Skip to content
2000
image of Exploring Structural and Optical Properties of Nanoparticles of Barium Titanate and Iron doped Barium Titanate and Their Potential Application in Antibacterial Activity

Abstract

Background

Barium Titanate (BaTiO) is a good candidate for a variety of applications due to its excellent dielectric, ferroelectric and piezoelectric properties.

Methods

Pure and doped Barium Titanate (BTO) nanoparticles have been synthesized by the sol-gel method. Barium hydroxide octahydrate (Ba (OH).8HO) and titanium (IV) iso-propoxide (Ti {OCH[CH]}) were used as starting materials. Apart from pure Barium Titanate nanoparticles, Fe-doped BaTiO nanoparticles of three different concentrations: 0.1, 0.2 and 0.3 in mol% were prepared and characterized using X-ray diffraction (XRD), UV visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR).

Results

From the X-ray diffraction pattern, the particle size was found to be varied in a range of 17-25nm. By using UV visible spectroscopy it was observed that the band gap energy of pure BaTiO NP is 3.2eV. As the pure BaTiO nanoparticles are doped with 0.1% Fe, the band gap reduces to 3.175eV. For BaTiO doped with 0.2% and 0.3% Fe, the band gap energy values are 2.709 and 2.652 respectively. FTIR spectra were used to analyze the vibrational modes of BaTiO. From the result obtained from FTIR, we can see that the absorption spectrum ranges from 450cm-1-4000cm-1. The prominent peak of pure BaTiO is at 500cm-1 which is due to the vibration of the Ti-O band in crystal lattice. For BaTiO doped with FeO, the wave number of the absorption peak is shifted from 500cm-1 in pure BaTiO. The antibacterial studies were conducted on , and .

Conclusion

Both pure and iron-doped Barium Titanate showed significant antibacterial properties, confirming the antibacterial property of Barium Titanate nanoparticles.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468337862240930190440
2024-10-14
2024-11-22
Loading full text...

Full text loading...

