Skip to content
2000
Volume 14, Issue 3
  • ISSN: 1877-9468
  • E-ISSN:

Abstract

Transition metals exhibit a remarkable capacity to catalyse redox processes, playing a crucial role in various natural, biological, and chemical transformations. Among all the elements in the periodic table, iridium stands out with the broadest range of oxidation states. With its electronic configuration of 5d76s2, iridium displays a range of oxidation states, fluctuating from -3 in [Ir (CO)]3- to +9 in [IrO]2+. The utilization of iridium as a catalyst stems from its capability to adopt these variable oxidation states. Notably, Iridium (III) complexes exhibit significant catalytic activity in both acidic and basic environments, facilitating a diverse array of organic and inorganic chemical transformations. The catalytic mechanism adapts according to the specific conditions under which the catalysts are employed. Iridium's catalytic efficiency is notably enhanced in an acidic environment, as highlighted in this review, compared to its performance in a basic medium. Iridium stands as the sole reported catalyst with the capability to harness sunlight and transform it into chemical energy, offering promising prospects for application in artificial energy systems. The high surface-to-volume ratio of IrNPs contributes to their excellent catalytic performance. As research in Nanocatalysis continues to evolve, iridium remains a key player in shaping the future of sustainable and efficient chemical processes.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468297622240419105147
2024-11-01
2024-11-26
Loading full text...

Full text loading...

References

  1. MurahashiS.-I. 2004, iridium in Organic SynthesisWILEY-VCH VERLAG GmbH & KGaAWeinhei2004
    [Google Scholar]
  2. PuttaswamyS.J.P. JagadishR.V. Kinetics and mechanism of iridium (III) catalyzed oxidation of some amino acids by hexacyanoferrate (III) ions in aqueous alkaline medium.Trans. Met. Chem.2007329912
    [Google Scholar]
  3. ShivanandaK.N. LakshmiB. JagadeeshR.V. Puttaswamy; Mahendra, K.N. Mechanistic studies on the Ru(III)-catalyzed oxidation of some aromatic primary diamines by chloramine-T in hydrochloric acid medium: A kinetic approach.Appl. Catal. A Gen.2007326220221210.1016/j.apcata.2007.04.017
    [Google Scholar]
  4. TandonP.K. Kinetics and mechanism of iridium (III) catalyzed oxidation of some amino acids by hexacyanoferrate (III) ions in aqueous alkaline medium.Z. Phys. Chem.198426560910.1515/zpch‑1984‑26584
    [Google Scholar]
  5. GoelA. Shakunj; Shivani, Kinetics and mechanism of iridium (III) catalyzed oxidation of some amino acids by hexacyanoferrate (III) ions in aqueous alkaline medium.J. Phys. Chem.198084256
    [Google Scholar]
  6. TandonP.K. MehrotraA. SinghA.P. SinghM.P. Kinetics and mechanism of iridium (III) catalyzed oxidation of some amino acids by hexacyanoferrate (III) ions in aqueous alkaline medium.Proc. Indian Natl. Sci. Acad.198359A87
    [Google Scholar]
  7. Manibala, Tandon Kinetics and mechanism of iridium (III) catalyzed oxidation of some amino acids by hexacyanoferrate (III) ions in aqueous alkaline medium.Z. Phys. Chem.1985266115310.1515/zpch‑1985‑266139
    [Google Scholar]
  8. SinghM.P. SinghR.M. TandonP.K. MehrotraA. ThakurP. Kinetics and mechanism of iridium (III) catalyzed oxidation of some amino acids by hexacyanoferrate (III) ions in aqueous alkaline medium.J. Indian Chem. Soc.1988LXV720
