Skip to content
2000
Volume 15, Issue 1
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

Background

Barium Titanate (BaTiO) is a good candidate for a variety of applications due to its excellent dielectric, ferroelectric and piezoelectric properties.

Methods

Pure and doped Barium Titanate (BTO) nanoparticles have been synthesized by the sol-gel method. Barium hydroxide octahydrate (Ba (OH).8HO) and titanium (IV) iso-propoxide (Ti {OCH[CH]}) were used as starting materials. Apart from pure Barium Titanate nanoparticles, Fe-doped BaTiO nanoparticles of three different concentrations: 0.1, 0.2 and 0.3 in mol% were prepared and characterized using X-ray diffraction (XRD), UV visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR).

Results

From the X-ray diffraction pattern, the particle size was found to be varied in a range of 17-25nm. By using UV visible spectroscopy it was observed that the band gap energy of pure BaTiO NP is 3.2eV. As the pure BaTiO nanoparticles are doped with 0.1% Fe, the band gap reduces to 3.175eV. For BaTiO doped with 0.2% and 0.3% Fe, the band gap energy values are 2.709 and 2.652 respectively. FTIR spectra were used to analyze the vibrational modes of BaTiO. From the result obtained from FTIR, we can see that the absorption spectrum ranges from 450 cm-1-4000 cm-1. The prominent peak of pure BaTiO is at 500 cm-1 which is due to the vibration of the Ti-O band in crystal lattice. For BaTiO doped with FeO, the wave number of the absorption peak is shifted from 500 cm-1 in pure BaTiO. The antibacterial studies were conducted on , and .

Conclusion

Both pure and Iron-doped Barium Titanate showed significant antibacterial properties, confirming the antibacterial property of Barium Titanate nanoparticles.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468337862240930190440
2024-10-14
2025-06-22
Loading full text...

Full text loading...

