Skip to content
2000
Volume 30, Issue 13
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Vaccines are one of the most important medical advancements in human history. They have been successfully used to control and limit the spread of many of the lethal diseases that have plagued us, such as smallpox and polio. Previous vaccine design methodologies were based on the model of “isolate-inactivate-inject”, which amounts to giving the same vaccine dose to everyone susceptible to infection. In recent years, the importance of how the host genetic background alters vaccine response necessitated the introduction of vaccinomics, which is aimed at studying the variability of vaccine efficacy by associating genetic variability and immune response to vaccination. Despite the rapid developments in variant screening, data obtained from association studies is often inconclusive and cannot be used to guide the new generation of vaccines. This review aims to compile the polymorphisms in HLA and immune system genes and examine the link with their immune response to vaccination. The compiled data can be used to guide the development of new strategies for vaccination for vulnerable groups. Overall, the highly polymorphic HLA locus had the highest correlation with vaccine response variability for most of the studied vaccines, and it was linked to variation in multiple stages of the immune response to the vaccines for both humoral and cellular immunity. Designing new vaccine technologies and immunization regiments to accommodate for this variability is an important step for reaching a vaccinomics-based approach to vaccination.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128280417231204085137
2024-04-01
2024-11-14
Loading full text...

Full text loading...

References

  1. RiedelS. Edward Jenner and the history of smallpox and vaccination.Proc. Bayl. Univ. Med. Cent.2005181212510.1080/08998280.2005.1192802816200144
    [Google Scholar]
  2. SmattiM.K. AlkhatibH.A. Al ThaniA.A. YassineH.M. Will host genetics affect the response to SARS-CoV-2 vaccines? Historical precedents.Front. Med.2022980231210.3389/fmed.2022.80231235360730
    [Google Scholar]
  3. PolandG.A. OvsyannikovaI.G. KennedyR.B. Personalized vaccinology: A review.Vaccine201836365350535710.1016/j.vaccine.2017.07.06228774561
    [Google Scholar]
  4. PolandG.A. OvsyannikovaI.G. JacobsonR.M. SmithD.I. Heterogeneity in vaccine immune response: The role of immunogenetics and the emerging field of vaccinomics.Clin. Pharmacol. Ther.200782665366410.1038/sj.clpt.610041517971814
    [Google Scholar]
  5. KennedyR.B. OvsyannikovaI.G. HaralambievaI.H. LambertN.D. PankratzV.S. PolandG.A. Genome-wide SNP associations with rubella-specific cytokine responses in measles-mumps-rubella vaccine recipients.Immunogenetics2014667-849349910.1007/s00251‑014‑0776‑324811271
    [Google Scholar]
  6. HaralambievaI.H. OvsyannikovaI.G. PankratzV.S. KennedyR.B. JacobsonR.M. PolandG.A. The genetic basis for interindividual immune response variation to measles vaccine: New understanding and new vaccine approaches.Expert Rev. Vaccines2013121577010.1586/erv.12.13423256739
    [Google Scholar]
  7. LeeJ. Arun KumarS. JhanY.Y. BishopC.J. Engineering DNA vaccines against infectious diseases.Acta Biomater.201880314710.1016/j.actbio.2018.08.03330172933
    [Google Scholar]
  8. PardiN. HoganM.J. PorterF.W. WeissmanD. mRNA vaccines a new era in vaccinology.Nat. Rev. Drug Discov.201817426127910.1038/nrd.2017.24329326426
    [Google Scholar]
  9. UraT. OkudaK. ShimadaM. Developments in viral vector-based vaccines.Vaccines (Basel)20142362464110.3390/vaccines203062426344749
    [Google Scholar]
  10. SaliouP. Live vaccines.Rev. Prat.19954512149214967660002
    [Google Scholar]
  11. Barbara SandersM.K. Inactivated viral vaccines.SpringerLink2015458010.1007/978‑3‑662‑45024‑6_2
    [Google Scholar]
  12. WeinshilboumR.M. WangL. Pharmacogenomics: Precision medicine and drug response.Mayo Clin. Proc.201792111711172210.1016/j.mayocp.2017.09.00129101939
    [Google Scholar]
  13. TripathiP. SinghJ. LalJ.A. TripathiV. Next generation sequencing: An emerging tool for drug designing.Curr. Pharm. Des.201925313350335710.2174/138161282566619091115550831544713
