‑y 24700295
    [Google Scholar]
  175. AkimaruK. AuzenneE. AkimaruY. Formulation and antitumor efficacy of liposomal-caprylated-TNF-SAM2.Cytokines Mol. Ther.199513197210 9384676
    [Google Scholar]
  176. UtsumiT. HungM-C. KlostergaardJ. Preparation and characterization of liposomal-lipophilic tumor necrosis factor.Cancer Res.1991511333623366 2054776
    [Google Scholar]
  177. CafaggiS. RussoE. StefaniR. Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin-alginate complex.J. Control. Release20071211-211012310.1016/j.jconrel.2007.05.037 17601625
    [Google Scholar]
  178. YanX. GemeinhartR.A. Cisplatin delivery from poly(acrylic acid-co-methyl methacrylate) microparticles.J. Control. Release20051061-219820810.1016/j.jconrel.2005.05.005 15979187
    [Google Scholar]
  179. ShiL. LiY. YuT. Predictable resistance and overall survival of gemcitabine/cisplatin by platelet activation index in non-small cell lung cancer.Med. Sci. Monit.2018248655866810.12659/MSM.911125 30498189
    [Google Scholar]
  180. DubeyR.D. SanejaA. GuptaP.K. GuptaP.N. Recent advances in drug delivery strategies for improved therapeutic efficacy of gemcitabine.Eur. J. Pharm. Sci.20169314716210.1016/j.ejps.2016.08.021 27531553
    [Google Scholar]
  181. PoyD. Ebrahimi ShahemabadiH. AkbarzadehA. Moradi-SardarehH. EbrahimifarM. Carboplatin liposomal nanoparticles: Preparation, characterization, and cytotoxicity effects on lung cancer in vitro environment.Int. J. Polym. Mater.201867636737010.1080/00914037.2017.1332624
    [Google Scholar]
  182. PramanikS. MohantoS. ManneR. Nanoparticle-based drug delivery system: The magic bullet for the treatment of chronic pulmonary diseases.Mol. Pharm.202118103671371810.1021/acs.molpharmaceut.1c00491 34491754
    [Google Scholar]
  183. BurhanE. RuesenC. RuslamiR. Isoniazid, rifampin, and pyrazinamide plasma concentrations in relation to treatment response in Indonesian pulmonary tuberculosis patients.Antimicrob. Agents Chemother.20135783614361910.1128/AAC.02468‑12 23689725
    [Google Scholar]
  184. DaraeeH. EtemadiA. KouhiM. AlimirzaluS. AkbarzadehA. Application of liposomes in medicine and drug delivery.Artif. Cells Nanomed. Biotechnol.201644138139110.3109/21691401.2014.953633 25222036
    [Google Scholar]
  185. PadhiS. BeheraA. Cellular Internalization and Toxicity of Polymeric Nanoparticles.Polymeric nanoparticles for the treatment of solid tumors Environmental Chemistry for a Sustainable World. PadhiS BeheraA LichtfouseE SpringerCham20227147388
    [Google Scholar]
  186. AshiqueS. GupthaP.M. ShilpiS. Nanocarrier-mediated delivery for targeting for prostate cancer, Multifunctional Nanocomposites for Targeted Drug Delivery in Cancer Therapy.Elsevier202435539210.1016/B978‑0‑323‑95303‑0.00008‑3
    [Google Scholar]
  187. AlshammariM.K. AlmomenE.Y. AlshahraniK.F. Nano-enabled strategies for the treatment of lung cancer: Potential bottlenecks and future perspectives.Biomedicines202311247310.3390/biomedicines11020473 36831009
    [Google Scholar]
  188. PadhiS. BeheraA. Advanced drug delivery systems in the treatment of ovarian cancer.In: Advanced Drug Delivery Systems in the Management of Cancer.Elsevier202112713910.1016/B978‑0‑323‑85503‑7.00020‑1
    [Google Scholar]
  189. BazakR. HouriM. AchyS.E. HusseinW. RefaatT. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature.Mol. Clin. Oncol.20142690490810.3892/mco.2014.356 25279172
    [Google Scholar]
  190. KunduA. PadhiS. BeheraA. HasnainM.S. NayakA.K. Tumor targeting strategies by chitosan-based nanocarriers.In: Chitosan in Biomedical Applications.Elsevier2022163188
    [Google Scholar]
  191. PadhiS. AzharuddinM. BeheraA. Nanocarriers as delivery tool for COVID-19 drugs.In: Coronavirus Drug Discovery.Elsevier202229333210.1016/B978‑0‑323‑95574‑4.00018‑4
    [Google Scholar]
  192. BeheraA. PadhiS. pH-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: Concept and recent advances.Nanomedicine202293487499
    [Google Scholar]
  193. SunT. ZhangY.S. PangB. HyunD.C. YangM. XiaY. Engineered nanoparticles for drug delivery in cancer therapy.In: Nanomaterials and Neoplasms.Jenny Stanford Publishing20213114210.1201/9780429027819‑2
