Skip to content
2000
Volume 1, Issue 2
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

The role of lateral terminal (X2 and X3) and terminal (X1) positions of aryl ring on the second-order nonlinear optical (NLO) properties of arylimido derivatives of hexamolybdates have been examined by using time-dependent density functional response theory (TD-DFT). This group of organic-inorganic hybrid compounds holds considerable large molecular second-order NLO response, especially [Mo6O18 (NC6H2 (NH2)3)]2- (system 4) with the static secondorder polarizability (βvec) computed to be 4406.60 au. Hence, [Mo6O18 (NC6H4NH2)]2- (system 2) and [Mo6O18 (NC6H2 (CH3)2 NH2)]2- (system 3) have also possibility to be good second-order nonlinear optical materials as compared to [Mo6O18 (NC6H5)]2- (system 1). The study of the major contribution to the βvec value suggests that the charge transfer from arylimido to molybdate (D-A) along the z-axis plays an important part in the NLO response, arylimido acts as a donor (D) whereas molybdate (POM-cluster) acts as an acceptor (A) in all the studied systems. The computed βvec values increase by incorporation of an electron donor (-NH2) at the terminus of phenyl ring. Moreover, substitution of amino (-NH2) at the lateral terminal positions and the terminus of aryl ring is simultaneously dominant to increase the optical nonlinearity. The present exploration offers significant physical insight into the considerable large NLO properties of arylimido substituted hexamolybdates.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/1877946811101020099
2011-04-01
2025-05-23
Loading full text...

Full text loading...

/content/journals/cpc/10.2174/1877946811101020099
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test