    [Google Scholar]
  14. LucianiF. BullR.A. LloydA.R. Next generation deep sequencing and vaccine design: Today and tomorrow.Trends Biotechnol.201230944345210.1016/j.tibtech.2012.05.00522721705
    [Google Scholar]
  15. LeT. SunC. ChangJ. ZhangG. YinX. mRNA vaccine development for emerging animal and zoonotic diseases.Viruses202214240110.3390/v1402040135215994
    [Google Scholar]
  16. FortnerA. BucurO. mRNA-based vaccine technology for HIV.Discoveries2022102e15010.15190/d.2022.936438441
    [Google Scholar]
  17. HoganM.J. PardiN. mRNA vaccines in the COVID-19 pandemic and beyond.Annu. Rev. Med.2022731173910.1146/annurev‑med‑042420‑11272534669432
    [Google Scholar]
  18. PardiN. mRNA innovates the vaccine field.Vaccines20219548610.3390/vaccines905048634064557
    [Google Scholar]
  19. ChaudharyN. WeissmanD. WhiteheadK.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation.Nat. Rev. Drug Discov.2021201181783810.1038/s41573‑021‑00283‑534433919
    [Google Scholar]
  20. SchlakeT. ThessA. Fotin-MleczekM. KallenK.J. Developing mRNA-vaccine technologies.RNA Biol.20129111319133010.4161/rna.2226923064118
    [Google Scholar]
  21. BloomK. van den BergF. ArbuthnotP. Self-amplifying RNA vaccines for infectious diseases.Gene Ther.2021283-411712910.1038/s41434‑020‑00204‑y33093657
    [Google Scholar]
  22. NilssonL.J. RegnströmK.J. Pharmacogenomics in the evaluation of efficacy and adverse events during clinical development of vaccines.Methods Mol. Biol.200844846947910.1007/978‑1‑59745‑205‑2_1718370243
    [Google Scholar]
  23. Al-EitanL. HaddadY. Emergence of pharmacogenomics in academic medicine and public health in Jordan: History, present state and prospects.Curr. Pharmacogenomics Person. Med.201512316717510.2174/1875692113666150115221210
    [Google Scholar]
  24. AL-EitanL TarkhanA. Practical challenges and translational issues in pharmacogenomics and personalized medicine from 2010 onwards.Curr. Pharmacogenomics Person. Med.201714171710.2174/1875692115666161215103842
    [Google Scholar]
  25. EvansD.A.P. ManleyK.A. McKusickV.A. Genetic control of isoniazid metabolism in man.BMJ19602519748549110.1136/bmj.2.5197.48513820968
    [Google Scholar]
  26. EvansD.A. StoreyP.B. McKusickV.A. Further observations on the determination of the isoniazid inactivator phenotype.Bull. Johns Hopkins Hosp.1961108606613697555
    [Google Scholar]
  27. PolandG.A. OvsyannikovaI.G. JacobsonR.M. Application of pharmacogenomics to vaccines.Pharmacogenomics200910583785210.2217/pgs.09.2519450131
    [Google Scholar]
  28. PolandG.A. OvsyannikovaI.G. KennedyR.B. Pharmacogenomics and vaccine development.Clin. Pharmacol. Ther.2021110354654810.1002/cpt.228834097754
    [Google Scholar]
  29. PolandG.A. KennedyR.B. McKinneyB.A. Vaccinomics, adversomics, and the immune response network theory: Individualized vaccinology in the 21st century.Semin. Immunol.20132528910310.1016/j.smim.2013.04.00723755893
    [Google Scholar]
  30. ThomasC. MoridaniM. Interindividual variations in the efficacy and toxicity of vaccines.Toxicology2010278220421010.1016/j.tox.2009.10.00819837123
    [Google Scholar]
  31. KimmanT.G. VandebrielR.J. HoebeeB. Genetic variation in the response to vaccination.Public Health Genomics200710420121710.1159/00010655917895626
    [Google Scholar]
  32. ZimmermannP. CurtisN. Factors that influence the immune response to vaccination.Clin. Microbiol. Rev.2019322e00084e1810.1128/CMR.00084‑1830867162
    [Google Scholar]
  33. NewportM.J. GoetghebuerT. WeissH.A. WhittleH. SiegristC-A. MarchantA. Genetic regulation of immune responses to vaccines in early life.Genes Immun.20045212212910.1038/sj.gene.636405114737096
    [Google Scholar]
  34. HöhlerT. ReussE. FreitagC.M. SchneiderP.M. A functional polymorphism in the IL-10 promoter influences the response after vaccination with HBsAg and hepatitis A.Hepatology2005421727610.1002/hep.2074015918171
    [Google Scholar]
  35. KhanT. KhanA. WeiD.Q. MMV-db: Vaccinomics and RNA-based therapeutics database for infectious hemorrhagic fever-causing mammarenaviruses.Database20212021baab06310.1093/database/baab06334679165