    [Google Scholar]
  194. MaedaH. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting.Adv. Enzyme Regul.200141118920710.1016/S0065‑2571(00)00013‑3 11384745
    [Google Scholar]
  195. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.2020212751760
    [Google Scholar]
  196. SunS. WangY. GaoX. Current perspectives and trends in nanoparticle drug delivery systems in breast cancer: Bibliometric analysis and review.Front. Bioeng. Biotechnol.202311125304810.3389/fbioe.2023.1253048 37771575
    [Google Scholar]
  197. GabizonA.A. ShmeedaH. ZalipskyS. Pros and cons of the liposome platform in cancer drug targeting.J. Liposome Res.200616317518310.1080/08982100600848769 16952872
    [Google Scholar]
  198. DrummondD.C. MeyerO. HongK. KirpotinD.B. PapahadjopoulosD. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors.Pharmacol. Rev.1999514691743 10581328
    [Google Scholar]
  199. MorseM.A. EklindK.I. HechtS.S. Structure-activity relationships for inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone lung tumorigenesis by arylalkyl isothiocyanates in A/J mice.Cancer Res.199151718461850 2004368
    [Google Scholar]
  200. WangS. GouJ. WangY. Synergistic antitumor efficacy mediated by liposomal co-delivery of polymeric micelles of vinorelbine and cisplatin in non-small cell lung cancer.Int. J. Nanomedicine2021162357237210.2147/IJN.S290263 33790554
    [Google Scholar]
  201. MukherjeeA. PaulM. MukherjeeS. Recent progress in the theranostics application of nanomedicine in lung cancer.Cancers201911559710.3390/cancers11050597 31035440
    [Google Scholar]
  202. MaruyamaK. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects.Adv. Drug Deliv. Rev.201163316116910.1016/j.addr.2010.09.003 20869415
    [Google Scholar]
  203. CrommelinD.J.A. van HoogevestP. StormG. The role of liposomes in clinical nanomedicine development. What now? Now what?J. Control. Release202031825626310.1016/j.jconrel.2019.12.023 31846618
    [Google Scholar]
  204. MaedaH. BharateG.Y. DaruwallaJ. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect.Eur. J. Pharm. Biopharm.200971340941910.1016/j.ejpb.2008.11.010 19070661
    [Google Scholar]
  205. AhmadianS. SabzichiM. RashidiM. Sensitization of A-549 lung cancer cells to Cisplatin by Quinacrine-loaded lipidic nanoparticles via suppressing Nrf2 mediated defense mechanism.Naunyn Schmiedebergs Arch. Pharmacol.202139471521152810.1007/s00210‑021‑02079‑1 33735393
    [Google Scholar]
  206. KlaunigJ.E. Oxidative stress and cancer.Curr. Pharm. Des.201924404771477810.2174/1381612825666190215121712 30767733
    [Google Scholar]
  207. SabzichiM. RamezaniM. MohammadianJ. The synergistic impact of quinacrine on cell cycle and anti-invasiveness behaviors of doxorubicin in MDA-MB-231 breast cancer cells.Process Biochem.20198117518110.1016/j.procbio.2019.03.007
    [Google Scholar]
  208. ChenB. LuY. ChenY. ChengJ. The role of Nrf2 in oxidative stress-induced endothelial injuries.J. Endocrinol.20152253R83R9910.1530/JOE‑14‑0662 25918130
    [Google Scholar]
  209. PetriS. KörnerS. KiaeiM. Nrf2/ARE signaling pathway: Key mediator in oxidative stress and potential therapeutic target in ALS.Neurol. Res. Int.201220121710.1155/2012/878030 23050144
    [Google Scholar]
  210. IkedaH. SerriaM.S. KakizakiI. Activation of mouse Pi-class glutathione S-transferase gene by Nrf2(NF-E2-related factor 2) and androgen.Biochem. J.2002364256357010.1042/bj20011756 12023900
    [Google Scholar]
  211. TangX. WangH. FanL. Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs.Free Radic. Biol. Med.201150111599160910.1016/j.freeradbiomed.2011.03.008 21402146
    [Google Scholar]
  212. MaroufiN.F. VahedianV. MazrakhondiS.A.M. Sensitization of MDA-MBA231 breast cancer cell to docetaxel by myricetin loaded into biocompatible lipid nanoparticles via sub-G1 cell cycle arrest mechanism.Naunyn Schmiedebergs Arch. Pharmacol.2020393111110.1007/s00210‑019‑01692‑5 31372697
    [Google Scholar]
