Skip to content
2000
Volume 14, Issue 3
  • ISSN: 1877-9468
  • E-ISSN:

Abstract

Introduction

PVA/TiO nanocomposite membranes are prepared by solution casting technique where different phases of TiO nanoparticles like brookite, brookite-rutile and rutile are dispersed in PVA matrix. Sol-gel method was employed to prepare TiO nanoparticles, while different phases of TiO have been obtained by controlling the calcination temperature.

Methods

PVA/TiO nanocomposite membranes were characterized by XRD, FTIR, AFM, TEM, UV-visible and PL techniques. XRD results confirmed the presence of different phases of TiO exhibiting 3.3 nm, 8.4 nm, and 35.7 nm mean crystalline size. The XRD studies also confirmed that TiO nanoparticles became properly dispersed to the PVA matrix, leading to increased PVA crystallinity after doping of different phases of TiO nanoparticles. UV-visible analysis revealed an increase in absorption intensity and peak position shifts slightly towards longer wavelengths, which indicates that nanofillers tuned the band gap of PVA. The doping of the TiO (brookite) phase in the PVA matrix results in a decreased in PL intensity.

Results

This suggests that the PVA/TiO (brookite) membrane exhibits a greater degree of photocatalytic activity in comparison to the other two composites. According to the FTIR investigation, the hydroxyl (OH) groups present in PVA interact with the dopants Ti+ ions intra- and intermolecular hydrogen bonds to produce charge transfer complexes (CTC). The AFM study shows surface roughness details for PVA and PVA/TiO composite membranes. The average grain size of TiO nanoparticles calculated from TEM images is in good agreement with the grain size calculated by XRD.

Conclusion

By adjusting the phase of TiO nanoparticles into PVA matrix, composites can be developed that are optimized for a variety of applications such as water purification, UV protection, self-cleaning surfaces, lithium-ion batteries, and optoelectronic devices.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468312436240627074337
2024-11-01
2024-11-26
Loading full text...

Full text loading...