    [Google Scholar]
  36. KhanA. KhanS. AhmadS. HantavirusesDB: Vaccinomics and RNA-based therapeutics database for the potentially emerging human respiratory pandemic agents.Microb. Pathog.202116010516110.1016/j.micpath.2021.10516134461244
    [Google Scholar]
  37. KhanT. KhanA. NasirS.N. AhmadS. AliS.S. WeiD.Q. CytomegaloVirusDb: Multi-omics knowledge database for cytomegaloviruses.Comput. Biol. Med.202113510456310.1016/j.compbiomed.2021.10456334256256
    [Google Scholar]
  38. Vlasova-St.Louis COVID-19-Omics report: From individual omics approaches to precision medicine.Reports2023644510.3390/reports6040045
    [Google Scholar]
  39. WangD. KumarV. BurnhamK.L. MentzerA.J. MarsdenB.D. KnightJ.C. COMBATdb: A database for the COVID-19 multi-omics blood ATlas.Nucleic Acids Res.202351D1D896D90510.1093/nar/gkac101936353986
    [Google Scholar]
  40. O’ConnorD. PollardA.J. Characterizing vaccine responses using host genomic and transcriptomic analysis.Clin. Infect. Dis.201357686086910.1093/cid/cit37323728145
    [Google Scholar]
  41. WangI.M. BettA.J. CristescuR. LobodaA. ter MeulenJ. Transcriptional profiling of vaccine‐induced immune responses in humans and non‐human primates.Microb. Biotechnol.20125217718710.1111/j.1751‑7915.2011.00317.x22103427
    [Google Scholar]
  42. KennedyR.B. ObergA.L. OvsyannikovaI.G. HaralambievaI.H. GrillD. PolandG.A. Transcriptomic profiles of high and low antibody responders to smallpox vaccine.Genes Immun.201314527728510.1038/gene.2013.1423594957
    [Google Scholar]
  43. KruglyakL. NickersonD.A. Variation is the spice of life.Nat. Genet.200127323423610.1038/8577611242096
    [Google Scholar]
  44. Al-KoofeeD. MubarakS. Genetic polymorphisms.IntechOpen202010.5772/intechopen.88063
    [Google Scholar]
  45. RJ T. Forensic Medicine and Science, inMolecular Medicine.Amsterdam, BostonElsevier2005221236
    [Google Scholar]
  46. YousefiS. Abbassi-DaloiiT. KraaijenbrinkT. A SNP panel for identification of DNA and RNA specimens.BMC Genomics20181919010.1186/s12864‑018‑4482‑729370748
    [Google Scholar]
  47. PalmerL.J. CardonL.R. Shaking the tree: Mapping complex disease genes with linkage disequilibrium.Lancet200536694921223123410.1016/S0140‑6736(05)67485‑516198771
    [Google Scholar]
  48. SchichmanS.A. SuessP. VertinoA.M. GrayP.S. Comparison of short tandem repeat and variable number tandem repeat genetic markers for quantitative determination of allogeneic bone marrow transplant engraftment.Bone Marrow Transplant.200229324324810.1038/sj.bmt.170336011859397
    [Google Scholar]
  49. LassaunièreR. TiemessenC.T. FcγR genetic variation and HIV-1 vaccine efficacy: Context and considerations.Front. Immunol.20211278820310.3389/fimmu.2021.78820334975881
    [Google Scholar]
  50. DegenhardtJ.D. de CandiaP. ChabotA. Copy number variation of CCL3-like genes affects rate of progression to simian-AIDS in Rhesus macaques (Macaca mulatta).PLoS Genet.200951e100034610.1371/journal.pgen.100034619165326
    [Google Scholar]
  51. PelakK. NeedA.C. FellayJ. Copy number variation of KIR genes influences HIV-1 control.PLoS Biol.2011911e100120810.1371/journal.pbio.100120822140359
    [Google Scholar]
  52. NaranbhaiV. CarringtonM. Host genetic variation and HIV disease: From mapping to mechanism.Immunogenetics2017698-948949810.1007/s00251‑017‑1000‑z28695282
    [Google Scholar]
  53. ColucciM. De SantisE. TottiB. Associations between allelic Variants of the human IgH 3′ regulatory region 1 and the immune response to BNT162b2 mRNA vaccine.Vaccines2021910120710.3390/vaccines910120734696315
    [Google Scholar]
  54. AL-EitanLN AlahmadSZ Pharmacogenomics of genetic polymorphism within the genes responsible for SARS‐CoV‐2 susceptibility and the drug‐metabolising genes used in treatment.Rev. Med. Virol.2021314e219410.1002/rmv.219433205496
    [Google Scholar]
  55. AL-EitanLN AlahmadSZ Allelic and genotypic analysis of the ACE I/D polymorphism for the possible prediction of COVID-19-related mortality and morbidity in Jordanian Arabs.J Biosaf Biosec202353899510.1016/j.jobb.2023.07.005
    [Google Scholar]
  56. LiM. WangH. TianL. COVID-19 vaccine development: Milestones, lessons and prospects.Signal Transduct. Target. Ther.20227114610.1038/s41392‑022‑00996‑y35504917