    [Google Scholar]
  9. TandonP.K. KrishnaB. Kinetics and CatalysisConsultants Bureau1985261-4
    [Google Scholar]
  10. Iridium: Electronic Configuration, Properties, and Applications.Mater. Sci. Eng.2019123456467
    [Google Scholar]
  11. SmithJ.R.Y. Title: Inorganic Chemistry: Principles and Applications.3rd edAcademic Press2023
    [Google Scholar]
  12. SinghS.B. Iridium chemistry and its catalytic applications: A brief.Green Chem. Technol. Lett.20162420621010.18510/gctl.2016.247
    [Google Scholar]
  13. BruneauC. DixneufP.H. Eds.; Ruthenium Catalysts and Fine Chemistry.Springer-Verlag200410.1007/b10989
    [Google Scholar]
  14. TandonP.K. SrivastavaM. SinghS.B. SinghS. Liquid phase and microwave assisted oxidation of some hydrocarbons, aromatic aldehydes, and phenols by cerium(IV) catalyzed by iridium(III) in acidic medium.Synth. Commun.200838132125213710.1080/00397910802028796
    [Google Scholar]
  15. KravtsovV.I. PetrovaG.M. Kinetics of aquation of chloroiridate (III) ions and the IrCl2-6/IrCl3-6 redox potential.Russ. J. Inorg. Chem.19649552
    [Google Scholar]
  16. YoungL.B. TrahanovskyW.S. Detection of radical intermediates in the photo-oxidation of alkanols by ceric ammonium nitrate-CAN. an EPR study.J. Am. Chem. Soc.1969915060
    [Google Scholar]
  17. HintzH.L. JohnsonD.C. Mechanism of oxidation of cyclic alcohols by cerium (IV).J. Org. Chem.196732355656410.1021/jo01278a009
    [Google Scholar]
  18. MondalS.K. KarD. DasM. DasA.K. A comparative kinetic study of iridium(III) catalysis in cerium(IV) oxidation of dioxane in aqueous sulfuric acid and perchloric acid media.Trans. Met. Chem.199823559359810.1023/A:1006992905510
    [Google Scholar]
  19. JadhavA.G. GaikwadV.V. PatelN.T. Kinetics and mechanism of iridium (III) catalysed oxidation of alcohol and glycol by cerium (IV) in aqueous acidic media.Orient. J. Chem.201026311831185
    [Google Scholar]
  20. ShimoyamaY. OhgomoriY. KonY. HongD. Hydrogen peroxide production from oxygen and formic acid by homogeneous Ir–Ni catalyst.Dalton Trans.202150279410941610.1039/D1DT01431E 34096959
    [Google Scholar]
  21. SinghA.K. ChaurasiaN. RahmaniS. SrivastavaJ. SinghB. Mechanism of ruthenium (III) catalysis of periodate oxidation of aldoses in aqueous alkaline medium.Catal. Lett.2004953/413514110.1023/B:CATL.0000027286.07404.48
    [Google Scholar]
  22. TandonP.K. BabooR. SinghA.K. Gayatri; Purwar, M. Simple one-pot conversion of organic compounds by hydrogen peroxide activated by ruthenium(III) chloride: organic conversions by hydrogen peroxide in the presence of ruthenium(III).Appl. Organomet. Chem.200519101079108210.1002/aoc.949
    [Google Scholar]
  23. WangC. YangF. FengL. Recent advances in iridium-based catalysts with different dimensions for the acidic oxygen evolution reaction.Nanoscale Horiz.2023891174119310.1039/D3NH00156C 37434582
    [Google Scholar]
  24. WuH. SuH. SchulzeE.J. PetersB.B.C. NolanM.D. YangJ. SinghT. AhlquistM.S.G. AnderssonP.G. Site- and enantioselective iridium-catalyzed desymmetric mono-hydrogenation of 1,4-dienes.Angew. Chem. Int. Ed.20216035194281943410.1002/anie.202107267 34137493
    [Google Scholar]
  25. DasK.A. AparnaR. Studies on kinetics and mechanism of iridium(III) catalysed cerium (IV) oxidation of D-mannitol and D- glucose in aqueous acid media. India.J. Chem.20024124682474