  213. RaeisiS. ChavoshiH. MohammadiM. GhorbaniM. SabzichiM. RamezaniF. Naringenin-loaded nano-structured lipid carrier fortifies oxaliplatin-dependent apoptosis in HT-29 cell line.Process Biochem.20198316817510.1016/j.procbio.2019.05.013
    [Google Scholar]
  214. TajmohammadiI. MohammadianJ. SabzichiM. Identification of Nrf2/STAT3 axis in induction of apoptosis through sub-G1 cell cycle arrest mechanism in HT‐29 colon cancer cells.J. Cell. Biochem.20191208140351404310.1002/jcb.28678 30993753
    [Google Scholar]
  215. GargT. GoyalA.K. Liposomes: Targeted and controlled delivery system.Drug Deliv. Lett.201441627110.2174/22103031113036660015
    [Google Scholar]
  216. HajipourH HamishehkarH Nazari Soltan AhmadS BarghiS MaroufiNF TaheriRA Improved anticancer effects of epigallocatechin gallate using RGD-containing nanostructured lipid carriers.Artif Cell Nanomed Biotechnol201846sup128392
    [Google Scholar]
  217. MohammadianJ. MahmoudiS. PourmohammadP. Formulation of Stattic as STAT3 inhibitor in nanostructured lipid carriers (NLCs) enhances efficacy of doxorubicin in melanoma cancer cells.Naunyn Schmiedebergs Arch. Pharmacol.2020393122315232310.1007/s00210‑020‑01942‑x 32653978
    [Google Scholar]
  218. WangZ. QiaoR. TangN. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer.Biomaterials2017127253510.1016/j.biomaterials.2017.02.037 28279919
    [Google Scholar]
  219. PadhiS. BeheraA. Nanotechnology based targeting strategies for the delivery of Camptothecin, Sustainable Agriculture Reviews 44: Pharmaceutical Technology for Natural Products Delivery.Impact Nanotechnol20202243272
    [Google Scholar]
  220. AlSawaftahN. PittW.G. HusseiniG.A. Dual-targeting and stimuli-triggered liposomal drug delivery in cancer treatment.ACS Pharmacol. Transl. Sci.2021431028104910.1021/acsptsci.1c00066 34151199
    [Google Scholar]
  221. AgibaA.M. Arreola-RamírezJ.L. CarbajalV. Segura-MedinaP. Light-responsive and dual-targeting liposomes: From mechanisms to targeting strategies.Molecules202429363610.3390/molecules29030636 38338380
    [Google Scholar]
  222. RiazM. RiazM. ZhangX. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review.Int. J. Mol. Sci.201819119510.3390/ijms19010195 29315231
    [Google Scholar]
  223. JainA. JainS.K. Advances in tumor targeted liposomes.Curr. Mol. Med.2018181445710.2174/1566524018666180416101522 29663884
    [Google Scholar]
  224. UlbrichK. HoláK. ŠubrV. BakandritsosA. TučekJ. ZbořilR. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies.Chem. Rev.201611695338543110.1021/acs.chemrev.5b00589 27109701
    [Google Scholar]
  225. NarmaniA. YavariK. MohammadnejadJ. Imaging, biodistribution and in vitro study of smart 99mTc-PAMAM G4 dendrimer as novel nano-complex.Colloids Surf. B Biointerfaces201715923224010.1016/j.colsurfb.2017.07.089 28800462
    [Google Scholar]
  226. KavandA. AntonN. VandammeT. SerraC.A. Chan-SengD. Synthesis and functionalization of hyperbranched polymers for targeted drug delivery.J. Control. Release202032128531110.1016/j.jconrel.2020.02.019 32057990
    [Google Scholar]
  227. Pakdaman GoliP. Bikhof TorbatiM. ParivarK. Akbarzadeh KhiaviA. YousefiM. Preparation and evaluation of gemcitabin and cisplatin-entrapped Folate-PEGylated liposomes as targeting co-drug delivery system in cancer therapy.J. Drug Deliv. Sci. Technol.20216510275610.1016/j.jddst.2021.102756
    [Google Scholar]
  228. NarmaniA. RezvaniM. FarhoodB. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems.Drug Dev. Res.201980440442410.1002/ddr.21545 31140629
    [Google Scholar]
  229. YangY. ZhaoZ. XieC. ZhaoY. Dual-targeting liposome modified by glutamic hexapeptide and folic acid for bone metastatic breast cancer.Chem. Phys. Lipids202022810488210.1016/j.chemphyslip.2020.104882 32017901
    [Google Scholar]
  230. ValihrachL. AndrovicP. KubistaM. Circulating miRNA analysis for cancer diagnostics and therapy.Mol. Aspects Med.20207210082510.1016/j.mam.2019.10.002 31635843
    [Google Scholar]
  231. WangP. ZhuM. ZhangD. The relationship between chronic obstructive pulmonary disease and non‐small cell lung cancer in the elderly.Cancer Med.2019894124413410.1002/cam4.2333 31184445