References

  1. ShahA.A. KhanA. DwivediS. MusarratJ. AzamA. Antibacterial and antibiofilm activity of barium titanate nanoparticles.Mater. Lett.201822913013310.1016/j.matlet.2018.06.107
    [Google Scholar]
  2. BharmoriaP. VenturaS.P.M. Optical applications of nanomaterials In: Nanomaterials for Healthcare, Energy and Environment; Springer, Singapore: Singapore,201911812910.1007/978‑981‑13‑9833‑9_1
    [Google Scholar]
  3. GenchiG.G. MarinoA. RoccaA. MattoliV. CiofaniG. Barium titanate nanoparticles: Promising multitasking vectors in nanomedicine.Nanotechnology2016272323200110.1088/0957‑4484/27/23/232001 27145888
    [Google Scholar]
  4. HusseinA.K. Applications of nanotechnology in renewable energies—A comprehensive overview and understanding.Renew. Sustain. Energy Rev.20154246047610.1016/j.rser.2014.10.027
    [Google Scholar]
  5. HaoS. FuD. LiJ. WangW. ShenB. Preparation and characterization of Ag-Doped BaTiO 3 conductive powders.Int. J. Inorg. Chem.201120111410.1155/2011/837091
    [Google Scholar]
  6. DjellabiR. OrdonezM.F. ConteF. FallettaE. BianchiC.L. RossettiI. A review of advances in multifunctional XTiO3 perovskite-type oxides as piezo-photocatalysts for environmental remediation and energy production.J. Hazard. Mater.202242112679210.1016/j.jhazmat.2021.126792 34396965
    [Google Scholar]
  7. ChangS.J. LiaoW.S. CiouC.J. LeeJ.T. LiC.C. An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability.J. Colloid Interface Sci.2009329230030510.1016/j.jcis.2008.10.011 18977001
    [Google Scholar]
  8. ShaoS. ZhangJ. ZhangZ. ZhengP. ZhaoM. LiJ. WangC. High piezoelectric properties and domain configuration in BaTiO 3 ceramics obtained through the solid-state reaction route.J. Phys. D Appl. Phys.2008411212540810.1088/0022‑3727/41/12/125408
    [Google Scholar]
  9. AshiriR. NematiA. Sasani GhamsariM. SanjabiS. AalipourM. A modified method for barium titanate nanoparticles synthesis.Mater. Res. Bull.201146122291229510.1016/j.materresbull.2011.08.055
    [Google Scholar]
  10. BansalV. PoddarP. AhmadA. SastryM. Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles.J. Am. Chem. Soc.200612836119581196310.1021/ja063011m 16953637
    [Google Scholar]
  11. TihtihM. LimameK. AbabouY. SayouriS. IbrahimJ.E.F.M. Sol-gel synthesis and structural characterization of Fe doped barium titanate nanoceramics.Epitoanyag - Journal of Silicate Based and Composite Materials201971619019310.14382/epitoanyag‑jsbcm.2019.33
    [Google Scholar]
  12. MaY. ChenH. PanF. ChenZ. MaZ. LinX. ZhengF. MaX. Electronic structures and optical properties of Fe/Co–doped cubic BaTiO3 ceramics.Ceram. Int.20194556303631110.1016/j.ceramint.2018.12.113
    [Google Scholar]
  13. BuscagliaM.T. BuscagliaV. VivianiM. NanniP. HanuskovaM. Influence of foreign ions on the crystal structure of BaTiO3.J. Eur. Ceram. Soc.200020121997200710.1016/S0955‑2219(00)00076‑5
    [Google Scholar]
  14. RahmanM. Magnetic Resonance Imaging and Iron-oxide Nanoparticles in the era of Personalized Medicine.Nanotheranostics20237442444910.7150/ntno.86467 37650011
    [Google Scholar]
  15. TangS. ZhengJ. Antibacterial activity of silver nanoparticles: Structural effects.Adv. Healthc. Mater.2018713170150310.1002/adhm.201701503 29808627
    [Google Scholar]
  16. ZhaoZ. LiM. ZengJ. HuoL. LiuK. WeiR. NiK. GaoJ. Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging.Bioact. Mater.20221221424510.1016/j.bioactmat.2021.10.014 35310380
    [Google Scholar]
  17. Montiel SchneiderM.G. MartínM.J. OtarolaJ. VakarelskaE. SimeonovV. LassalleV. NedyalkovaM. Biomedical applications of iron oxide nanoparticles: Current insights progress and perspectives.Pharmaceutics202214120410.3390/pharmaceutics14010204 35057099
    [Google Scholar]
  18. SobhaA. SumangalaR. Influence of synthesis method and the precursor on the preparationof barium titanate nano particles.2023Available https://www.semanticscholar.org/paper/Influence-of-Synthesis-Method-and-the-Precursor-on-Sobha-Sumangala/7a491dc63f29559c8018dc3c9182a6a765c21a5a Accessed: Dec. 21, 2023
    [Google Scholar]
  19. du ToitE.A. RautenbachM. A sensitive standardised micro-gel well diffusion assay for the determination of antimicrobial activity.J. Microbiol. Methods200042215916510.1016/S0167‑7012(00)00184‑6 11018272
    [Google Scholar]
  20. BokuniaevaA.O. VorokhA.S. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder.J. Phys. Conf. Ser.20191410101205710.1088/1742‑6596/1410/1/012057
    [Google Scholar]
  21. JanaA. KunduT.K. PradhanS.K. ChakravortyD. Dielectric behavior of Fe-ion-doped BaTiO3 nanoparticles.J. Appl. Phys.200597404431110.1063/1.1846135
    [Google Scholar]
  22. KappadanS. GebreabT.W. ThomasS. KalarikkalN. Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants.Mater. Sci. Semicond. Process.201651424710.1016/j.mssp.2016.04.019
    [Google Scholar]
  23. SivakamiR. DhanuskodiS. KarvembuR. Estimation of lattice strain in nanocrystalline RuO2 by Williamson–Hall and size–strain plot methods.Spectrochim. Acta A Mol. Biomol. Spectrosc.2016152435010.1016/j.saa.2015.07.008 26186396
    [Google Scholar]
  24. HassanienA.S. AklA.A. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films.Superlattices Microstruct.20168915316910.1016/j.spmi.2015.10.044
    [Google Scholar]
  25. Sherlin VinitaV. Gowri Shankar RaoR. SamuelJ. ShabnaS. Joslin AnanthN. Shajin ShinuP.M. Suresh, S.; Samson, Y.; Biju, C.S. Structural, Raman and optical investigations of barium titanate nanoparticles.Phosphorus Sulfur Silicon Relat. Elem.2022197316917510.1080/10426507.2021.1993850
    [Google Scholar]
  26. RajD. ManjushaM.V. Synthesis and optical characterization of Fe doped Barium Titanate (BaTiO3) nanoparticles.Mater. Today Proc.2023NovS221478532305237910.1016/j.matpr.2023.11.131
    [Google Scholar]
  27. NandiyantoA.B.D. OktianiR. RagadhitaR. How to read and interpret FTIR spectroscope of organic material.Indonesian J. Sci. Technol.2019419710.17509/ijost.v4i1.15806
    [Google Scholar]
  28. CoatesJ. Interpretation of infrared spectra, A practical approach. In: Encyclopedia of Analytical Chemistry.1st edChichester, West Sussex, EnglandJohn Wiley & Sons200010.1002/9780470027318.a5606
    [Google Scholar]
  29. DuttM. SuhasiniK. RatanA. ShahJ. KotnalaR.K. SinghV. Mesoporous silica mediated synthesis of α-Fe2O3 porous structures and their application as humidity sensors.J. Mater. Sci. Mater. Electron.20182923205062051610.1007/s10854‑018‑0186‑7
    [Google Scholar]
  30. AndrewsJ.M. Determination of minimum inhibitory concentrations.J. Antimicrob. Chemother.200148Suppl. 151610.1093/jac/48.suppl_1.5
    [Google Scholar]
  31. StoyanovaA. HitkovaH. IvanovaN. Bachvarova-NedelchevaA. IordanovaR. SredkovaM.P. Photocatalytic and antibacterial activity of Fe-doped TiO2 nanoparticles prepared by nonhydrolytic sol-gel method.Izv. Him.201345497504
    [Google Scholar]
  32. ShahzeidiZ.S. AmiriG. Antibacterial effects of iron oxide (Fe3O4) nanoparticles: distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms.Appl. Microbiol. Biotechnol.2015103627732782
    [Google Scholar]
  33. SenthilM. RameshC. Biogenic synthesis of fe3o4 nanoparticles using tridax procumbens leaf extract and its antibacterial activity on pseudomonas aeruginosa.Dig. J. Nanomater. Biostruct.20127316551660
    [Google Scholar]
  34. ReddyK.M. FerisK. BellJ. WingettD.G. HanleyC. PunnooseA. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems.Appl. Phys. Lett.2007902121390210.1063/1.2742324 18160973
    [Google Scholar]
  35. AtmacaS. GülK. The effect of zinc on microbial growth and bacterial killing by cefazolin in a staphylococcus aureus abscess milieu.J. Infect. Dis.19931684893896
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468337862240930190440
Loading
/content/journals/cpc/10.2174/0118779468337862240930190440
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): antibacterial activity; Barium titanate; Fe doped Barium Titanate; FTIR; Sol-gel; XRD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test