Skip to content
2000
image of The Dynamic Impact of Synthetic Dyes on the Physicochemical Parameters of Cationic and Anionic Surfactants

Abstract

Introduction

The interaction of dyes (crystal violet, malachite green, and congo red) with cationic (cetrimide) and anionic surfactants (sodium dodecyl sulfate) in the aqueous medium were studied via conductometric and UV-visible spectroscopy.

Method

The critical micelle concentration (CMC) of both cetrimide and SDS upsurges in all the selected dyes on increasing the temperature. Thermodynamic parameters like change in Gibb’s free energy of micellization (), change in enthalpy of micellization () as well as change in entropy of micellization () were calculated by employing mass action model.

Result

The values obtained are positive with and values being negative signified that the phenomenon of micellization is spontaneous as well as exothermic in nature. Moreover, the more negative in water as well as in the presence of dyes signify the presence of electrostatic forces of attraction between the oppositively charged dyes and surfactant moieties. UV-spectroscopy reveals that spectral changes occur because of the interaction of surfactants with dye molecules.

Conclusion

By analyzing shifts in absorption peaks, changes in intensity, and alterations in band shape, insights into the nature of surfactant-dye complexes and their potential applications in various industries can be assessed. This understanding can help in the design and optimization of products and processes involving surfactants and dyes.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468336057240919162508
2024-10-09
2025-02-17
Loading full text...

Full text loading...

