Skip to content
2000
Volume 14, Issue 3
  • ISSN: 1877-9468
  • E-ISSN:

Abstract

Aims

In this work, the thermal behavior and specific heat capacities of nine derivatives which were obtained Biginellipyrimidone synthesis reaction have been experimentally determined using thermal gravimetry analysis and differential scanning calorimetry, and the obtained results have been thoroughly analyzed and discussed. The influence of the structural variation on the thermal analysis has been discussed along with the influence of the structure of the derivatives of pyrimidines on the specific heat capacity.

Background

To date, heterocycles have successfully been switched from synthetic organic chemistry laboratory to the core of a variety of biomolecules, conducting devices and so on. Derivatives of 2-hydroxypyrimidine or pyrimidines have a wide window of pharmaceutical applications. Therefore, attempts have been made to understand the thermal response of these organic frameworks.

Objectives

The main objective of this study was to explore thermal methods to understand heat-induced structural interactions as well as the specific heat capacity () as a function of temperature for the synthesized derivatives of 2-hydroxy pyrimidine or pyrimidones.

Methods

Room temperature condensation of ethyl acetoacetate, urea, and variety of aldehydes or ketones has been optimized in ionic liquids for the formation of pyrimidones. Thereafter, the thermal profiles of the synthesized derivatives of pyrimidines have been studied thoroughly and the thermal response of the synthesized derivatives of pyrimidones gives sound information about thermal stability of these heterocycles.

Results

In the present work, the effect of substituents on the thermal behavior of the synthesized derivatives of pyrimidines has been investigated with the help of TGA-DSC analysis. Specific heat capacity () data as a function of temperature for the synthesized derivatives of pyrimidones have been reported for the first time.

Conclusion

The specific heat capacity data of the molecules of high commercial and biological relevance such as pyrimidines like organic frameworks play a subtle role in the development of the computational methods and molecular modelling, to comprehend the fundamentals of these molecular frameworks and effectively explore the pharmaceutical as well as materialistic potentials of these heterocyclic frameworks simulation.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468284583240528075819
2024-11-01
2024-11-22
Loading full text...

Full text loading...