References

  1. KausarA. A review of high performance polymer nanocomposites for packaging applications in electronics and food industries.J. Plast. Film Sheeting20203619411210.1177/8756087919849459
    [Google Scholar]
  2. MillsA. Le HunteS. An overview of semiconductor photocatalysis.J. Photochem. Photobiol. Chem.1997108113510.1016/S1010‑6030(97)00118‑4
    [Google Scholar]
  3. PazY. Application of TiO2 photocatalysis for air treatment: Patents’ overview.Appl. Catal. B2010993-444846010.1016/j.apcatb.2010.05.011
    [Google Scholar]
  4. AbougreenA.N. ShalanA.E. SereaE.S.A. MohammedM.A. Polymer nanocomposites for energy storage applications. Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications.SwitzerlandSpringer International Publishing202269772410.1007/978‑3‑030‑94319‑6_22
    [Google Scholar]
  5. KochiR. CrastaV. KumarN.B.R. ShettyG. RekhaP.D. Structural, optical, mechanical, and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite.J. Polym. Res.2019991
    [Google Scholar]
  6. Ben HalimaN. Poly(vinyl alcohol): Review of its promising applications and insights into biodegradation.RSC Adv.2016646398233983210.1039/C6RA05742J
    [Google Scholar]
  7. DennisJ.O. ShukurM.F. AldaghriO.A. IbnaoufK.H. AdamA.A. UsmanF. HassanY.M. AlsadigA. DanbatureW.L. AbdulkadirB.A. A review of current trends on polyvinyl alcohol (PVA)-based solid polymer electrolytes.Molecules2023284178110.3390/molecules28041781 36838770
    [Google Scholar]
  8. JiangX. WangC. HanQ. Molecular dynamic simulation on the state of water in poly(vinyl alcohol) hydrogel.Comput. Theor. Chem.20171102152110.1016/j.comptc.2016.12.041
    [Google Scholar]
  9. AslamM. KalyarM.A. RazaZ.A. Effect of separate zinc, copper, and graphene oxides nanofillers on electrical properties of PVA-based composite strips.J. Electron. Mater.20194821116112110.1007/s11664‑018‑6793‑5
    [Google Scholar]
  10. AhnS.I. KimK. JungJ.R. KangK.Y. LeeS.M. HanJ.Y. ChoiK.C. Reduction of graphene oxide film with poly (vinyl alcohol).Chem. Phys. Lett.2015625364010.1016/j.cplett.2015.02.035
    [Google Scholar]
  11. RamalingamK.J. DhineshbabuN.R. SritherS.R. SaravanakumarB. YuvakkumarR. RajendranV. Electrical measurement of PVA/graphene nanofibers for transparent electrode applications.Synth. Met.201419111311910.1016/j.synthmet.2014.03.004
    [Google Scholar]
  12. AzizS.B. Modifying poly(vinyl alcohol) (PVA) from insulator to small-bandgap polymer: A novel approach for organic solar cells and optoelectronic devices.J. Electron. Mater.201645173674510.1007/s11664‑015‑4191‑9
    [Google Scholar]
  13. HamdallaT.A. HanafyT.A. BekheetA.E. Influence of erbium ions on the optical and structural properties of polyvinyl alcohol.J. Spectrosc.201520151710.1155/2015/204867
    [Google Scholar]
  14. TubbsR.K. Sequence distribution of partially hydrolyzed poly(vinyl acetate). J. Polym.Sci., Part A-1.19664623629
    [Google Scholar]
  15. MehtoV.R. MehtoA. GuptaD.K. PandeyR.K. Synthesis and characterization of PANI/ZnO nanocomposites.J. Chin. Chem. Soc.2016631193594610.1002/jccs.201600069
    [Google Scholar]
  16. SchnitzlerD.C. ZarbinA.J.G. Organic/inorganic hybrid materials formed from TiO2 nanoparticles and polyaniline.J. Braz. Chem. Soc.200415337838410.1590/S0103‑50532004000300007
    [Google Scholar]
  17. JudeinsteinP. SanchezC. Hybrid organic–inorganic materials: A land of multidisciplinarity.J. Mater. Chem.19966451152510.1039/JM9960600511
    [Google Scholar]
  18. DevakiS.J. RamakrishnanR. Nanostructured semiconducting polymer inorganic hybrid composites for opto-electronic applications.Advances in Nanostructured Composites.United KingdomCRC Press201935237510.1201/9780429021718‑17
    [Google Scholar]
  19. GreeneL.E. LawM. YuhasB.D. YangP. ZnO-TiO2 core-shell nanorod/P3HT solar cells.J. Phys. Chem. C200711150184511845610.1021/jp077593l
    [Google Scholar]
  20. ZhouJ. ChengH. ChengJ. WangL. XuH. The emergence of high-performance conjugated polymer/inorganic semiconductor hybrid photoelectrodes for solar-driven photoelectrochemical water splitting.Small Methods202482230041810.1002/smtd.202300418 37421184
    [Google Scholar]
  21. AhankariS. LasradoD. SubramaniamR. Advances in materials and fabrication of separators in supercapacitors.Mater. Adv.2022331472149610.1039/D1MA00599E
    [Google Scholar]