    [Google Scholar]
  26. TandonP.K. SahgalS. SinghA.K. Gayatri; Purwar, M. Oxidation of ketones by ceric perchlorate catalysed by iridium(III).J. Mol. Catal. Chem.20052321-2838810.1016/j.molcata.2005.01.031
    [Google Scholar]
  27. TandonP.K. SahgalS. Gayatri; Purwar, M.; Dhusia, M. Oxidation of ketones by cerium(IV) in presence of iridium(III) chloride.J. Mol. Catal. Chem.20062501-220320910.1016/j.molcata.2005.12.045
    [Google Scholar]
  28. PraveenK. Oxidation of cyclic ketones by ceric(IV) in presence of iridium (III).J. Mol. Catal. Chem.2006258320326
    [Google Scholar]
  29. GoelA. SharmaR. A kinetic and mechanistic study on the oxidation of arginine and lysine by hexacyanoferrate (III) catalysed by iridium (III) in aqueous alkaline medium.J. Chem. Eng. Mater. Sci.20123116
    [Google Scholar]
  30. GoelA. Kinetics and mechanism of iridium (III) catalyzed oxidation of some amino acids by hexacyanoferrate (III) ions in aqueous alkaline medium.Int. J. Chem. Sci.20086418911899
    [Google Scholar]
  31. GargS. RajputS. A kinetic and mechanistic study of Ir (III) catalyzed oxidation of methionine by HCF (III) in aqueous alkaline medium.Research Square202310.21203/rs.3.rs‑3751886/v1
    [Google Scholar]
  32. KobayashiY. YamadaS. NagaiT. New dissolution process of iridium to hydrochloric acid.Rare Metal Technology 2019. The Minerals, Metals & Materials Series. AzimiG. KimH. AlamS. OuchiT. NeelamegghamN. BabaA. ChamSpringer201910.1007/978‑3‑030‑05740‑4_19
    [Google Scholar]
  33. TandonP. K. Gayatri SahgalS. SrivastavaM. SinghS. B. Catalysis by Ir(III), Rh(III) and Pd(II) metal ions in the oxidation of organic compounds with H2O2.Appl. Organomet. Chem.200721313513810.1002/aoc.1169
    [Google Scholar]
  34. TandonP.K. SinghA.K. SahgalS. KumarS. Oxidation of cyclic alcohols by cerium(IV) in acidic medium in the presence of iridium(III) chloride.J. Mol. Catal. Chem.20082821-213614310.1016/j.molcata.2007.12.001
    [Google Scholar]
  35. TandonP.K. MehrotraA. SrivastavaM. SinghS.B. SinghS.B. Iridium(III) catalyzed oxidation of iodide ions in aqueous acidic medium.Trans. Met. Chem.200732454154710.1007/s11243‑007‑0216‑4
    [Google Scholar]
  36. DeviS.S. KrishnamoorthyP. MuthukumaranB. Ruthenium(III) catalysis in perborate oxidation of 5-oxoacids.Advances in Physical Chemistry.Hindawi Publishing Corporation20142014114
    [Google Scholar]
  37. VeerakumarP. RamdassA. RajagopalS. Ruthenium nanocatalysis on redox reactions.J. Nanosci. Nanotechnol.20131374761478610.1166/jnn.2013.7568 23901501
    [Google Scholar]
  38. SarmahP.P. DuttaD.K. Chemoselective reduction of a nitro group through transfer hydrogenation catalysed by Ru0-nanoparticles stabilized on modified Montmorillonite clay.Green Chem.20121441086109110.1039/c2gc16441h
    [Google Scholar]
  39. MetiM.D. ByadagiK.S. NandibewoorS.T. ChimatadarS.A. Mechanistic studies of uncatalyzed and ruthenium(III)-catalyzed oxidation of the antibiotic drug chloramphenicol by hexacyanoferrate(III) in aqueous alkaline medium: A comparative kinetic study.Chem. Monthl.20141451015611570
    [Google Scholar]
  40. AnjaliG. RanjanaB. Kinetic studies on nanocatalysis by iridium nanoclusters in some oxidation reactions.Int. J. Res. Chem. Environ.201121210217
    [Google Scholar]