References

  1. BrownD.J. EvansR.F. CowdenW.B. FennM.D. The chemistry of heterocycles.A Series of Monographs. The Pyrimidines. WeissbergerA. TaylorE.C. New YorkJohn Wiley and Sons1985
    [Google Scholar]
  2. Le FoulerV. ChenY. GandonV. BizetV. SaloméC. FessardT. LiuF. HoukK.N. BlanchardN. Activating pyrimidines by pre-distortion for the general synthesis of 7-Aza-indazoles from 2-Hydrazonylpyrimidines via intramolecular Diels−Alder reactions.J. Am. Chem. Soc.201914140159011590910.1021/jacs.9b07037 31475527
    [Google Scholar]
  3. WangS.Y. Chemistry of pyrimidines. I. The reaction of bromine with uracils 1-3.J. Org. Chem.1959241111310.1021/jo01083a003
    [Google Scholar]
  4. RoopanM.S. SompalleR. Synthetic chemistry of pyrimidines and fused pyrimidines: A review.Synth. Commun.201646864567210.1080/00397911.2016.1165254
    [Google Scholar]
  5. LongleyD.B. HarkinD.P. JohnstonP.G. 5-Fluorouracil: Mechanisms of action and clinical strategies.Nat. Rev. Cancer20033533033810.1038/nrc1074 12724731
    [Google Scholar]
  6. IslamM.M. MirzaS.P. Versatile use of Carmofur: A comprehensive review of its chemistry and pharmacology.Drug Dev. Res.20228371505151810.1002/ddr.21984 36031762
    [Google Scholar]
  7. a MachoverD. A comprehensive review of 5-fluorouracil and leucovorin in patients with metastatic colorectal carcinoma.Cancer19978071179118710.1002/(SICI)1097‑0142(19971001)80:7<1179:AID‑CNCR1>3.0.CO;2‑G 9317168
    [Google Scholar]
  8. b KovoorP.A. KarimS.M. MarshallJ.L. Is levoleucovorin an alternative to racemic leucovorin? A literature review.Clin. Colorectal Cancer20098420020610.3816/CCC.2009.n.034 19822510
    [Google Scholar]
  9. CiccoliniJ. SerdjebiC. PetersG.J. GiovannettiE. Pharmacokinetics and pharmacogenetics of Gemcitabine as a mainstay in adult and pediatric oncology: An EORTC-PAMM perspective.Cancer Chemother. Pharmacol.201678111210.1007/s00280‑016‑3003‑0 27007129
    [Google Scholar]
  10. Lech-MarandaE. KoryckaA. RobakT. Clofarabine as a novel nucleoside analogue approved to treat patients with haematological malignancies: Mechanism of action and clinical activity.Mini Rev. Med. Chem.20099780581210.2174/138955709788452586 19519505
    [Google Scholar]
  11. BrollosyE.N. LoddoR. Synthesis and antiviral evaluation of 1-[(2-Phenoxyethyl)oxymethyl] and 6-(3,5-Dimethoxybenzyl) analogues of HIV drugs Emivirine and TNK-651.Drug Res.201566418118810.1055/s‑0035‑1559683 26313923
    [Google Scholar]
  12. SchrijversR. Etravirine for the treatment of HIV/AIDS.Expert Opin. Pharmacother.20131481087109610.1517/14656566.2013.787411 23560740
    [Google Scholar]
  13. PatilA. GoldustM. WollinaU. Herpes zoster: A review of clinical manifestations and management.Viruses202214219220410.3390/v14020192 35215786
    [Google Scholar]
  14. ParkS.H. ParkK.S. KimN.H. ChoJ.Y. KohM.S. LeeJ.H. Clevudine induced mitochondrial myopathy.J. Korean Med. Sci.201732111857186010.3346/jkms.2017.32.11.1857 28960041
    [Google Scholar]
  15. WhitleyR.J. Sorivudine: A potent inhibitor of varicella zoster virus replication.Adv. Exp. Med. Biol.1996394414410.1007/978‑1‑4757‑9209‑6_5 8815706
    [Google Scholar]
  16. ZhangC.J. MeyerS.R. O’MearaM.J. HuangS. CapelingM.M. Ferrer-TorresD. ChildsC.J. SpenceJ.R. FontanaR.J. SextonJ.Z. A human liver organoid screening platform for DILI risk prediction.J. Hepatol.2023785998100610.1016/j.jhep.2023.01.019 36738840
    [Google Scholar]
  17. GaffneyM.M. BelliveauP.P. SpoonerL.M. Apricitabine: A nucleoside reverse transcriptase inhibitor for HIV infection.Ann. Pharmacother.200943101676168310.1345/aph.1M160 19737995
    [Google Scholar]
  18. PawlotskyJ.M. NajeraI. JacobsonI. Resistance to mericitabine, a nucleoside analogue inhibitor of HCV RNA-dependent RNA polymerase.Antivir. Ther.201217341142310.3851/IMP2088 22402762
    [Google Scholar]