    [Google Scholar]
  232. YuN. YongS. KimH.K. Identification of tumor suppressor miRNAs by integrative miRNA and mRNA sequencing of matched tumor-normal samples in lung adenocarcinoma.Mol. Oncol.20191361356136810.1002/1878‑0261.12478 30913346
    [Google Scholar]
  233. PidíkovaP. ReisR. HerichovaI. miRNA clusters with down-regulated expression in human colorectal cancer and their regulation.Int. J. Mol. Sci.20202113463310.3390/ijms21134633 32610706
    [Google Scholar]
  234. YeT. ChangyuS. LimengZ. YuanP. Clinical significance of miRNA 106a in non-small cell lung cancer patients who received cisplatin combined with gemcitabine chemotherapy.Cancer Biol. Med.201815215716410.20892/j.issn.2095‑3941.2017.0182 29951339
    [Google Scholar]
  235. DengS. WuD. LiL. miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549.Biochem. Biophys. Res. Commun.2021549546010.1016/j.bbrc.2021.02.077 33662669
    [Google Scholar]
  236. RaoC. MiaoX. ZhaoG. MiR-219a-5p enhances cisplatin sensitivity of human non-small cell lung cancer by targeting FGF9.Biomed. Pharmacother.201911410866210.1016/j.biopha.2019.108662 30999114
    [Google Scholar]
  237. MaC.C. WangZ.L. XuT. HeZ.Y. WeiY.Q. The approved gene therapy drugs worldwide: From 1998 to 2019.Biotechnol. Adv.20204010750210.1016/j.biotechadv.2019.107502 31887345
    [Google Scholar]
  238. ChenX. MangalaL.S. Rodriguez-AguayoC. KongX. Lopez-BeresteinG. SoodA.K. RNA interference-based therapy and its delivery systems.Cancer Metastasis Rev.201837110712410.1007/s10555‑017‑9717‑6 29243000
    [Google Scholar]
  239. ChudalL. PandeyN.K. PhanJ. JohnsonO. LiX. ChenW. Investigation of PPIX-Lipo-MnO2 to enhance photodynamic therapy by improving tumor hypoxia.Mater. Sci. Eng. C201910410997910.1016/j.msec.2019.109979 31500001
    [Google Scholar]
  240. LuM. ZhaoX. XingH. Comparison of exosome-mimicking liposomes with conventional liposomes for intracellular delivery of siRNA.Int. J. Pharm.20185501-210011310.1016/j.ijpharm.2018.08.040 30138707
    [Google Scholar]
  241. TianM. TicerT. WangQ. Adipose‐derived biogenic nanoparticles for suppression of inflammation.Small20201610190406410.1002/smll.201904064 32067382
    [Google Scholar]
  242. LuoC. MiaoL. ZhaoY. A novel cationic lipid with intrinsic antitumor activity to facilitate gene therapy of TRAIL DNA.Biomaterials201610223924810.1016/j.biomaterials.2016.06.030 27344367
    [Google Scholar]
  243. WimmelA. SchilliM. KaiserU. Preferential histiotypic expression of CD44-isoforms in human lung cancer.Lung Cancer1997162-315117210.1016/S0169‑5002(96)00625‑3 9152947
    [Google Scholar]
  244. PirinenR. HirvikoskiP. BöhmJ. Reduced expression of CD44v3 variant isoform is associated with unfavorable outcome in non-small cell lung carcinoma.Hum. Pathol.20003191088109510.1053/hupa.2000.16277 11014576
    [Google Scholar]
  245. MiyoshiT. KondoK. HinoN. UyamaT. MondenY. The expression of the CD44 variant exon 6 is associated with lymph node metastasis in non-small cell lung cancer.Clin. Cancer Res.19973812891297 9815811
    [Google Scholar]
  246. JiangQ. YuanY. GongY. Therapeutic delivery of microRNA-143 by cationic lipoplexes for non-small cell lung cancer treatment in vivo.J. Cancer Res. Clin. Oncol.2019145122951296710.1007/s00432‑019‑03051‑6 31654121
    [Google Scholar]
  247. WangL. NiuX. SongQ. A two-step precise targeting nanoplatform for tumor therapy via the alkyl radicals activated by the microenvironment of organelles.J. Control. Release202031819720910.1016/j.jconrel.2019.10.017 31672622
    [Google Scholar]
  248. CaiL. QinX. XuZ. Comparison of cytotoxicity evaluation of anticancer drugs between real-time cell analysis and CCK-8 method.ACS Omega201947120361204210.1021/acsomega.9b01142 31460316
    [Google Scholar]
  249. JozefczukJ. AdjayeJ. Quantitative real-time PCR-based analysis of gene expression.In: Methods in Enzymology.Elsevier201199109
    [Google Scholar]
  250. LiM. JiangM. ChenM. Formulated nano-liposomes for reversal of cisplatin resistance in NSCLC with nucleus-targeting peptide.Nano Res.20231611128641287910.1007/s12274‑023‑6273‑y