  41. CuiM. ZhaoY. WangC. SongQ. The oxidase-like activity of iridium nanoparticles, and their application to colorimetric determination of dissolved oxygen.Mikrochim. Acta201718493113311910.1007/s00604‑017‑2326‑9
    [Google Scholar]
  42. GoelA. LasyalR. Iridium nanoparticles with high catalytic activity in degradation of acid red-26: An oxidative approach.Water Sci. Technol.201674112551255910.2166/wst.2016.330 27973360
    [Google Scholar]
  43. BasavegowdaN. PatraJ.K. BaekK.H. Essential oils and mono/bi/tri-metallic nanocomposites as alternative sources of antimicrobial agents to combat multidrug-resistant pathogenic microorganisms: An overview.Molecules2020255105810.3390/molecules25051058 32120930
    [Google Scholar]
  44. LettenmeierP. MajchelJ. WangL. SavelevaV.A. ZafeiratosS. SavinovaE.R. GalletJ.J. BournelF. GagoA.S. FriedrichK.A. Highly active nano-sized iridium catalysts: synthesis and operando spectroscopy in a proton exchange membrane electrolyzer.Chem. Sci.20189143570357910.1039/C8SC00555A 29780489
    [Google Scholar]
  45. PakdehiS. ShirvaniF. ZolfagharR. A thermodynamic study on catalytic decomposition of hydrazine in a space thruster.Arch. Thermodyn.2019404151166
    [Google Scholar]
  46. MottaD. BarloccoI. BellomiS. VillaA. DimitratosN. Hydrous hydrazine decomposition for hydrogen production using of Ir/CeO2: Effect of reaction parameters on the activity.Nanomaterials2021115134010.3390/nano11051340 34069534
    [Google Scholar]
  47. ChenY. QiaoQ.Y. CaoJ.Z. LiH.X. BianZ.F. Mechanism-enabled population balance modeling of particle formation en route to particle average size and size distribution understanding and control.Joule20215123097311510.1016/j.joule.2021.11.002
    [Google Scholar]
  48. HayekK. GollerH. PennerS. RupprechterG. ZimmermannC. Regular alumina-supported nanoparticles of iridium, rhodium and platinum under hydrogen reduction: Structure, morphology and activity in the neopentane conversion.Catal. Lett.2004921/21910.1023/B:CATL.0000011081.32980.e0
    [Google Scholar]
  49. Martínez-PrietoL.M. CanoI. van LeeuwenP.W.N.M. Kinetics of iridium nanoparticles formation in ionic liquids and olefin hydrogenation.J. Nanopart. Res.2015178110
    [Google Scholar]
  50. ParkI.S. KwonM.S. KangK.Y. LeeJ.S. ParkJ. Rhodium and iridium nanoparticles entrapped in aluminum oxyhydroxide nanofibers: Catalysts for hydrogenations of arenes and ketones at room temperature with hydrogen balloon.Adv. Synth. Catal.200734911-122039204710.1002/adsc.200600651
    [Google Scholar]
  51. JiangH. YangC. LiC. FuH. ChenH. LiR. LiX. Heterogeneous enantioselective hydrogenation of aromatic ketones catalyzed by cinchona- and phosphine-modified iridium catalysts.Angew. Chem. Int. Ed.200847489240924410.1002/anie.200801809 18688898
    [Google Scholar]
  52. JiangH. SunB. ZhengX. ChenH. Heterogeneous selective hydrogenation of trans-4-phenyl-3-butene-2-one to allylic alcohol over modified Ir/SiO2 catalyst.Appl. Catal. A Gen.2012421-422869010.1016/j.apcata.2012.02.002
    [Google Scholar]
  53. YangC. JiangH. FengJ. FuH. LiR. ChenH. LiX. Asymmetric hydrogenation of acetophenone catalyzed by cinchonidine stabilized Ir/SiO2.J. Mol. Catal. Chem.20093001-29810210.1016/j.molcata.2008.10.041
    [Google Scholar]
  54. López-De JesúsY.M. VicenteA. LafayeG. MarécotP. WilliamsC.T. Synthesis and characterization of dendrimer-derived supported iridium catalysts.J. Phys. Chem. C200811236138371384510.1021/jp800152f