  19. PierraC. AmadorA. BenzariaS. ScottC.E. D’AmoursM. MaoJ. MathieuS. MoussaA. BridgesE.G. StandringD.N. SommadossiJ.P. StorerR. GosselinG. Synthesis and pharmacokinetics of valopicitabine (NM283), an efficient prodrug of the potent anti-HCV agent 2′-C-methylcytidine.J. Med. Chem.200649226614662010.1021/jm0603623 17064080
    [Google Scholar]
  20. CookM.K. HagenE.M. FeldmanS.R. Cidofovir in the management of Non-Genital warts: A review.J. Drugs Dermatol.202322101009101610.36849/JDD.7258 37801536
    [Google Scholar]
  21. GhoshR.K. GhoshS.M. ChawlaS. Recent advances in antiretroviral drugs.Expert Opin. Pharmacother.2011121314610.1517/14656566.2010.509345 20698725
    [Google Scholar]
  22. YaoX. GaoS. WangJ. LiZ. HuangJ. WangY. WangZ. ChenJ. FanX. WangW. JinX. PanX. YuY. LagruttaA. YanN. Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels.Cell20221852548014810.e1310.1016/j.cell.2022.10.024 36417914
    [Google Scholar]
  23. ScottL.J. Dolutegravir/lamivudine single-tablet regimen: A review in HIV-1 infection.Drugs2020801617210.1007/s40265‑019‑01247‑1 31865558
    [Google Scholar]
  24. DeeksE.D. Darunavir/cobicistat/emtricitabine/teno-fovir alafenamide: A review in HIV-1 infection.Drugs201878101013102410.1007/s40265‑018‑0934‑2 29915897
    [Google Scholar]
  25. MartínezA.L. BreaJ. DomínguezE. VarelaM.J. CimadevilaM. AllegueC. CruzR. MonroyX. MerlosM. BurgueñoJ. CarracedoÁ. LozaM.I. Identification of novel regulators of Zalcitabine-Induced neuropathic pain.ACS Chem. Neurosci.202112142619262810.1021/acschemneuro.1c00129
    [Google Scholar]
  26. Hernandez-SantiagoB.I. MathewJ.S. RappK.L. GrierJ.P. SchinaziR.F. Antiviral and cellular metabolism interactions between Dexelvucitabine and lamivudine.Antimicrob. Agents Chemother.20075162130213510.1128/AAC.01543‑06 17403996
    [Google Scholar]
  27. ColucciP. PottageJ.C. RobisonH. TurgeonJ. SchürmannD. HoepelmanI.M. DucharmeM.P. Multiple-dose pharmacokinetic behavior of elvucitabine, a nucleoside reverse transcriptase inhibitor, administered over 21 days with lopinavir-ritonavir in human immunodeficiency virus type 1-infected subjects.Antimicrob. Agents Chemother.200953266266910.1128/AAC.00907‑08 19015343
    [Google Scholar]
  28. SmolinG. OkumotoM. FeilerS. CondonD. Idoxuridine-liposome therapy for herpes simplex keratitis.Am. J. Ophthalmol.198191222022510.1016/0002‑9394(81)90177‑X 7468738
    [Google Scholar]
  29. McIntyreR.L. MolenaarsM. SchomakersB.V. GaoA.W. KambleR. JongejanA. van WeeghelM. van KuilenburgA.B.P. PossematoR. HoutkooperR.H. JanssensG.E. Anti-retroviral treatment with zidovudine alters pyrimidine metabolism, reduces translation, and extends healthy longevity via ATF-4.Cell Rep.202342111192811193210.1016/j.celrep.2022.111928 36640360
    [Google Scholar]
  30. JainK.S. AryaN. InamdarN.N. AutiP.B. UnawaneS.A. PuranikH.H. SanapM.S. InamkeA.D. MahaleV.J. PrajapatiC.S. ShishooC.J. The Chemistry and bio-medicinal significance of pyrimidinesand condensed pyrimidines.Curr. Top. Med. Chem.201616283133317410.2174/1568026616666160609100410 27291985
    [Google Scholar]
  31. GuptaG.R. ShaikhV.R. PatilK.J. Cyclodextrin - Essential oil complexes studied by thermal gravimetry analysis - Differential scanning calorimetry.Curr. Phys. Chem.202313217718810.2174/1877946813666230412080339
    [Google Scholar]
  32. GuptaG.R. Thermal stability and specific heat estimation of pyridinium cation-based surfactant ionic liquids using TGA-DSC.Curr. Phys. Chem.202212217117710.2174/1877946812666220510152622
    [Google Scholar]
  33. a GuptaG.R. WaghuldeG.P. SarodeC.H. YeoleS.D. Diazo-coupling reaction between 2-aminothiazole and thymol; Synthesis, DFT studies, and specific heat capacity calculations using TGA-DSC.Curr. Phys. Chem.2022121576610.2174/1877946812666220126161309
    [Google Scholar]
  34. b GuptaG.R. ShaikhV.R. KalasS.S. HundiwaleD.G. PatilK.J. Studies of thermal analysis and specific heat capacity for quaternaryammonium salts.Specific Heat.Nova Scientific Publisher20205374
    [Google Scholar]