    [Google Scholar]
  251. JiangM. FangX. MaL. A nucleus-targeting peptide antagonist towards EZH2 displays therapeutic efficacy for lung cancer.Int. J. Pharm.202262212189410.1016/j.ijpharm.2022.121894 35680109
    [Google Scholar]
  252. KimK.H. RobertsC.W.M. Targeting EZH2 in cancer.Nat. Med.201622212813410.1038/nm.4036 26845405
    [Google Scholar]
  253. VaramballyS. DhanasekaranS.M. ZhouM. The polycomb group protein EZH2 is involved in progression of prostate cancer.Nature2002419690762462910.1038/nature01075 12374981
    [Google Scholar]
  254. HuqunR. IshikawaR. ZhangJ. Enhancer of zeste homolog 2 is a novel prognostic biomarker in nonsmall cell lung cancer.Cancer201211861599160610.1002/cncr.26441 21837672
    [Google Scholar]
  255. TuZ. ChenX. TianT. ChenG. HuangM. Prognostic significance of epigenetic regulatory gene expression in patients with non-small-cell lung cancer.Aging20211357397741510.18632/aging.202600 33658396
    [Google Scholar]
  256. ZhengB. ChenX. Dynamics of histone H3 lysine 27 trimethylation in plant development.Curr. Opin. Plant Biol.201114212312910.1016/j.pbi.2011.01.001 21330185
    [Google Scholar]
  257. BogliottiY.S. RossP.J. Mechanisms of histone H3 lysine 27 trimethylation remodeling during early mammalian development.Epigenetics20127997698110.4161/epi.21615 22895114
    [Google Scholar]
  258. WangX. ZhaoH. LvL. BaoL. WangX. HanS. Prognostic significance of EZH2 expression in non-small cell lung cancer: A meta-analysis.Sci. Rep.2016611923910.1038/srep19239 26754405
    [Google Scholar]
  259. ZangX. GuJ. ZhangJ. Exosome-transmitted lncRNA UFC1 promotes non-small-cell lung cancer progression by EZH2-mediated epigenetic silencing of PTEN expression.Cell Death Dis.202011421510.1038/s41419‑020‑2409‑0 32242003
    [Google Scholar]
  260. XuC. HaoK. HuH. Expression of the enhancer of zeste homolog 2 in biopsy specimen predicts chemoresistance and survival in advanced non-small cell lung cancer receiving first-line platinum-based chemotherapy.Lung Cancer201486226827310.1016/j.lungcan.2014.09.010 25262426
    [Google Scholar]
  261. LiuX. LuX. ZhenF. LINC00665 induces acquired resistance to gefitinib through recruiting EZH2 and activating PI3K/AKT pathway in NSCLC.Mol. Ther. Nucleic Acids20191615516110.1016/j.omtn.2019.02.010 30889481
    [Google Scholar]
  262. WuM. HuangT. WangJ. Antilung cancer effect of ergosterol and cisplatin-loaded liposomes modified with cyclic arginine-glycine-aspartic acid and octa-arginine peptides.Medicine20189733e1191610.1097/MD.0000000000011916 30113492
    [Google Scholar]
  263. MikadaM. SukhbaatarA. MiuraY. Evaluation of the enhanced permeability and retention effect in the early stages of lymph node metastasis.Cancer Sci.2017108584685210.1111/cas.13206 28211204
    [Google Scholar]
  264. SaisyoA. NakamuraH. FangJ. pH-sensitive polymeric cisplatin-ion complex with styrene-maleic acid copolymer exhibits tumor-selective drug delivery and antitumor activity as a result of the enhanced permeability and retention effect.Colloids Surf. B Biointerfaces201613812813710.1016/j.colsurfb.2015.11.032 26674841
    [Google Scholar]
  265. NicholsJ.W. BaeY.H. EPR: Evidence and fallacy.J. Control. Release201419045146410.1016/j.jconrel.2014.03.057 24794900
    [Google Scholar]
  266. ZhaoT HuangG LiY A transistor-like pH nanoprobe for tumour detection and image-guided surgery.Nat biomed eng2016110006
    [Google Scholar]
  267. MaedaH. NakamuraH. FangJ. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo.Adv. Drug Deliv. Rev.2013651717910.1016/j.addr.2012.10.002 23088862
    [Google Scholar]
  268. LiuX. WuX. MaY. Endophytic fungi from mangrove inhibit lung cancer cell growth and angiogenesis in vitro.Oncol. Rep.20173731793180310.3892/or.2017.5366 28098865
    [Google Scholar]
  269. MajeedS. AbdullahM.S. DashG.K. AnsariM.T. NandaA. Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line.Chin. J. Nat. Med.201614861562010.1016/S1875‑5364(16)30072‑3 27608951
    [Google Scholar]