References

  1. Duxbury D.F. The photochemistry and photophysics of triphenylmethane dyes in solid and liquid media. Chem. Rev. 1993 93 1 381 433 10.1021/cr00017a018
    [Google Scholar]
  2. Henderson B.W. Dougherty T.J. Photodynamic Therapy, Basic Principles and Clinical Applications. New York Marcel Dekker 1992
    [Google Scholar]
  3. Sarkar M. Poddar S. Studies on the interaction of surfactants with cationic dye by absorption spectroscopy. J. Colloid Interface Sci. 2000 221 2 181 185 10.1006/jcis.1999.6573 10631018
    [Google Scholar]
  4. Merino F. Rubio S. Pérez-Bendito D. Determination of dialkyldimethylammonium surfactants in sewage based on the formation of premicellar aggregates. Analyst 2001 126 12 2230 2234 10.1039/b105983c 11814207
    [Google Scholar]
  5. García-Río L. Hervella P. Mejuto J.C. Parajó M. Spectroscopic and kinetic investigation of the interaction between crystal violet and sodium dodecylsulfate. Chem. Phys. 2007 335 2-3 164 176 10.1016/j.chemphys.2007.04.006
    [Google Scholar]
  6. Purkait M.K. DasGupta S. De S. Removal of dye from wastewater using micellar-enhanced ultrafiltration and recovery of surfactant. Separ. Purif. Tech. 2004 37 1 81 92 10.1016/j.seppur.2003.08.005
    [Google Scholar]
  7. Bilski P. Holt R.N. Chignell C.F. Premicellar aggregates of Rose Bengal with cationic and zwitterionic surfactants. J. Photochem. Photobiol. Chem. 1997 110 1 67 74 10.1016/S1010‑6030(97)00166‑4
    [Google Scholar]
  8. Simonc̆ic̆ B. Kert M. A study of anionic dye–cationic surfactant interactions in mixtures of cationic and nonionic surfactants. Dyes Pigments 2002 54 3 221 237 10.1016/S0143‑7208(02)00046‑3
    [Google Scholar]
  9. Meftah K. Meftah S. Lamkhanter H. Bouzid T. Rezzak Y. Touil S. Abid A. Extraction and optimization of Austrocylindropuntia subulata powder as a novel green coagulant. Desalination Water Treat. 2024 318 100339 10.1016/j.dwt.2024.100339
    [Google Scholar]
  10. Gohain B. Saikia P.M. Sarma S. Bhat S.N. Dutta R.K. Hydrophobicity-induced deprotonation of dye in dye–submicellar surfactant systems. Phys. Chem. Chem. Phys. 2002 4 12 2617 2620 10.1039/b201274j
    [Google Scholar]
  11. Sarmiento F. Prieto G. Jones M.N. Thermodynamic studies on the interaction of n-alkyl sulfates with insulin in aqueous solution. J. Chem. Soc., Faraday Trans. 1992 88 7 1003 1007 10.1039/ft9928801003
    [Google Scholar]
  12. Tanford C. The hydrophobic effect: Formation of micelles and biological membranes 1980 2d ed. J. Wiley
    [Google Scholar]
  13. Kumar Mandal A. Kanta Pal M. Spectral analysis of complexes of the dye, 3,3′-diethyl thiacyanine and the anionic surfactant, SDS by the principal component analysis method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1999 55 7-8 1347 1358 10.1016/S1386‑1425(98)00307‑2
    [Google Scholar]
  14. Dutta R.K. Bhat S.N. Interaction of methyl orange with submicellar cationic surfactants. Bull. Chem. Soc. Jpn. 1993 66 9 2457 2460 10.1246/bcsj.66.2457
    [Google Scholar]
  15. Minch M.J. Shah S.S. Spectroscopic studies of hydrophobic association. Merocyanine dyes in cationic and anionic micelles. J. Org. Chem. 1979 44 18 3252 3255 10.1021/jo01332a033
    [Google Scholar]
  16. Moulik S.P. Ghosh S. Das A.R. Interaction of acridine orange monohydrochloride dye with sodiumdodecylsulfate, (SDS) cetyltrimethylammoniumbromide (CTAB) and p-tert-octylphenoxypolyoxy ethanol (Triton X 100) surfactants. Colloid Polym. Sci. 1979 257 6 645 655 10.1007/BF01548834
    [Google Scholar]
  17. Heimenz P. C. Principles of colloid and surface chemistry 1986 M. Dekker New York
    [Google Scholar]
  18. Čudina O. Karljiković-Rajić K. Ruvarac-Bugarčić I. Janković I. Interaction of hydrochlorothiazide with cationic surfactant micelles of cetyltrimethylammonium bromide. Colloids Surf. A Physicochem. Eng. Asp. 2005 256 2-3 225 232 10.1016/j.colsurfa.2005.01.023
    [Google Scholar]
  19. Fatma I. Sharma V. Thakur R.C. Kumar A. Current trends in protein-surfactant interactions: A review. J. Mol. Liq. 2021 341 117344 10.1016/j.molliq.2021.117344
    [Google Scholar]
  20. Rosen M.J. Surfactants and Interfacial Phenomena. 3rd ed New York Wiley-Interscience 2004 10.1002/0471670561
    [Google Scholar]
  21. Schramm L.L. Stasiuk E.N. Marangoni D.G. Surfactants and their applications. Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 2003 99 3 48
    [Google Scholar]
  22. Saraji M. Shirvani N. Determination of residual 1,4‐dioxane in surfactants and cleaning agents using headspace single‐drop microextraction followed by gas chromatography–flame ionization detection. Int. J. Cosmet. Sci. 2017 39 1 36 41 10.1111/ics.12345 27239978