  22. Alvarez-SanchezC.O. Lasalde-RamírezJ.A. Ortiz-QuilesE.O. Massó-FerretR. NicolauE. Polymer-MTiO3 (M = Ca, Sr, Ba) composites as facile and scalable supercapacitor separators.Energy Sci. Eng.20197373074010.1002/ese3.299
    [Google Scholar]
  23. HossainM.H. ChowdhuryM.A. HossainN. IslamM.A. MobarakM.H. Advances of lithium-ion batteries anode materials: A review.Chem. Eng. J. Adv.20231610056910.1016/j.ceja.2023.100569
    [Google Scholar]
  24. JeonH. YeonD. LeeT. ParkJ. RyouM.H. LeeY.M. A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries.J. Power Sources201631516116810.1016/j.jpowsour.2016.03.037
    [Google Scholar]
  25. WangY. WangS. FangJ. DingL.X. WangH. A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries.J. Membr. Sci.201753724825410.1016/j.memsci.2017.05.023
    [Google Scholar]
  26. YeS. ZhangD. LiuH. ZhouJ. ZnO nanocrystallites/cellulose hybrid nanofibers fabricated by electrospinning and solvothermal techniques and their photocatalytic activity.J. Appl. Polym. Sci.201112131757176410.1002/app.33822
    [Google Scholar]
  27. YanilmazM. Evaluation of electrospun PVA/SiO2 nanofiber separator membranes for lithium-ion batteries.J. Text. Inst.201911116
    [Google Scholar]
  28. XiaoW. ZhaoL. GongY. LiuJ. YanC. Preparation and performance of poly(vinyl alcohol) porous separator for lithium-ion batteries.J. Membr. Sci.201548722122810.1016/j.memsci.2015.04.004
    [Google Scholar]
  29. BonC.Y. MohammedL. KimS. ManasiM. IsheunesuP. LeeK.S. KoJ.M. Flexible poly(vinyl alcohol)-ceramic composite separators for supercapacitor applications.J. Ind. Eng. Chem.20186817317910.1016/j.jiec.2018.07.043
    [Google Scholar]
  30. NhoY.C. SohnJ.Y. ShinJ. ParkJ.S. LimY.M. KangP.H. Preparation of nanocomposite γ-Al2O3/polyethylene separator crosslinked by electron beam irradiation for lithium secondary battery.Radiat. Phys. Chem.2017132657010.1016/j.radphyschem.2016.12.002
    [Google Scholar]
  31. WuD. DengL. SunY. TehK.S. ShiC. TanQ. ZhaoJ. SunD. LinL. A high-safety PVDF/Al2O3 composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating.RSC Advances2017739244102441610.1039/C7RA02681A
    [Google Scholar]
  32. CaoJ. WangL. ShangY. FangM. DengL. GaoJ. LiJ. ChenH. HeX. Dispersibility of nano-TiO2 on performance of composite polymer electrolytes for Li-ion batteries.Electrochim. Acta201311167467910.1016/j.electacta.2013.08.048
    [Google Scholar]
  33. ZhangS. CaoJ. ShangY. WangL. HeX. LiJ. ZhaoP. WangY. Nanocomposite polymer membrane derived from nano TiO2 -PMMA and glass fiber nonwoven: High thermal endurance and cycle stability in lithium ion battery applications.J. Mater. Chem. A Mater. Energy Sustain.2015334176971770310.1039/C5TA02781K
    [Google Scholar]
  34. PraveenaS.D. RavindracharyV. BhajantriR.F. Ismayil, Dopant-induced microstructural, optical, and electrical properties of TiO2/PVA composite.Polym. Compos.201637498799710.1002/pc.23258
    [Google Scholar]
  35. SoW.W. ParkS.B. KimK.J. ShinC.H. MoonS.J. The crystalline phase stability of titania particles prepared at room temperature by the sol-gel method.J. Mater. Sci.200136174299430510.1023/A:1017955408308
    [Google Scholar]
  36. BakardjievaS. StenglV. SzatmaryL. SubrtJ. LukacJ. MurafaN. NiznanskyD. CizekK. JirkovskyJ. PetrovaN. Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity.J. Mater. Chem.200616181709171610.1039/b514632a
    [Google Scholar]
  37. KhairyY. ElsaeedyH.I. MohammedM.I. ZahranH.Y. YahiaI.S. Anomalous behaviour of the electrical properties for PVA/TiO2 nanocomposite polymeric films.Polym. Bull.202077126255626910.1007/s00289‑019‑03028‑y
    [Google Scholar]
  38. GuptaA. KushwahK. MahobiaS. SoniP. MurtyV.V. Synthesis and characterization of TiO2 nanoparticles for solar cell applications.Int. J. Innov. Technol. Expl. Eng.2019892462246510.35940/ijitee.I8739.078919
    [Google Scholar]
  39. Madurai RamakrishnanV. PitchaiyaS. MuthukumarasamyN. KvammeK. RajeshG. AgilanS. PugazhendhiA. VelauthapillaiD. Performance of TiO2 nanoparticles synthesized by microwave and solvothermal methods as photoanode in dye-sensitized solar cells (DSSC).Int. J. Hydrogen Energy20204551270362704610.1016/j.ijhydene.2020.07.018
    [Google Scholar]
