Skip to content
2000
Volume 30, Issue 23
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Gene editing technology, particularly Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has transformed medical research. As a newly developed genome editing technique, CRISPR technology has strongly assisted scientists in enriching their comprehension of the roles of individual genes and their influences on a vast spectrum of human malignancies. Despite considerable progress in elucidating obesity's molecular pathways, current anti-obesity medications fall short in effectiveness. A thorough understanding of the genetic foundations underlying various neurobiological pathways related to obesity, as well as the neuro-molecular mechanisms involved, is crucial for developing effective obesity treatments. Utilizing CRISPR-based technologies enables precise determination of the roles of genes that encode transcription factors or enzymes involved in processes, such as lipogenesis, lipolysis, glucose metabolism, and lipid storage within adipose tissue. This innovative approach allows for the targeted suppression or activation of genes regulating obesity, potentially leading to effective weight management strategies. In this review, we have provided a detailed overview of obesity's molecular genetics, the fundamentals of CRISPR/Cas9 technology, and how this technology contributes to the discovery and therapeutic targeting of new genes associated with obesity.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128301465240517065848
2024-06-01
2025-02-21
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/0113816128301465240517065848
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test