    [Google Scholar]
  57. LombardiA. BozziG. UngaroR. Mini review immunological consequences of immunization with COVID-19 mRNA vaccines: Preliminary results.Front. Immunol.20211265771110.3389/fimmu.2021.65771133777055
    [Google Scholar]
  58. GoelR.R. ApostolidisS.A. PainterM.M. Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals after mRNA vaccination.Sci. Immunol.2021658eabi695010.1126/sciimmunol.abi695033858945
    [Google Scholar]
  59. TurnerJ.S. O’HalloranJ.A. KalaidinaE. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses.Nature2021596787010911310.1038/s41586‑021‑03738‑234182569
    [Google Scholar]
  60. RogersC.H. MielczarekO. CorcoranA.E. Dynamic 3D locus organization and its drivers underpin immunoglobulin recombination.Front. Immunol.20211163370510.3389/fimmu.2020.63370533679727
    [Google Scholar]
  61. GemmatiD. LongoG. GalloI. Host genetics impact on SARS-CoV-2 vaccine-induced immunoglobulin levels and dynamics: The role of TP53, ABO, APOE, ACE2, HLA-A, and CRP genes.Front. Genet.202213102808110.3389/fgene.2022.102808136531241
    [Google Scholar]
  62. LiM. WeiH. ZhongS. Association of single nucleotide polymorphisms in LEP, LEPR, and PPARG with humoral immune response to influenza vaccine.Front. Genet.20211272553810.3389/fgene.2021.72553834745208
    [Google Scholar]
  63. MossA.J. GaughranF.P. KarasuA. Correlation between human leukocyte antigen class II alleles and HAI titers detected post-influenza vaccination.PLoS One201388e7137610.1371/journal.pone.007137623951151
    [Google Scholar]
  64. CastrucciM.R. Factors affecting immune responses to the influenza vaccine.Hum. Vaccin. Immunother.201814363764610.1080/21645515.2017.133854728617077
    [Google Scholar]
  65. PolandGA OvsyannikovaIG JacobsonRM Immunogenetics of seasonal influenza vaccine response.Vaccine200826Suppl 44D35D4010.1016/j.vaccine.2008.07.06519230157
    [Google Scholar]
  66. PosteraroB. PastorinoR. Di GiannantonioP. The link between genetic variation and variability in vaccine responses: Systematic review and meta-analyses.Vaccine201432151661166910.1016/j.vaccine.2014.01.05724513009
    [Google Scholar]
  67. LeiN. LiY. SunQ. IFITM3 affects the level of antibody response after influenza vaccination.Emerg. Microbes Infect.20209197698710.1080/22221751.2020.175669632321380
    [Google Scholar]
  68. LinnikJ.E. EgliA. Impact of host genetic polymorphisms on vaccine induced antibody response.Hum. Vaccin. Immunother.201612490791510.1080/21645515.2015.111934526809773
    [Google Scholar]
  69. FrancoL.M. BucasasK.L. WellsJ.M. Integrative genomic analysis of the human immune response to influenza vaccination.eLife20132e0029910.7554/eLife.0029923878721
    [Google Scholar]
  70. BucasasK.L. FrancoL.M. ShawC.A. Early patterns of gene expression correlate with the humoral immune response to influenza vaccination in humans.J. Infect. Dis.2011203792192910.1093/infdis/jiq15621357945
    [Google Scholar]
  71. MeyerH. EhmannR. SmithG.L. Smallpox in the post-eradication era.Viruses202012213810.3390/v1202013831991671
    [Google Scholar]
  72. HendersonD.A. InglesbyT.V. BartlettJ.G. Smallpox as a biological weapon: Medical and public health management.JAMA1999281222127213710.1001/jama.281.22.212710367824
    [Google Scholar]
  73. World Health OrganizationGlobal Commission for the Certification of Smallpox, E and O World Health, The global eradication of smallpox: Final report of the Global Commission for the Certification of Smallpox Eradication.GenevaWorld Health Organization1980
    [Google Scholar]
  74. KaynarcalidanO. Moreno MascaraqueS. DrexlerI. Vaccinia virus: From crude smallpox vaccines to elaborate viral vector vaccine design.Biomedicines2021912178010.3390/biomedicines912178034944596
    [Google Scholar]
  75. OvsyannikovaI.G. KennedyR.B. O’ByrneM. JacobsonR.M. PankratzV.S. PolandG.A. Genome-wide association study of antibody response to smallpox vaccine.Vaccine201230284182418910.1016/j.vaccine.2012.04.05522542470
    [Google Scholar]