  40. Asmat-CamposD. Lindsay RojasM. Carreño-OrtegaA. Toward sustainable nanomaterials: An innovative ecological approach for biogenic synthesis of TiO2 nanoparticles with potential photocatalytic activity.Clean. Eng. Technol.20231710070210.1016/j.clet.2023.100702
    [Google Scholar]
  41. MoradI. LiuX. QiuJ. Crystallization-induced valence state change of Mn 2+ → Mn 4+ in LiNaGe4O9 glass-ceramics.J. Am. Ceram. Soc.202010353051305910.1111/jace.17006
    [Google Scholar]
  42. PejovaB. GrozdanovI. Three-dimensional confinement effects in semiconducting zinc selenide quantum dots deposited in thin-film form.Mater. Chem. Phys.2005901354610.1016/j.matchemphys.2004.08.020
    [Google Scholar]
  43. AbdelazizM. GhannamM.M. Influence of titanium chloride addition on the optical and dielectric properties of PVA films.Physica B2010405395896410.1016/j.physb.2009.10.030
    [Google Scholar]
  44. AbdelazizM. Cerium (III) doping effects on optical and thermal properties of PVA films.Physica B20114066-71300130710.1016/j.physb.2011.01.021
    [Google Scholar]
  45. ShehapA.M. Thermal and spectroscopic studies of polyvinyl alcohol/sodium carboxy methyl cellulose blends.Egypt. J. Sol.2008311759110.21608/ejs.2008.148824
    [Google Scholar]
  46. AbdullahO.G. AzizS.B. RasheedM.A. Structural and optical characterization of PVA:KMnO 4 based solid polymer electrolyte.Results Phys.201661103110810.1016/j.rinp.2016.11.050
    [Google Scholar]
  47. Nimrodh AnanthA. UmapathyS. SophiaJ. MathavanT. MangalarajD. On the optical and thermal properties of in situ/ex situ reduced Ag NP’s/PVA composites and its role as a simple SPR-based protein sensor.Appl. Nanosci.201112879610.1007/s13204‑011‑0010‑7
    [Google Scholar]
  48. ShehapA.M. AkilD.S. Structural and optical properties of TiO2 nanoparticles/PVA for different composites thin films.Int. J. Nanoelectron. Mater.201691736
    [Google Scholar]
  49. El-GoharyM. Experimental tests used for treatment of red weathering crusts in disintegrated granite Egypt.J. Cult. Herit.200910447147910.1016/j.culher.2009.01.002
    [Google Scholar]
  50. CaiZ. RemadeviR. Al FaruqueM.A. SettyM. FanL. HaqueA.N.M.A. NaebeM. Fabrication of a cost-effective lemongrass (Cymbopogon citratus) membrane with antibacterial activity for dye removal.RSC Adv.2019958340763408510.1039/C9RA04729H 35528869
    [Google Scholar]
  51. Corzo-GonzálezZ. Loria-BastarracheaM.I. Hernández-NuñezE. Aguilar-VegaM. González-DíazM.O. Preparation and characterization of crosslinked PVA/PAMPS blends catalytic membranes for biodiesel production.Polym. Bull.20177472741275410.1007/s00289‑016‑1864‑3
    [Google Scholar]
  52. KimG.M. Fabrication of bio-nanocomposite nanofibers mimicking the mineralized hard tissues via electrospinning process.Nanofibers.London, UKIntechOpen201010.5772/8148
    [Google Scholar]
  53. LeeJ. HongJ. ParkD.W. ShimS.E. Microencapsulation and characterization of poly(vinyl alcohol)-coated titanium dioxide particles for electrophoretic display.Opt. Mater.201032453053410.1016/j.optmat.2009.11.008
    [Google Scholar]
  54. KimG.M. SimonP. KimJ-S. SimonP. KimJ.S. Electrospun PVA/HAp nanocomposite nanofibers: biomimetics of mineralized hard tissues at a lower level of complexity.Bioinspir. Biomim.20083404600310.1088/1748‑3182/3/4/046003 18812653
    [Google Scholar]
  55. OmkaramI. Sreekanth ChakradharR.P. Lakshmana RaoJ. EPR, optical, infrared and Raman studies of VO2+ ions in polyvinylalcohol films.Physica B20073881-231832510.1016/j.physb.2006.06.134
    [Google Scholar]
  56. Al-EmamE. SoenenH. CaenJ. JanssensK. Characterization of polyvinyl alcohol-borax/agarose (PVA-B/AG) double network hydrogel utilized for the cleaning of works of art.Herit. Sci.20208110610.1186/s40494‑020‑00447‑3
    [Google Scholar]
  57. AhmedN. AhmedE.M. Heterostructure device based on Brilliant Green nanoparticles–PVA/p-Si interface for analog–digital converting dual-functional sensor applications.J. Mater. Sci. Mater. Electron.20203161396153
    [Google Scholar]
  58. WalyA.L. AbdelghanyA.M. TarabiahA.E. Study the structure of selenium modified polyethylene oxide/polyvinyl alcohol (PEO/PVA) polymer blend.J. Mater. Res. Technol.2021142962296910.1016/j.jmrt.2021.08.078
    [Google Scholar]
  59. OliveiraR.N. RouzéR. QuiltyB. AlvesG.G. SoaresG.D.A. ThiréR.M.S.M. McGuinnessG.B. Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings.Interface Focus2014412013004910.1098/rsfs.2013.0049 24501677