    [Google Scholar]
  55. FanG.Y. ZhangL. FuH.Y. YuanM.L. LiR.X. ChenH. LiX.J. Hydrous zirconia supported iridium nanoparticles: An excellent catalyst for the hydrogenation of haloaromatic nitro compounds.Catal. Commun.201011545145510.1016/j.catcom.2009.11.021
    [Google Scholar]
  56. RuepingM. KoenigsR.M. BorrmannR. ZollerJ. WeirichT.E. MayerJ. Size-selective, stabilizer-free, hydrogenolytic synthesis of iridium nanoparticles supported on carbon nanotubes.Chem. Mater.20112382008201010.1021/cm1032578
    [Google Scholar]
  57. ColindresS.C. GarcíaJ.R.V. AntonioJ.A.T. ChavezC.A. Preparation of platinum-iridium nanoparticles on titania nanotubes by MOCVD and their catalytic evaluation.J. Alloys Compd.20094831-240640910.1016/j.jallcom.2008.08.097
    [Google Scholar]
  58. PrietoM.L.M. CanoI. van LeeuwenP.W.N.M. Iridium nanoparticles for hydrogenation reactions.Iridium Catalysts for Organic Reactions. Topics in Organometallic Chemistry. OroL.A. ClaverC. ChamSpringer2020Vol. 69
    [Google Scholar]
  59. LocatelliF. CandyJ.P. DidillonB. NiccolaiG.P. UzioD. BassetJ.M. Hydrogenolysis of cyclohexane over Ir/SiO(2) catalyst: a mechanistic study of carbon--carbon bond cleavage on metallic surfaces.J. Am. Chem. Soc.200112381658166310.1021/ja000290j 11456765
    [Google Scholar]
  60. GattornoR.G. VázquezA.L.O. FrancoA.X. DomínguezC.J.L. IbarraV.R. Cyclohexane ring opening on alumina-supported Rh and Ir nanoparticles.Energy Fuels20072121122112610.1021/ef060084i
    [Google Scholar]
  61. ChoS.J. LeeJ. LeeY.S. KimD.P. Characterization of iridium catalyst for decomposition of hydrazine hydrate for hydrogen generation.Catal. Lett.20061093-418118610.1007/s10562‑006‑0081‑3
    [Google Scholar]
  62. GuidottiM. SantoV.D. GalloA. GianottiE. PeliG. PsaroR. SordelliL. Catalytic dehydrogenation of propane over cluster-derived Ir–Sn/SiO2 catalysts.Catal. Lett.20061121-2899510.1007/s10562‑006‑0169‑9
    [Google Scholar]
  63. NassreddineS. MassinL. AouineM. GeantetC. PiccoloL. Thiotolerant Ir/SiO2–Al2O3 bifunctional catalysts: Effect of metal–acid site balance on tetralin hydroconversion.J. Catal.2011278225326510.1016/j.jcat.2010.12.008
    [Google Scholar]
  64. NassreddineS. CasuS. ZotinJ.L. GeantetC. PiccoloL. Thiotolerant Ir/SiO2-Al2O3 bifunctional catalysts: Effect of support acidity on tetralin hydroconversion.Catal. Sci. Technol.201220111408412
    [Google Scholar]
  65. ArgoA.M. GoellnerJ.F. PhillipsB.L. PanjabiG.A. GatesB.C. Reactivity of site-isolated metal clusters: Propylidyne on gamma-Al2O3-supported Ir4.J. Am. Chem. Soc.2001123102275228310.1021/ja002818q 11456875
    [Google Scholar]
  66. ArgoA.M. OdzakJ.F. LaiF.S. GatesB.C. Observation of ligand effects during alkene hydrogenation catalysed by supported metal clusters.Nature2002415687262362610.1038/415623a 11832941
    [Google Scholar]
  67. ArgoA.M. GatesB.C. Propene hydrogenation catalyzed by -Al2O3- supported Ir4 clusters: Inhibition by dehydrogenated propene derivatives on Ir4.Langmuir20021862152215710.1021/la011193m
    [Google Scholar]
  68. SchickL. SanchisR. AlfaroG.V. Controlled attachment of ultrafine iridium nanoparticles on mesoporous aluminosilicate granules with carbon nanotubes and acetyl acetone.Chem. Eng. J.201936610011110.1016/j.cej.2019.02.087
    [Google Scholar]