  35. GuptaG. ShaikhV. KalasS. PatilK. Specific heat capacity estimations for biologically and medicinally important compounds: Lidocaine hydrochloride, clove oil and β-piperine using the DSC technique.Curr. Phys. Chem.2021111273410.2174/1573412916999200430092644
    [Google Scholar]
  36. BhirudJ.D. GuptaG.R. NarkhedeH.P. Oxidative cyclization of chalcones in presence of sulfamic acid as catalyst. Synthesis, biological activity of thermal properties of 1,3,5-trisubstituted pyrazoles.Russ. J. Org. Chem.202056101815182210.1134/S1070428020100243
    [Google Scholar]
  37. SarodeC. YeoleS. ChaudhariG. WaghuldeG. GuptaG. Development of the room temperature protocol based on room temperature ionic liquids and surfactant ionic liquids for the synthesis of derivatives of 2-amino-thiazoles and thermo- physical analysis of the synthesized derivatives using TGA-DSC.Curr. Phys. Chem.2021111182610.2174/1877946810999200519102040
    [Google Scholar]
  38. WaghuldeV.S. SawantK.C. DhanmaneS.A. WaghuldeG.P. SarodeC.H. GuptaG.R. A state-of-the-art valorization of a molten tetrabutylammonium bromide in the synthesis of ionic liquids.Russ. J. Org. Chem.202359S1S74S8310.1134/S1070428023130079
    [Google Scholar]
  39. SawantK.C. SarodeC.H. MaratheY.V. GuptaG.R. DhanmaneS.A. [mPyrMeSO4]: An exceptional reaction medium for the room temperature synthesis of substituted pyrimidones via Biginellipyrimidone synthesis.Russ. J. Org. Chem.20232023
    [Google Scholar]
  40. GuptaG. ShaikhV. PatilK. Synchronous thermogravimetry and differential scanning calorimetry estimates of urea inclusion complexes using TGA/DSC.Curr. Phys. Chem.20198317518510.2174/1877946808666181031113024
    [Google Scholar]
  41. GuptaG.R. PatilP.D. ShaikhV.R. KolhapurkarR.R. DagadeD.H. PatilK.J. Analytical estimation of water, specific heat capacity and thermal profiles associated with enzymatic model compound β-cyclodextrin.Curr. Sci.2018114122525252910.18520/cs/v114/i12/2525‑2529
    [Google Scholar]
  42. PatilK.S. ZopeP.H. PatilU.T. PatilP.D. DubeyR.S. GuptaG.R. Synthesis and thermophysical studies of polyanilines.Bull. Mater. Sci.2019421243210.1007/s12034‑018‑1705‑0
    [Google Scholar]
  43. JoshiN.S. WaghuldeG.P. GuptaG.R. Thermo-physical investigations of oils, N-(2-aminoethyl)-oleamide and resulting gels using TGA-DSC.Orient. J. Chem.20213761496150010.13005/ojc/370632
    [Google Scholar]
  44. HuffmanH.M. ParksG.S. DanielsA.C. Thermal data on organic compounds. Vii. The heat capacities, entropies and free energies of twelve aromatic hydrocarbons.J. Am. Chem. Soc.19305241547155810.1021/ja01367a039
    [Google Scholar]
  45. MoritaH. RiceH.M. Characterization of organic substances by differential thermal analysis: General experimental technique.Anal. Chem.195527333633910.1021/ac60099a002
    [Google Scholar]
  46. WoodsB.P. HoyeT.R. Differential scanning calorimetry (DSC) as a tool for probing the reactivity of polyynes relevant to hexadehydro-diels-alder (HDDA) cascades.Org. Lett.201416246370637310.1021/ol503162k 25470072
    [Google Scholar]
  47. SarigS. FuchsJ. Application of thermal analysis to organic chemistry: A review.Thermochim. Acta198914832533410.1016/0040‑6031(89)85231‑1
    [Google Scholar]
  48. GuoF. WuF. MuY. HuY. ZhaoX. MengW. GiesyJ.P. LinY. Characterization of organic matter of plants from lakes by thermal analysis in a N2 atmosphere.Sci. Rep.201661228772288410.1038/srep22877 26953147
    [Google Scholar]
  49. MortazaviB. JavvajiB. ShojaeiF. RabczukT. ShapeevA.V. ZhuangX. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles.Nano Energy20218210571610572810.1016/j.nanoen.2020.105716
    [Google Scholar]
  50. Vu-BacN. LahmerT. ZhuangX. ThoiN.T. RabczukT. A software framework for probabilistic sensitivity analysis for computationally expensive models.Adv. Eng. Softw.2016100193110.1016/j.advengsoft.2016.06.005
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468284583240528075819
Loading
/content/journals/cpc/10.2174/0118779468284583240528075819
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test