  76. RamamoorthyA. KimH.H. Shah-WilliamsE. ZhangL. Racial and ethnic differences in drug disposition and response: Review of new molecular entities approved between 2014 and 2019.J. Clin. Pharmacol.202262448649310.1002/jcph.197834608640
    [Google Scholar]
  77. Hepatitis.2019Available from: https://www.who.int/health-topics/hepatitis#tab=tab_1 [cited 2019 Sep 1st
  78. JeongS.H. LeeH.S Hepatitis A: Clinical manifestations and management.Intervirology2010531151910.1159/00025277920068336
    [Google Scholar]
  79. ThuenerJ. Hepatitis A and B infections.Prim. Care201744462162910.1016/j.pop.2017.07.00529132524
    [Google Scholar]
  80. SchwarzK.B. BalistreriW. Viral hepatitis.J. Pediatr. Gastroenterol. Nutr.2002351S29S3210.1097/00005176‑200207001‑0000812151818
    [Google Scholar]
  81. ChangM-H. SchwarzK.B. Viral hepatitis in children: Prevention and management.SpringerLink201910.1007/978‑981‑13‑0050‑9
    [Google Scholar]
  82. WuJ.F. ChenC.H. NiY.H. Toll-like receptor and hepatitis B virus clearance in chronic infected patients: A long-term prospective cohort study in Taiwan.J. Infect. Dis.2012206566266810.1093/infdis/jis42022740716
    [Google Scholar]
  83. HöhlerT. ReussE. EversN. Differential genetic determination of immune responsiveness to hepatitis B surface antigen and to hepatitis A virus: A vaccination study in twins.Lancet2002360933899199510.1016/S0140‑6736(02)11083‑X12383669
    [Google Scholar]
  84. StrebelP.M. Measles vaccines, inPlotkin's vaccines.Elsevier201857961810.1016/B978‑0‑323‑35761‑6.00037‑7
    [Google Scholar]
  85. DeStefanoF. ShimabukuroT.T. The MMR vaccine and autism.Annu. Rev. Virol.20196158560010.1146/annurev‑virology‑092818‑01551530986133
    [Google Scholar]
  86. SAR. Mumps vaccines Plotkin’s vaccines.Elsevier201866368810.1016/B978‑0‑323‑35761‑6.00039‑0
    [Google Scholar]
  87. ReefS.E. Rubella vaccines. Plotkin’s vaccines.Elsevier2018970100010.1016/B978‑0‑323‑35761‑6.00052‑3
    [Google Scholar]
  88. OvsyannikovaI.G. SchaidD.J. LarrabeeB.R. HaralambievaI.H. KennedyR.B. PolandG.A. A large population-based association study between HLA and KIR genotypes and measles vaccine antibody responses.PLoS One2017122e017126110.1371/journal.pone.017126128158231
    [Google Scholar]
  89. TanP.L. JacobsonR.M. PolandG.A. JacobsenS.J. PankratzV.S. Twin studies of immunogenicity determining the genetic contribution to vaccine failure.Vaccine20011917-192434243910.1016/S0264‑410X(00)00468‑011257374
    [Google Scholar]
  90. HaralambievaI.H. KennedyR.B. OvsyannikovaI.G. WhitakerJ.A. PolandG.A. Variability in humoral immunity to measles vaccine: New developments.Trends Mol. Med.2015211278980110.1016/j.molmed.2015.10.00526602762
    [Google Scholar]
  91. BaselerL. ChertowD.S. JohnsonK.M. FeldmannH. MorensD.M. The pathogenesis of Ebola virus disease.Annu. Rev. Pathol.201712138741810.1146/annurev‑pathol‑052016‑10050627959626
    [Google Scholar]
  92. JacobS.T. CrozierI. FischerW.A.II Ebola virus disease.Nat. Rev. Dis. Primers2020611310.1038/s41572‑020‑0147‑332080199
    [Google Scholar]
  93. Ebola virus disease2023Available from: https://www.who.int/health-topics/ebola/#tab=tab_1
  94. GeisbertT.W. HensleyL.E. LarsenT. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: Evidence that dendritic cells are early and sustained targets of infection.Am. J. Pathol.200316362347237010.1016/S0002‑9440(10)63591‑214633608
    [Google Scholar]
  95. First vaccine to protect against Ebola2019Available from: https://www.ema.europa.eu/en/news/first-vaccine-protect-against-ebola
  96. First FDA-approved vaccine for the prevention of Ebola virus disease, marking a critical milestone in public health preparedness and response.2019
    [Google Scholar]
  97. WoolseyC. GeisbertT.W. Current state of Ebola virus vaccines: A snapshot.PLoS Pathog.20211712e101007810.1371/journal.ppat.101007834882741
    [Google Scholar]
  98. PREVAC Study teamRandomized trial of vaccines for zaire Ebola virus disease.N. Engl. J. Med.2022387262411242410.1056/NEJMoa220007236516078
    [Google Scholar]
  99. PasinC. BalelliI. Van EffelterreT. Dynamics of the humoral immune response to a prime-boost Ebola vaccine: Quantification and sources of variation.J. Virol.20199318e00579e1910.1128/JVI.00579‑1931243126
    [Google Scholar]