  69. YangB. GengP. ChenG.H. Controlled attachment of ultrafine iridium nanoparticles on mesoporous aluminosilicate granules with carbon nanotubes and acetyl acetone.Separ. Purif. Tech.201515693194110.1016/j.seppur.2015.10.040
    [Google Scholar]
  70. JacintoM.J. SilvaF.P. KiyoharaP.K. LandersR. RossiL.M. Catalyst recovery and recycling facilitated by magnetic separation: Iridium and other metal nanoparticles.ChemCatChem20124569870310.1002/cctc.201100415
    [Google Scholar]
  71. NikolarakiE. GoulaG. PanagiotopoulouP. TaylorM.J. KousiK. KyriakouG. KondaridesD.I. LambertR.M. YentekakisI.V. Support induced effects on the ir nanoparticles activity, selectivity and stability performance under CO2 reforming of methane.Nanomaterials20211111288010.3390/nano11112880 34835645
    [Google Scholar]
  72. DrosouC. NikolarakiE. GeorgakopoulouTh. FanourgiakisS. ZaspalisV.T. YentekakisI.V. Methane combustion at lean conditions over pristine and Ir-loaded La1-xSrxMnO3 perovskite catalysts: Activity, hysteresis, and time-on-stream and thermal aging stabilities.Nanomaterials20231315227110.3390/nano13152271 37570587
    [Google Scholar]
  73. ScarpelliF. GodbertN. CrispiniA. AielloI. Nanostructured iridium oxide: State of the art.Inorganics202210811510.3390/inorganics10080115
    [Google Scholar]
  74. YamamotoH. MaityP. TakahataR. YamazoeS. KoyasuK. KurashigeW. NegishiY. TsukudaT. Monodisperse iridium clusters protected by phenylacetylene: Implication for size-dependent evolution of binding sites.J. Phys. Chem. C201712120109361094110.1021/acs.jpcc.6b12121
    [Google Scholar]
  75. GaoX. WuH. SuC. LuC. DaiY. ZhaoS. HuX. ZhaoF. ZhangW. ParkinI.P. CarmaltC.J. HeG. Recent advances in carbon-based nanomaterials for multivalent-ion hybrid capacitors: A review.Energy Environ. Sci.20231641364138310.1039/D2EE03719J
    [Google Scholar]
  76. SchiavoneL.M. SmithD.W.C. BeniG. ShayJ.L. Electrochromic iridium oxide films prepared by reactive sputtering.Appl. Phys. Lett.1979351082382510.1063/1.90950
    [Google Scholar]
  77. LiL. JiangC. LiL. Hierarchical platinum–iridium neural electrodes structured by femtosecond laser for superwicking interface and superior charge storage capacity.Biodes. Manuf.20225116317310.1007/s42242‑021‑00160‑5
    [Google Scholar]
  78. ZengQ. YuS. FanZ. HuangY. SongB. ZhouT. Nanocone-array-based platinum-iridium oxide neural microelectrodes: Structure, electrochemistry, durability and biocompatibility study.Nanomaterials20221219344510.3390/nano12193445 36234573
    [Google Scholar]
  79. WangR. LiY. Electrodes for all-vanadium redox flow batteries.Flow Cells for Electrochemical Energy Systems. Green Energy and Technology. AnL. ChenR. LiY. ChamSpringer202310.1007/978‑3‑031‑37271‑1_6
    [Google Scholar]
  80. WuG. LiX. ZhangZ. DongP. XuM. PengH. ZengX. ZhangY. LiaoS. Design of ultralong-life Li–CO2 batteries with IrO 2 nanoparticles highly dispersed on nitrogen-doped carbon nanotubes.J. Mater. Chem. A Mater. Energy Sustain.2020873763377010.1039/C9TA11028C
    [Google Scholar]
  81. AkshayaK.B. VargheseA. SudhakarY.N. GeorgeL. Electrocatalytic oxidation of morin on electrodeposited Ir-PEDOT nanograins.Food Chem.2019270788510.1016/j.foodchem.2018.07.074 30174094
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468297622240419105147
Loading
/content/journals/cpc/10.2174/0118779468297622240419105147
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test