References

  1. Shah A.A. Khan A. Dwivedi S. Musarrat J. Azam A. Antibacterial and antibiofilm activity of barium titanate nanoparticles. Mater. Lett. 2018 229 130 133 10.1016/j.matlet.2018.06.107
    [Google Scholar]
  2. Bharmoria P. Ventura S.P.M. Optical applications of nanomaterials Nanomaterials for Healthcare, Energy and Environment. Springer, Singapore Singapore 2019 118 1 29 10.1007/978‑981‑13‑9833‑9_1
    [Google Scholar]
  3. Genchi G.G. Marino A. Rocca A. Mattoli V. Ciofani G. Barium titanate nanoparticles: Promising multitasking vectors in nanomedicine. Nanotechnology 2016 27 23 232001 10.1088/0957‑4484/27/23/232001 27145888
    [Google Scholar]
  4. Hussein A.K. Applications of nanotechnology in renewable energies—A comprehensive overview and understanding. Renew. Sustain. Energy Rev. 2015 42 460 476 10.1016/j.rser.2014.10.027
    [Google Scholar]
  5. Hao S. Fu D. Li J. Wang W. Shen B. Preparation and characterization of Ag-Doped BaTiO 3 conductive powders. Int. J. Inorg. Chem. 2011 2011 1 4 10.1155/2011/837091
    [Google Scholar]
  6. Djellabi R. Ordonez M.F. Conte F. Falletta E. Bianchi C.L. Rossetti I. A review of advances in multifunctional XTiO3 perovskite-type oxides as piezo-photocatalysts for environmental remediation and energy production. J. Hazard. Mater. 2022 421 126792 10.1016/j.jhazmat.2021.126792 34396965
    [Google Scholar]
  7. Chang S.J. Liao W.S. Ciou C.J. Lee J.T. Li C.C. An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability. J. Colloid Interface Sci. 2009 329 2 300 305 10.1016/j.jcis.2008.10.011 18977001
    [Google Scholar]
  8. Shao S. Zhang J. Zhang Z. Zheng P. Zhao M. Li J. Wang C. High piezoelectric properties and domain configuration in BaTiO 3 ceramics obtained through the solid-state reaction route. J. Phys. D Appl. Phys. 2008 41 12 125408 10.1088/0022‑3727/41/12/125408
    [Google Scholar]
  9. Ashiri R. Nemati A. Sasani Ghamsari M. Sanjabi S. Aalipour M. A modified method for barium titanate nanoparticles synthesis. Mater. Res. Bull. 2011 46 12 2291 2295 10.1016/j.materresbull.2011.08.055
    [Google Scholar]
  10. Bansal V. Poddar P. Ahmad A. Sastry M. Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J. Am. Chem. Soc. 2006 128 36 11958 11963 10.1021/ja063011m 16953637
    [Google Scholar]
  11. Tihtih M. Limame K. Ababou Y. Sayouri S. Ibrahim J.E.F.M. Sol-gel synthesis and structural characterization of Fe doped barium titanate nanoceramics. Epitoanyag - Journal of Silicate Based and Composite Materials 2019 71 6 190 193 10.14382/epitoanyag‑jsbcm.2019.33
    [Google Scholar]
  12. Ma Y. Chen H. Pan F. Chen Z. Ma Z. Lin X. Zheng F. Ma X. Electronic structures and optical properties of Fe/Co–doped cubic BaTiO3 ceramics. Ceram. Int. 2019 45 5 6303 6311 10.1016/j.ceramint.2018.12.113
    [Google Scholar]
  13. Buscaglia M.T. Buscaglia V. Viviani M. Nanni P. Hanuskova M. Influence of foreign ions on the crystal structure of BaTiO3. J. Eur. Ceram. Soc. 2000 20 12 1997 2007 10.1016/S0955‑2219(00)00076‑5
    [Google Scholar]
  14. Rahman M. Magnetic Resonance Imaging and Iron-oxide Nanoparticles in the era of Personalized Medicine. Nanotheranostics 2023 7 4 424 449 10.7150/ntno.86467 37650011
    [Google Scholar]
  15. Tang S. Zheng J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater. 2018 7 13 1701503 10.1002/adhm.201701503 29808627
    [Google Scholar]
  16. Zhao Z. Li M. Zeng J. Huo L. Liu K. Wei R. Ni K. Gao J. Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioact. Mater. 2022 12 214 245 10.1016/j.bioactmat.2021.10.014 35310380
    [Google Scholar]
  17. Montiel Schneider M.G. Martín M.J. Otarola J. Vakarelska E. Simeonov V. Lassalle V. Nedyalkova M. Biomedical applications of iron oxide nanoparticles: Current insights progress and perspectives. Pharmaceutics 2022 14 1 204 10.3390/pharmaceutics14010204 35057099
    [Google Scholar]
  18. Sobha A. Sumangala R. Influence of synthesis method and the precursor on the preparationof barium titanate nano particles. 2023 Available : https://www.semanticscholar.org/paper/Influence-of-Synthesis-Method-and-the-Precursor-on-Sobha-Sumangala/7a491dc63f29559c8018dc3c9182a6a765c21a5a Accessed: Dec. 21, 2023