  100. Barré-SinoussiF. ChermannJ.C. ReyF. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS).Science1983220459986887110.1126/science.61891836189183
    [Google Scholar]
  101. UNAIDS data 20192019Available from: https://www.unaids.org/en/resources/documents/2019/2019-UNAIDS-data
  102. Fanales-BelasioE. RaimondoM. SuligoiB. ButtòS. HIV virology and pathogenetic mechanisms of infection: A brief overview.Ann. Ist. Super. Sanita201046151410.1590/S0021‑2571201000010000220348614
    [Google Scholar]
  103. How is HIV passed from one person to another?2022Available from: https://www.cdc.gov/hiv/basics/hiv-transmission/ways-people-get-hiv.html
  104. LittleS.J. McLeanA.R. SpinaC.A. RichmanD.D. HavlirD.V. Viral dynamics of acute HIV-1 infection.J. Exp. Med.1999190684185010.1084/jem.190.6.84110499922
    [Google Scholar]
  105. LucasS. NelsonA.M. HIV and the spectrum of human disease.J. Pathol.2015235222924110.1002/path.444925251832
    [Google Scholar]
  106. HaynesB.F. WieheK. BorrowP. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies.Nat. Rev. Immunol.202323314215810.1038/s41577‑022‑00753‑w35962033
    [Google Scholar]
  107. DeeksS.G. OverbaughJ. PhillipsA. BuchbinderS. HIV infection.Nat. Rev. Dis. Primers2015111503510.1038/nrdp.2015.3527188527
    [Google Scholar]
  108. HsuD.C. O’ConnellR.J. Progress in HIV vaccine development.Hum. Vaccin. Immunother.20171351018103010.1080/21645515.2016.127613828281871
    [Google Scholar]
  109. HuangY. FollmannD. NasonM. Effect of rAd5-vector HIV-1 preventive vaccines on HIV-1 acquisition: A participant-level meta-analysis of randomized trials.PLoS One2015109e013662610.1371/journal.pone.013662626332672
    [Google Scholar]
  110. KaurG. MehraN. Genetic determinants of HIV‐1 infection and progression to AIDS: Immune response genes.Tissue Antigens200974537338510.1111/j.1399‑0039.2009.01337.x19765261
    [Google Scholar]
  111. KaurG. MehraN. Genetic determinants of HIV‐1 infection and progression to AIDS: Susceptibility to HIV infection.Tissue Antigens200973428930110.1111/j.1399‑0039.2009.01220.x19317737
    [Google Scholar]
  112. DeanM. CarringtonM. WinklerC. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene.Science199627352831856186210.1126/science.273.5283.18568791590
    [Google Scholar]
  113. LiS.S. GilbertP.B. TomarasG.D. FCGR2C polymorphisms associate with HIV-1 vaccine protection in RV144 trial.J. Clin. Invest.201412493879389010.1172/JCI7553925105367
    [Google Scholar]
  114. LiS.S. GilbertP.B. CarppL.N. Fc gamma receptor polymorphisms modulated the vaccine effect on HIV-1 risk in the HVTN 505 HIV vaccine trial.J. Virol.20199321e02041e1810.1128/JVI.02041‑1831434737
    [Google Scholar]
  115. DavisN.A. CroweJ.E.Jr PajewskiN.M. McKinneyB.A. Surfing a genetic association interaction network to identify modulators of antibody response to smallpox vaccine.Genes Immun.201011863063610.1038/gene.2010.3720613780
    [Google Scholar]
  116. DavilaS. FroelingF.E.M. TanA. New genetic associations detected in a host response study to hepatitis B vaccine.Genes Immun.201011323223810.1038/gene.2010.120237496
    [Google Scholar]
  117. NishidaN. SugiyamaM. SawaiH. Key HLA‐DRB1‐DQB1 haplotypes and role of the BTNL2 gene for response to a hepatitis B vaccine.Hepatology201868384885810.1002/hep.2987629534301
    [Google Scholar]
  118. LinY.J. LanY.C. HuangY.C. Effects of cytokine and cytokine receptor gene variation on high anti-HB titers: Following up on Taiwan’s neonatal hepatitis B immunization program.Clin. Chim. Acta201241315-161194119810.1016/j.cca.2012.03.00422484276
    [Google Scholar]
  119. DhimanN. OvsyannikovaI.G. VierkantR.A. PankratzV.S. JacobsonR.M. PolandG.A. Associations between cytokine/cytokine receptor single nucleotide polymorphisms and humoral immunity to measles, mumps and rubella in a Somali population.Tissue Antigens200872321122010.1111/j.1399‑0039.2008.01097.x18715339
    [Google Scholar]
  120. YucesoyB. JohnsonV.J. FluhartyK. Influence of cytokine gene variations on immunization to childhood vaccines.Vaccine200927506991699710.1016/j.vaccine.2009.09.07619819209
    [Google Scholar]