    [Google Scholar]
  23. Sar P. Ghosh A. Scarso A. Saha B. Surfactant for better tomorrow: Applied aspect of surfactant aggregates from laboratory to industry. Res. Chem. Intermed. 2019 45 12 6021 6041 10.1007/s11164‑019‑04017‑6
    [Google Scholar]
  24. Dutta A. Surfactants and Detergents. BoD–Books on Demand 2019 10.5772/intechopen.77548
    [Google Scholar]
  25. Tadros T. F. An introduction to surfactants de Gruyter 2014 Apr 1 10.1515/9783110312133
    [Google Scholar]
  26. Khare U. Sharma P.K. Kumar A. Applications of surfactants in pharmaceutical formulation development of conventional and advanced delivery systems. Int. J. Pharmacogn 2019 6 155 163
    [Google Scholar]
  27. Moulik S.P. Ghosh S. Surface chemical and micellization behaviours of binary and ternary mixtures of amphiphiles (Triton X-100, Tween-80 and CTAB) in aqueous medium. J. Mol. Liq. 1997 72 1-3 145 161 10.1016/S0167‑7322(97)00036‑6
    [Google Scholar]
  28. Rehman F. Murtaza S. Ali Khan J. Khan H.M. Removal of crystal violet dye from aqueous solution by gamma irradiation. J. Chil. Chem. Soc. 2017 62 1 3359 3364 10.4067/S0717‑97072017000100011
    [Google Scholar]
  29. Habib M.A. Muslim M. Shahadat M.T. Islam M.N. Ismail I.M.I. Islam T.S.A. Mahmood A.J. Photocatalytic decolorization of crystal violet in aqueous nano-ZnO suspension under visible light irradiation. J. Nanostructure Chem. 2013 3 1 70 10.1186/2193‑8865‑3‑70
    [Google Scholar]
  30. Raval N.P. Shah P.U. Shah N.K. Malachite green “a cationic dye” and its removal from aqueous solution by adsorption. Appl. Water Sci. 2017 7 7 3407 3445 10.1007/s13201‑016‑0512‑2
    [Google Scholar]
  31. Linke R.P. Congo red staining of amyloid: Improvements and practical guide for a more precise diagnosis of amyloid and the different amyloidoses. In protein misfolding, aggregation, and conformational diseases. Boston, MA Springer 2006 239 276
    [Google Scholar]
  32. Lorenzo A. Yankner B.A. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc. Natl. Acad. Sci. USA 1994 91 25 12243 12247 10.1073/pnas.91.25.12243 7991613
    [Google Scholar]
  33. Chatterjee S. Chatterjee S. Chatterjee B.P. Guha A.K. Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: Binding mechanism, equilibrium and kinetics. Colloids Surf. A Physicochem. Eng. Asp. 2007 299 1-3 146 152 10.1016/j.colsurfa.2006.11.036
    [Google Scholar]
  34. Karukstis K.K. Litz J.P. Garber M.B. Angell L.M. Korir G.K. A spectral approach to determine location and orientation of azo dyes within surfactant aggregates. Spectrochim. Acta - A. Mol. Biomol. 2010 75 4 354 361
    [Google Scholar]
  35. Ali A. Uzair S. Malik N.A. Ali M. Study of interaction between cationic surfactants and cresol red dye by electrical conductivity and spectroscopy methods. J. Mol. Liq. 2014 196 395 403 10.1016/j.molliq.2014.04.013
    [Google Scholar]
  36. Naushad M. Alqadami A.A. AlOthman Z.A. Alsohaimi I.H. Algamdi M.S. Aldawsari A.M. Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J. Mol. Liq. 2019 293 111442 10.1016/j.molliq.2019.111442
    [Google Scholar]
  37. Prabhu S.M. Khan A. Hasmath Farzana M. Hwang G.C. Lee W. Lee G. Synthesis and characterization of graphene oxide-doped nano-hydroxyapatite and its adsorption performance of toxic diazo dyes from aqueous solution. J. Mol. Liq. 2018 269 746 754 10.1016/j.molliq.2018.08.044
    [Google Scholar]
  38. Muntaha S.T. Khan M.N. Natural surfactant extracted from Sapindus mukurossi as an eco-friendly alternate to synthetic surfactant – a dye surfactant interaction study. J. Clean. Prod. 2015 93 145 150 10.1016/j.jclepro.2015.01.023
    [Google Scholar]
  39. Akpinar E. Uygur N. Ordu O.D. Reis D. Neto A.M.F. Effect of the surfactant head-group size dependence of the dye-surfactant interactions on the lyotropic uniaxial to biaxial nematic phase transitions. J. Mol. Liq. 2021 332 115842 10.1016/j.molliq.2021.115842
    [Google Scholar]
  40. Islam S.I. Pyne P. Das D.K. Mukherjee S. Chakrabarty S. Mitra R.K. Molecular insight into dye–surfactant interaction at premicellar concentrations: A combined two-photon absorption and molecular dynamics simulation study. Langmuir 2022 38 10 3105 3112 10.1021/acs.langmuir.1c02999 35245073
    [Google Scholar]
  41. Noor S. Taj M.B. Mixed-micellar approach for enhanced dye entrapment: A spectroscopic study. J. Mol. Liq. 2021 338 116701 10.1016/j.molliq.2021.116701
    [Google Scholar]
  42. Bhattarai A. Abdul Rub M. Kumar D. A UV–visible and conductometric studies on the analyses of valine and ninhydrin reaction in aqueous-surfactant solutions of dicationic geminis (n-s-n type). J. Mol. Liq. 2022 350 118587 10.1016/j.molliq.2022.118587
    [Google Scholar]