    [Google Scholar]
  60. AhadN. SaionE. GharibshahiE. Structural, thermal, and electrical properties of PVA-sodium salicylate solid composite polymer electrolyte.J. Nanomater.201220121810.1155/2012/857569
    [Google Scholar]
  61. MaJ. LiY. YinX. XuY. YueJ. BaoJ. ZhouT. Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by in situ polymerization with enhanced mechanical properties and water vapor barrier properties.RSC Advances2016655494484945810.1039/C6RA08760D
    [Google Scholar]
  62. SiemannU. Solvent cast technology: A versatile tool for thin film production.Scattering Methods and the Properties of Polymer Materials; Progress in Colloid and Polymer Science; Stribeck, N. SmarslyB. Berlin/Heidelberg, GermanySpringer200511410.1007/b107336
    [Google Scholar]
  63. TawansiA. OrabyA.H. ZidanH.M. DorghamM.E. Effect of one-dimensional phenomena on electrical, magnetic and ESR properties of MnCl2-filled PVA films.Physica B19982541-212613310.1016/S0921‑4526(98)00414‑1
    [Google Scholar]
  64. BhargavP.B. MohanV.M. SharmaA.K. RaoV.V.R.N. Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications.Ionics200713644144610.1007/s11581‑007‑0130‑y
    [Google Scholar]
  65. WuY. XieZ. NgD. ShenS. ZhouZ. Poly(ether sulfone) supported hybrid poly(vinyl alcohol)–maleic acid–silicone dioxide membranes for the pervaporation separation of ethanol–water mixtures.J. Appl. Polym. Sci.201713420app.4483910.1002/app.44839
    [Google Scholar]
  66. PandeyR.P. ShahiV.K. Functionalized silica–chitosan hybrid membrane for dehydration of ethanol/water azeotrope: Effect of cross-linking on structure and performance.J. Membr. Sci.201344411612610.1016/j.memsci.2013.04.065
    [Google Scholar]
  67. FernandesD.M. HechenleitnerA.A.W. LimaS.M. AndradeL.H.C. CairesA.R.L. PinedaE.A.G. Preparation, characterization, and photoluminescence study of PVA/ZnO nanocomposite films.Mater. Chem. Phys.2011128337137610.1016/j.matchemphys.2011.03.002
    [Google Scholar]
  68. LeiX.F. XueX.X. YangH. Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr(VI) under visible light.Appl. Surf. Sci.201432139640310.1016/j.apsusc.2014.10.045
    [Google Scholar]
  69. JiaS. LiX. ZhangB. YangJ. ZhangS. LiS. ZhangZ. TiO2/CuS heterostructure nanowire array photoanodes toward water oxidation: The role of CuS.Appl. Surf. Sci.201946382983710.1016/j.apsusc.2018.09.003
    [Google Scholar]
  70. XiangQ. LvK. YuJ. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air.Appl. Catal. B2010963-455756410.1016/j.apcatb.2010.03.020
    [Google Scholar]
  71. RenL. LiY. MaoM. LanL. LaoX. ZhaoX. Significant improvement in photocatalytic activity by forming homojunction between anatase TiO2 nanosheets and anatase TiO2 nanoparticles.Appl. Surf. Sci.201949028329210.1016/j.apsusc.2019.05.351
    [Google Scholar]
  72. KadamA. DhabbeR. ShinD.S. GaradkarK. ParkJ. Sunlight driven high photocatalytic activity of Sn doped N-TiO2 nanoparticles synthesized by a microwave assisted method.Ceram. Int.20174365164517210.1016/j.ceramint.2017.01.039
    [Google Scholar]
  73. KaurJ. GuptaK. KumarV. BansalS. SinghalS. Synergic effect of Ag decoration onto ZnO nanoparticles for the remediation of synthetic dye wastewater.Ceram. Int.20164222378238510.1016/j.ceramint.2015.10.035
    [Google Scholar]
  74. DeyK.K. KumarP. YadavR.R. DharA. SrivastavaA.K. CuO nanoellipsoids for superior physicochemical response of biodegradable PVA.RSC Adv.20144201012310.1039/c3ra46898d
    [Google Scholar]
  75. MandalS. JainN. PandeyM.K. SreejakumariS.S. ShuklaP. ChandaA. SomS. DasS. SinghJ. Ultra-bright emission from Sr doped TiO2 nanoparticles through r-GO conjugation.R. Soc. Open Sci.20196319010010.1098/rsos.190100 31032059
    [Google Scholar]
  76. QinQ. WangJ. XiaY. YangD. ZhouQ. ZhuX. FengW. Synthesis and characterization of Sn/Ni single doped and co–doped anatase/rutile mixed–crystal nanomaterials and their photocatalytic performance under UV–visible light.Catalysts20211111134110.3390/catal11111341
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468312436240627074337
Loading
/content/journals/cpc/10.2174/0118779468312436240627074337
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): AFM; CTC; Membrane; polymer nanocomposites; TEM; UV-visible
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test