  121. GanczakM. Skonieczna-ŻydeckaK. Drozd-DąbrowskaM. AdlerG. Possible impact of 190G > A CCR2 and Δ32 CCR5 mutations on decrease of the HBV vaccine immunogenicity: A preliminary report.Int. J. Environ. Res. Public Health201714216610.3390/ijerph1402016628208753
    [Google Scholar]
  122. PanL. ZhangL. ZhangW. A genome-wide association study identifies polymorphisms in the HLA-DR region associated with non-response to hepatitis B vaccination in Chinese Han populations.Hum. Mol. Genet.20142382210221910.1093/hmg/ddt58624282030
    [Google Scholar]
  123. PngE. ThalamuthuA. OngR.T.H. SnippeH. BolandG.J. SeielstadM. A genome-wide association study of hepatitis B vaccine response in an Indonesian population reveals multiple independent risk variants in the HLA region.Hum. Mol. Genet.201120193893389810.1093/hmg/ddr30221764829
    [Google Scholar]
  124. WuT.W. ChuC.C. HoT.Y. Responses to booster hepatitis B vaccination are significantly correlated with genotypes of human leukocyte antigen (HLA)-DPB1 in neonatally vaccinated adolescents.Hum. Genet.2013132101131113910.1007/s00439‑013‑1320‑523739870
    [Google Scholar]
  125. MartinettiM. De SilvestriA. BelloniC. Humoral response to recombinant hepatitis B virus vaccine at birth: Role of HLA and beyond.Clin. Immunol.200097323424010.1006/clim.2000.493311112362
    [Google Scholar]
  126. MilichD.R. Leroux-RoelsG.G. Immunogenetics of the response to HBsAg vaccination.Autoimmun. Rev.20032524825710.1016/S1568‑9972(03)00031‑412965175
    [Google Scholar]
  127. HennigB.J. FieldingK. BroxholmeJ. Host genetic factors and vaccine-induced immunity to hepatitis B virus infection.PLoS One200833e189810.1371/journal.pone.000189818365030
    [Google Scholar]
  128. DuanZ. ChenX. LiangZ. Genetic polymorphisms of CXCR5 and CXCL13 are associated with non-responsiveness to the hepatitis B vaccine.Vaccine201432415316532210.1016/j.vaccine.2014.07.06425077417
    [Google Scholar]
  129. RyckmanK.K. FieldingK. HillA.V. Host genetic factors and vaccine-induced immunity to HBV infection: Haplotype analysis.PLoS One201058e1227310.1371/journal.pone.001227320806065
    [Google Scholar]
  130. WangY. XuP. ZhuD. Association of polymorphisms of cytokine and TLR-2 genes with long-term immunity to hepatitis B in children vaccinated early in life.Vaccine201230395708571310.1016/j.vaccine.2012.07.01022824342
    [Google Scholar]
  131. YucesoyB. TalzhanovY. JohnsonV.J. Genetic variants within the MHC region are associated with immune responsiveness to childhood vaccinations.Vaccine201331465381539110.1016/j.vaccine.2013.09.02624075919
    [Google Scholar]
  132. WuT.W. ChenC.F. LaiS.K. LinH.H. ChuC.C. WangL.Y. SNP rs7770370 in HLA‐DPB 1 loci as a major genetic determinant of response to booster hepatitis B vaccination: Results of a genome‐wide association study.J. Gastroenterol. Hepatol.201530589189910.1111/jgh.1284525389088
    [Google Scholar]
  133. OvsyannikovaI.G. PankratzV.S. VierkantR.A. JacobsonR.M. PolandG.A. Human leukocyte antigen haplotypes in the genetic control of immune response to measles-mumps-rubella vaccine.J. Infect. Dis.2006193565566310.1086/50014416453260
    [Google Scholar]
  134. DhimanN. OvsyannikovaI.G. CunninghamJ.M. Associations between measles vaccine immunity and single-nucleotide polymorphisms in cytokine and cytokine receptor genes.J. Infect. Dis.20071951212910.1086/51059617152005
    [Google Scholar]
  135. HaralambievaI.H. OvsyannikovaI.G. KennedyR.B. Associations between single nucleotide polymorphisms and haplotypes in cytokine and cytokine receptor genes and immunity to measles vaccination.Vaccine201129457883789510.1016/j.vaccine.2011.08.08321875636
    [Google Scholar]
  136. OvsyannikovaI.G. HaralambievaI.H. VierkantR.A. PankratzV.S. JacobsonR.M. PolandG.A. The role of polymorphisms in Toll-like receptors and their associated intracellular signaling genes in measles vaccine immunity.Hum. Genet.2011130454756110.1007/s00439‑011‑0977‑x21424379
    [Google Scholar]
  137. OvsyannikovaI.G. HaralambievaI.H. VierkantR.A. O’ByrneM.M. JacobsonR.M. PolandG.A. Effects of vitamin A and D receptor gene polymorphisms/haplotypes on immune responses to measles vaccine.Pharmacogenet. Genomics2012221203110.1097/FPC.0b013e32834df18622082653