  270. ZhangJ. LaiZ. HuangW. Apicidin inhibited proliferation and invasion and induced apoptosis via mitochondrial pathway in non-small cell lung cancer GLC-82 cells.Anti-Canc Agent Med Chem2017171013741382
    [Google Scholar]
  271. Ravi SubbiahM.T. AbplanalpW. Ergosterol (major sterol of baker’s and brewer’s yeast extracts) inhibits the growth of human breast cancer cells in vitro and the potential role of its oxidation products.Int. J. Vitam. Nutr. Res.2003731192310.1024/0300‑9831.73.1.19 12690907
    [Google Scholar]
  272. LinY.C. LeeB.H. AlagieJ. SuC.H. Combination treatment of ergosterol followed by amphotericin B induces necrotic cell death in human hepatocellular carcinoma cells.Oncotarget2017842727277273810.18632/oncotarget.20285 29069821
    [Google Scholar]
  273. LiS-D. HuangL. Stealth nanoparticles: High density but sheddable PEG is a key for tumor targeting.Elsevier2010178181
    [Google Scholar]
  274. LiX. ZhangJ. ChenY. LiangX. LuoX. The influence of different long-circulating materials on the pharmacokinetics of liposomal vincristine sulfate.Int. J. Nanomedicine2016114187419710.2147/IJN.S109547 27616886
    [Google Scholar]
  275. WehlandJ.D. LyginaA.S. KumarP. Role of the transmembrane domain in SNARE protein mediated membrane fusion: Peptide nucleic acid/peptide model systems.Mol. Biosyst.20161292770277610.1039/C6MB00294C 27345759
    [Google Scholar]
  276. ZhangL. WangY. GaoH.L. HeQ. The construction of cell-penetrating peptide R8 and pH sensitive cleavable polyethylene glycols co-modified liposomes.Yao Xue Xue Bao2015506760766 26521450
    [Google Scholar]
  277. ClarkE. NavaB. CaputiM. Tat is a multifunctional viral protein that modulates cellular gene expression and functions.Oncotarget2017816275692758110.18632/oncotarget.15174 28187438
    [Google Scholar]
  278. HegiM.E. DiserensA.C. GorliaT. MGMT gene silencing and benefit from temozolomide in glioblastoma.N. Engl. J. Med.200535210997100310.1056/NEJMoa043331 15758010
    [Google Scholar]
  279. YingX. WenH. LuW.L. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals.J. Control. Release2010141218319210.1016/j.jconrel.2009.09.020 19799948
    [Google Scholar]
  280. CharoI.F. NannizziL. SmithJ.W. ChereshD.A. The vitronectin receptor alpha v beta 3 binds fibronectin and acts in concert with alpha 5 beta 1 in promoting cellular attachment and spreading on fibronectin.J. Cell Biol.199011162795280010.1083/jcb.111.6.2795 1703545
    [Google Scholar]
  281. KhalilI.A. KogureK. FutakiS. HarashimaH. Octaarginine-modified liposomes: Enhanced cellular uptake and controlled intracellular trafficking.Int. J. Pharm.20083541-2394810.1016/j.ijpharm.2007.12.003 18242018
    [Google Scholar]
  282. ZangabadP.S. MirkianiS. ShahsavariS. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications.Nanotechnol. Rev.2018719512210.1515/ntrev‑2017‑0154 29404233
    [Google Scholar]
  283. DeshmukhR.R. GawaleS.V. BhagwatM.K. AhireP.A. DerleN.D. A review on: Liposomes.World J. Pharm. Pharm. Sci.201653506517
    [Google Scholar]
  284. JoneA. Liposomes: A short review.J Pharmac Sci Res201359181
    [Google Scholar]
  285. TorchilinV.P. Recent advances with liposomes as pharmaceutical carriers.Nat. Rev. Drug Discov.20054214516010.1038/nrd1632 15688077
    [Google Scholar]
  286. ZhuL. TorchilinV.P. Stimulus-responsive nanopreparations for tumor targeting.Integr. Biol.2013519610710.1039/c2ib20135f 22869005
    [Google Scholar]
  287. FleigeE. QuadirM.A. HaagR. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications.Adv. Drug Deliv. Rev.201264986688410.1016/j.addr.2012.01.020 22349241
    [Google Scholar]
  288. LeeY. ThompsonD.H. Stimuli‐responsive liposomes for drug delivery.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201795e145010.1002/wnan.1450 28198148
    [Google Scholar]
  289. RahimM.A. JanN. KhanS. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting.Cancers202113467010.3390/cancers13040670 33562376
    [Google Scholar]
  290. ShahH. MadniA. FilipczakN. Cisplatin-loaded thermoresponsive liposomes for enhanced anticancer efficacy.J. Drug Deliv. Sci. Technol.20238410450910.1016/j.jddst.2023.104509