  19. du Toit E.A. Rautenbach M. A sensitive standardised micro-gel well diffusion assay for the determination of antimicrobial activity. J. Microbiol. Methods 2000 42 2 159 165 10.1016/S0167‑7012(00)00184‑6 11018272
    [Google Scholar]
  20. Bokuniaeva A.O. Vorokh A.S. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO 2 powder. J. Phys. Conf. Ser. 2019 1410 1 012057 10.1088/1742‑6596/1410/1/012057
    [Google Scholar]
  21. Jana A. Kundu T.K. Pradhan S.K. Chakravorty D. Dielectric behavior of Fe-ion-doped BaTiO3 nanoparticles. J. Appl. Phys. 2005 97 4 044311 10.1063/1.1846135
    [Google Scholar]
  22. Kappadan S. Gebreab T.W. Thomas S. Kalarikkal N. Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants. Mater. Sci. Semicond. Process. 2016 51 42 47 10.1016/j.mssp.2016.04.019
    [Google Scholar]
  23. Sivakami R. Dhanuskodi S. Karvembu R. Estimation of lattice strain in nanocrystalline RuO2 by Williamson–Hall and size–strain plot methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016 152 43 50 10.1016/j.saa.2015.07.008 26186396
    [Google Scholar]
  24. Hassanien A.S. Akl A.A. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 2016 89 153 169 10.1016/j.spmi.2015.10.044
    [Google Scholar]
  25. Sherlin Vinita V. Gowri Shankar Rao R. Samuel J. Shabna S. Joslin Ananth N. Shajin Shinu P.M. Suresh S. Samson Y. Biju C.S. Structural, Raman and optical investigations of barium titanate nanoparticles. Phosphorus Sulfur Silicon Relat. Elem. 2022 197 3 169 175 10.1080/10426507.2021.1993850
    [Google Scholar]
  26. Raj D. Manjusha M.V. Synthesis and optical characterization of Fe doped Barium Titanate (BaTiO3) nanoparticles. Mater. Today Proc. 2023 Nov S2214785323052379 10.1016/j.matpr.2023.11.131
    [Google Scholar]
  27. Nandiyanto A.B.D. Oktiani R. Ragadhita R. How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology 2019 4 1 97 10.17509/ijost.v4i1.15806
    [Google Scholar]
  28. Coates J. Interpretation of infrared spectra, A practical approach. Encyclopedia of Analytical Chemistry. 1st ed John Wiley & Sons Chichester, West Sussex, England 2000 10.1002/9780470027318.a5606
    [Google Scholar]
  29. Dutt M. Suhasini K. Ratan A. Shah J. Kotnala R.K. Singh V. Mesoporous silica mediated synthesis of α-Fe2O3 porous structures and their application as humidity sensors. J. Mater. Sci. Mater. Electron. 2018 29 23 20506 20516 10.1007/s10854‑018‑0186‑7
    [Google Scholar]
  30. Andrews J. M. Determination of minimum inhibitory concentrations J. Antimicrob. Chemother. 2001 48 suppl_1 5 16 10.1093/jac/48.suppl_1.5
    [Google Scholar]
  31. Stoyanova A. Hitkova H. Ivanova N. Bachvarova-Nedelcheva A. Iordanova R. Sredkova M.P. Photocatalytic and antibacterial activity of Fe-doped TiO2 nanoparticles prepared by nonhydrolytic sol-gel method. Izv. Him. 2013 45 497 504
    [Google Scholar]
  32. Shahzeidi Z. S. Amiri G. Antibacterial effects of iron oxide (Fe3O4) nanoparticles: distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms Appl Microbiol Biotechnol. 2015 103 6 2773 2782
    [Google Scholar]
  33. Senthil M. Ramesh C. Biogenic synthesis of fe3o4 nanoparticles using tridax procumbens leaf extract and its antibacterial activity on pseudomonas aeruginosa Dig. J. Nanomater. Biostruct. 2012 7 3 1655 1660
    [Google Scholar]
  34. Reddy K.M. Feris K. Bell J. Wingett D.G. Hanley C. Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 2007 90 21 213902 10.1063/1.2742324 18160973
    [Google Scholar]
  35. Atmaca S. Gül K. The effect of zinc on microbial growth and bacterial killing by cefazolin in a staphylococcus aureus abscess milieu J Infect Dis. 1993 168 4 893 896
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468337862240930190440
Loading
/content/journals/cpc/10.2174/0118779468337862240930190440
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Barium Titanate ; Antibacterial activity ; XRD ; Sol-gel ; Fe doped Barium Titanate ; FTIR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test