    [Google Scholar]
  138. OvsyannikovaI.G. SalkH.M. LarrabeeB.R. PankratzV.S. PolandG.A. Single-nucleotide polymorphism associations in common with immune responses to measles and rubella vaccines.Immunogenetics2014661166366910.1007/s00251‑014‑0796‑z25139337
    [Google Scholar]
  139. DhimanN. PolandG.A. CunninghamJ.M. Variations in measles vaccine–specific humoral immunity by polymorphisms in SLAM and CD46 measles virus receptors.J. Allergy Clin. Immunol.2007120366667210.1016/j.jaci.2007.04.03617560639
    [Google Scholar]
  140. WhiteS.J. HaralambievaI.H. OvsyannikovaI.G. VierkantR.A. O’ByrneM.M. PolandG.A. Replication of associations between cytokine and cytokine receptor single nucleotide polymorphisms and measles-specific adaptive immunophenotypic extremes.Hum. Immunol.201273663664010.1016/j.humimm.2012.03.01522504412
    [Google Scholar]
  141. OmerselJ. Karas KuželičkiN. Vaccinomics and adversomics in the era of precision medicine: A review based on HBV, MMR, HPV, and COVID-19 vaccines.J. Clin. Med.2020911356110.3390/jcm911356133167413
    [Google Scholar]
  142. HaralambievaI.H. OvsyannikovaI.G. UmlaufB.J. Genetic polymorphisms in host antiviral genes: Associations with humoral and cellular immunity to measles vaccine.Vaccine201129488988899710.1016/j.vaccine.2011.09.04321939710
    [Google Scholar]
  143. OvsyannikovaI.G. HaralambievaI.H. VierkantR.A. O’ByrneM.M. JacobsonR.M. PolandG.A. The association of CD46, SLAM and CD209 cellular receptor gene SNPs with variations in measles vaccine-induced immune responses: A replication study and examination of novel polymorphisms.Hum. Hered.201172320622310.1159/00033158522086389
    [Google Scholar]
  144. DhimanN. OvsyannikovaI.G. VierkantR.A. Associations between SNPs in toll-like receptors and related intracellular signaling molecules and immune responses to measles vaccine: Preliminary results.Vaccine200826141731173610.1016/j.vaccine.2008.01.01718325643
    [Google Scholar]
  145. OvsyannikovaI.G. VierkantR.A. PankratzV.S. JacobsonR.M. PolandG.A. Extended LTA, TNF, LST1 and HLA gene haplotypes and their association with rubella vaccine-induced immunity.PLoS One201057e1180610.1371/journal.pone.001180620668555
    [Google Scholar]
  146. OvsyannikovaI.G. JacobsonR.M. DhimanN. VierkantR.A. PankratzV.S. PolandG.A. Human leukocyte antigen and cytokine receptor gene polymorphisms associated with heterogeneous immune responses to mumps viral vaccine.Pediatrics20081215e1091e109910.1542/peds.2007‑157518450852
    [Google Scholar]
  147. LambertN.D. HaralambievaI.H. KennedyR.B. OvsyannikovaI.G. PankratzV.S. PolandG.A. Polymorphisms in HLA-DPB1 are associated with differences in rubella virus-specific humoral immunity after vaccination.J. Infect. Dis.2015211689890510.1093/infdis/jiu55325293367
    [Google Scholar]
  148. DhimanN. HaralambievaI.H. KennedyR.B. SNP/haplotype associations in cytokine and cytokine receptor genes and immunity to rubella vaccine.Immunogenetics201062419721010.1007/s00251‑010‑0423‑620217072
    [Google Scholar]
  149. OvsyannikovaI.G. HaralambievaI.H. DhimanN. Polymorphisms in the vitamin A receptor and innate immunity genes influence the antibody response to rubella vaccination.J. Infect. Dis.2010201220721310.1086/64958820001730
    [Google Scholar]
  150. OvsyannikovaI.G. JacobsonR.M. VierkantR.A. O’ByrneM.M. PolandG.A. Replication of rubella vaccine population genetic studies: Validation of HLA genotype and humoral response associations.Vaccine200927496926693110.1016/j.vaccine.2009.08.10919761839
    [Google Scholar]
  151. OvsyannikovaI.G. VierkantR.A. PankratzV.S. O’ByrneM.M. JacobsonR.M. PolandG.A. HLA haplotype and supertype associations with cellular immune responses and cytokine production in healthy children after rubella vaccine.Vaccine20092725-263349335810.1016/j.vaccine.2009.01.08019200828
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128280417231204085137
Loading
/content/journals/cpd/10.2174/0113816128280417231204085137
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): HLA; Immunization; polymorphism; SNP; vaccine; vaccinomics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test