    [Google Scholar]
  291. MuraS. NicolasJ. CouvreurP. Stimuli-responsive nanocarriers for drug delivery.Nat. Mater.20131211991100310.1038/nmat3776 24150417
    [Google Scholar]
  292. ChenJ. ChengD. LiJ. Influence of lipid composition on the phase transition temperature of liposomes composed of both DPPC and HSPC.Drug Dev. Ind. Pharm.201339219720410.3109/03639045.2012.668912 22443684
    [Google Scholar]
  293. LindnerL.H. HossannM. Factors affecting drug release from liposomes.Curr. Opin. Drug Discov. Devel.2010131111123 20047152
    [Google Scholar]
  294. HossannM. SyunyaevaZ. SchmidtR. Proteins and cholesterol lipid vesicles are mediators of drug release from thermosensitive liposomes.J. Control. Release2012162240040610.1016/j.jconrel.2012.06.032 22759980
    [Google Scholar]
  295. DouY.N. ZhengJ. FoltzW.D. Heat-activated thermosensitive liposomal cisplatin (HTLC) results in effective growth delay of cervical carcinoma in mice.J. Control. Release2014178697810.1016/j.jconrel.2014.01.009 24440663
    [Google Scholar]
  296. DudarT.E. JainR.K. Differential response of normal and tumor microcirculation to hyperthermia.Cancer Res.1984442605612 6692365
    [Google Scholar]
  297. VujaskovicZ. PoulsonJ.M. GaskinA.A. Temperature-dependent changes in physiologic parameters of spontaneous canine soft tissue sarcomas after combined radiotherapy and hyperthermia treatment.Int. J. Radiat. Oncol. Biol. Phys.2000461179185
    [Google Scholar]
  298. PangC.L. Hyperthermia in oncology.In: Medicine, Dentistry, Nursing & Allied Health.CRC Press2015139610.1201/b18487
    [Google Scholar]
  299. ShenW-C. LouieS.G. Immunology for pharmacy students.In: Bioscience, Medicine, Dentistry, Nursing & Allied Health.Routledge2019117410.4324/9781482298208
    [Google Scholar]
  300. Carvalho JúniorA.D. VieiraF.P. De MeloV.J. Preparation and cytotoxicity of cisplatin-containing liposomes.Braz. J. Med. Biol. Res.20074081149115710.1590/S0100‑879X2006005000125 17665053
    [Google Scholar]
  301. CollinsD. pH-sensitive liposomes as tools for cytoplasmic delivery.In: Liposomes as Tools in Basic Research and Industry.CRC Press199420114
    [Google Scholar]
  302. De OliveiraM.C. BoutetV. FattalE. Improvement of in vivo stability of phosphodiester oligonucleotide using anionic liposomes in mice.Life Sci.200067131625163710.1016/S0024‑3205(00)00745‑1 10983856
    [Google Scholar]
  303. HospersG. MulderN. De JongB. ZijlstraJ. De VriesE. Comparison between a human small cell lung carcinoma cell line (GLC4) and an Adriamycin (GLC4-ADR) and a CDDP (GLC4-CDDP) resistant subline. A Preliminary Report, Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy:Proceedings of the Fifth International Symposium on Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy Abano.Padua, ITALY-June 29-July 2, 1987, Springer, 1988, pp. 479-483
    [Google Scholar]
  304. SongJ. RenW. XuT. Reversal of multidrug resistance in human lung cancer cells by delivery of 3-octadecylcarbamoy-lacrylic acid-cisplatin-based liposomes.Drug Des. Devel. Ther.20171144144910.2147/DDDT.S124912 28255230
    [Google Scholar]
  305. MamotC. DrummondD.C. HongK. KirpotinD.B. ParkJ.W. Liposome-based approaches to overcome anticancer drug resistance.Drug Resist. Updat.20036527127910.1016/S1368‑7646(03)00082‑7 14643297
    [Google Scholar]
  306. ZengF. JuR.J. LiX.T. LuW.L. Advances in investigations on the mechanism of cancer multidrug resistance and the liposomes-based treatment strategy.J. Pharm. Investig.201444749350410.1007/s40005‑014‑0154‑z
    [Google Scholar]
  307. CasagrandeN. De PaoliM. CelegatoM. Preclinical evaluation of a new liposomal formulation of cisplatin, lipoplatin, to treat cisplatin-resistant cervical cancer.Gynecol. Oncol.2013131374475210.1016/j.ygyno.2013.08.041 24029417
    [Google Scholar]
  308. ZamboniW.C. GervaisA.C. EgorinM.J. Systemic and tumor disposition of platinum after administration of cisplatin or STEALTH liposomal-cisplatin formulations (SPI-077 and SPI-077 B103) in a preclinical tumor model of melanoma.Cancer Chemother. Pharmacol.200453432933610.1007/s00280‑003‑0719‑4 14673619