  43. Narayan Yadav S. Rai S. Shah P. Roy N. Bhattarai A. Spectrophotometric and conductometric studies on the interaction of surfactant with polyelectrolyte in the presence of dye in aqueous medium. J. Mol. Liq. 2022 355 118949 10.1016/j.molliq.2022.118949
    [Google Scholar]
  44. Sharma S. Kumar K. Chauhan S. Micellization properties of antihistaminic drug diphenhydramine.HCl in aqueous electrolytic solution: Conductometric and spectroscopic studies. J. Mol. Liq. 2020 300 112306 10.1016/j.molliq.2019.112306
    [Google Scholar]
  45. Ali A. Bhushan V. Malik N.A. Behera K. Study of mixed micellar aqueous solutions of sodium dodecyl sulfate and amino acids. Colloid J. 2013 75 4 357 365 10.1134/S1061933X13040029
    [Google Scholar]
  46. Ali A. Malik N.A. Farooq U. Tasneem S. Nabi F. Interaction of cetrimide with nonionic surfactants—triton x-100 and brij-35: A conductometric and tensiometric study. J. Surfactants Deterg. 2016 19 3 527 542 10.1007/s11743‑016‑1800‑4
    [Google Scholar]
  47. Kaur H. Aggarwal N. Sood A.K. Banipal T.S. Analysis of micellar, thermodynamic and structural parameters of gemini surfactants in aqueous solutions of vitamins. J. Mol. Liq. 2020 310 113237 10.1016/j.molliq.2020.113237
    [Google Scholar]
  48. van Os N.M. Daane G.J. Haandrikman G. The effect of chemical structure upon the thermodynamics of micellization of model alkylarenesulfonates. J. Colloid Interface Sci. 1991 141 1 199 217 10.1016/0021‑9797(91)90315‑Y
    [Google Scholar]
  49. Rauniyar B.S. Bhattarai A. Study of conductivity, contact angle and surface free energy of anionic (SDS, AOT) and cationic (CTAB) surfactants in water and isopropanol mixture. J. Mol. Liq. 2021 323 114604 10.1016/j.molliq.2020.114604
    [Google Scholar]
  50. Younas N. Rashid M.A. Thermodynamic, spectroscopic and biological investigation of interaction of anionic surfactants with [Cu(im)6]F2·4H2O complex in aqueous solution. Colloid Interface Sci. Commun. 2020 35 100240 10.1016/j.colcom.2020.100240
    [Google Scholar]
  51. Zheng Y. Lu X. Lai L. Yu L. Zheng H. Dai C. The micelle thermodynamics and mixed properties of sulfobetaine-type zwitterionic Gemini surfactant with nonionic and anionic surfactants. J. Mol. Liq. 2020 299 112108 10.1016/j.molliq.2019.112108
    [Google Scholar]
  52. Grosmaire L. Chorro M. Chorro C. Partyka S. Zana R. Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) surfactants J. Colloid Interface Sci. 2002 246 1 175 181 10.1006/jcis.2001.8001 16290398
    [Google Scholar]
  53. Usman M. Raza S. Sultana H. Raza Z.A. Siddiq M. Haq A. Bukhtawar F. Younis S. Rafiq S. Interaction of direct blue 86 with cationic surfactant micelles: Spectroscopic, conductometric and thermodynamic aspects. Tenside Surf. Deterg. 2022 59 6 501 510 10.1515/tsd‑2022‑2448
    [Google Scholar]
  54. Pal A. Garain A. Chowdhury D. Mondal M.H. Saha B. Comparative spectral study on the interaction of organic dye congo-red with selective aqueous micellar media of CPC, rhamnolipids and saponin. Tenside Surfact. Tenside Surf. Deterg. 2020 57 5 401 407 10.3139/113.110700
    [Google Scholar]
  55. Patil S. Agrawal M.A. Interactions between dyes and cetyl-trimethyl ammonium bromide. Tenside Surf. Deterg. 2011 48 3 228 231
    [Google Scholar]
  56. Ali A. Shahjahan Malik N. A. Uzair S. Bhushan V. Physico-chemical studies of glycine, L-alanine, L-phenylalanine and glycylglycine in aqueous Triton X-100 at different temperatures Tenside Surf. Deterg. 2015 52 1 54 61
    [Google Scholar]
  57. Malik N.A. Farooq U. Effect of caffeine on the micellization and related thermodynamic parameters of sodium dodecyl sulphate, hexadecyltrimethylammonium bromide and triton x-100: A physicochemical study. Phys. Chem. Liquids 2022 60 2 265 274 10.1080/00319104.2021.1949594
    [Google Scholar]
  58. Rabichi I. Sekkouri C. Yaacoubi F.E. Ennaciri K. Izghri Z. Bouzid T. El Fels L. Baçaoui A. Yaacoubi A. Experimental and theoretical investigation of olive mill solid waste biochar for vanillic acid adsorption using DFT/B3LYP analysis Water Air Soil Pollut. 2024 235 6 369 10.1007/s11270‑024‑07183‑5
    [Google Scholar]
  59. Chafiq M. Fatimah S. Chaouiki A. Ko Y.G. Synergistic sorption strategies: Ionic liquids-modified MOF matrices for adsorption processes. Separ. Purif. Tech. 2024 351 128056 10.1016/j.seppur.2024.128056
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468336057240919162508
Loading
/content/journals/cpc/10.2174/0118779468336057240919162508
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Surfactant ; congo red ; crystal violet ; Dyes ; cetrimide ; malachite green oxalate
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test