    [Google Scholar]
  309. KimE.S. LuC. KhuriF.R. A phase II study of STEALTH cisplatin (SPI-77) in patients with advanced non-small cell lung cancer.Lung Cancer200134342743210.1016/S0169‑5002(01)00278‑1 11714540
    [Google Scholar]
  310. Kieler-FergusonH.M. ChanD. SockoloskyJ. Encapsulation, controlled release, and antitumor efficacy of cisplatin delivered in liposomes composed of sterol-modified phospholipids.Eur. J. Pharm. Sci.2017103859310.1016/j.ejps.2017.03.003 28263913
    [Google Scholar]
  311. ParveenS. ArjmandF. TabassumS. Clinical developments of antitumor polymer therapeutics.RSC Advances2019943246992472110.1039/C9RA04358F 35528643
    [Google Scholar]
  312. HangZ. CooperM.A. ZioraZ.M. Platinum-based anticancer drugs encapsulated liposome and polymeric micelle formulation in clinical trials.Biochem Comp2016411
    [Google Scholar]
  313. StathopoulosG. BoulikasT. VougioukaM. Pharmacokinetics and adverse reactions of a new liposomal cisplatin (Lipoplatin): Phase I study.Oncol. Rep.200513458959510.3892/or.13.4.589 15756428
    [Google Scholar]
  314. RavaioliA. PapiM. PasquiniE. Lipoplatin monotherapy: A phase II trial of second-line treatment of metastatic non-small-cell lung cancer.J. Chemother.2009211869010.1179/joc.2009.21.1.86 19297279
    [Google Scholar]
  315. JehnC.F. BoulikasT. KourvetarisA. PossingerK. LüftnerD. Pharmacokinetics of liposomal cisplatin (lipoplatin) in combination with 5-FU in patients with advanced head and neck cancer: First results of a phase III study.Anticancer Res.2007271A471475 17352269
    [Google Scholar]
  316. MylonakisN. AthanasiouA. ZirasN. Phase II study of liposomal cisplatin (Lipoplatin™) plus gemcitabine versus cisplatin plus gemcitabine as first line treatment in inoperable (stage IIIB/IV) non-small cell lung cancer.Lung Cancer201068224024710.1016/j.lungcan.2009.06.017 19628292
    [Google Scholar]
  317. FarooqM.A. AquibM. FarooqA. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: An overview.Artif. Cells Nanomed. Biotechnol.20194711674169210.1080/21691401.2019.1604535 31066300
    [Google Scholar]
  318. Liposomal-Cisplatin Analogue (L-NDDP) in Treating Patients With Malignant Pleural Mesothelioma. Patent NCT00004033,Available from: https://clinicaltrials.gov/study/NCT00004033 2011
  319. DragovichT. MendelsonD. KurtinS. RichardsonK. Von HoffD. HoosA. A Phase 2 trial of the liposomal DACH platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer.Cancer Chemother. Pharmacol.200658675976410.1007/s00280‑006‑0235‑4 16847673
    [Google Scholar]
  320. de JongeM.J.A. SlingerlandM. LoosW.J. Early cessation of the clinical development of LiPlaCis, a liposomal cisplatin formulation.Eur. J. Cancer201046163016302110.1016/j.ejca.2010.07.015 20801016
    [Google Scholar]
  321. BoulikasT. Clinical overview on Lipoplatin™: A successful liposomal formulation of cisplatin.Expert Opin. Investig. Drugs20091881197121810.1517/13543780903114168 19604121
    [Google Scholar]
  322. StathopoulosG.P. BoulikasT. Lipoplatin formulation review article.J. Drug Deliv.2012201211010.1155/2012/581363 21904682
    [Google Scholar]
  323. NewmanM.S. ColbernG.T. WorkingP.K. EngbersC. AmanteaM.A. Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long-circulating, pegylated liposomes (SPI-077) in tumor-bearing mice.Cancer Chemother. Pharmacol.19994311710.1007/s002800050855 9923534
    [Google Scholar]
  324. ChoL.C. DowellJ.E. GarwoodD. SpanglerA. ChoyH. Prophylactic cranial irradiation with combined modality therapy for patients with locally advanced non-small cell lung cancer.In: Seminars in oncology.Elsevier2005293298
    [Google Scholar]
  325. CanãoF. FerreiraH. NevesN.M. Liposomal formulations for lung cancer treatment in the last two decades: A systematic review.J. Cancer Res. Clin. Oncol.202214892375238610.1007/s00432‑022‑04079‑x 35660950
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128304923240704113319
Loading
/content/journals/cpd/10.2174/0113816128304923240704113319
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test