- Home
- A-Z Publications
- Current Pharmaceutical Biotechnology
- Fast Track Listing
Current Pharmaceutical Biotechnology - Online First
Description text for Online First listing goes here...
1 - 20 of 27 results
-
-
CAR-T Cell Therapy: Pioneering Immunotherapy Paradigms in Cancer Treatment
Authors: Dhitri Borah, Sibasree Hojaisa, Indira Sarma, Anil Kumar Mavi, Tejveer Singh, Anita Gulati, Ravi, Kumar Goswami and Saurabh MaruAvailable online: 01 January 2025More LessThe world's one of the major causes of death are cancer. Cancer is still a complex disease over the years that needs to be cured. Traditional cytotoxic approaches, although they have been implemented for years for treating neoplastic diseases, yet are limited due to the intricacy and low efficiency of cancer cells. Researchers are thus compelled to seek more potent therapeutic strategies. Chimeric antigen receptor (CAR-T) cell therapy is one such innovative insight where T lymphocytes are altered genetically to target cancer cells. Despite the outstanding accomplishment in patients with haematological malignancies, CAR-T cell treatment has demonstrated minimal impact on solid tumours due to a number of obstacles, including proliferation, stability, trafficking, and fate within tumors. Furthermore, interactions between the host and tumour microenvironment with CAR-T cells significantly alter CAR-T cell activities. Designing and implementing these treatments additionally also requires a complex workforce. Overcoming these significant challenges, there is a requirement for innovative strategies for developing CAR-T cells with greater anti-tumour efficacy and reduced toxicity. In this chapter, the current advancement in CAR-T cell technology in order to increase clinical efficacy in both solid tumors and haematological, as well as possibilities to conquer the limits of CAR-T cell therapy in both solid and haematological tumours has been discussed.
-
-
-
Cardioprotective Efficacy of Quercetin against Cardiotoxicity Induced by Different Diameters of Sphere Gold Nanoparticles (GNPs)
Available online: 10 December 2024More LessBackgroundGold nanoparticles (GNPs) have garnered significant attention in the biomedicine field due to their exceptional electrical, mechanical, chemical, and optical characteristics. The interaction of these remarkable potentials with biological tissues carries a risk of toxicity. Quercetin (Qur) is a natural flavonoid and exhibits numerous pharmacological impacts, especially anti-inflammatory, anti-apoptotic, and antioxidant.
ObjectiveThis investigation aimed to clarify the potential cardiotoxicity induced by different diameters of spherical GNPs as well as to evaluate the possible cardioprotective roles of Qur against the most toxic diameter of GNPs.
MethodsRats were randomly grouped and treated with or without sphere GNPs (10, 20 and 50 nm) and Qur (200 mg/kg b.wt.). Heart and blood samples were collected and subjected to histological, immunohistochemical and biochemical investigations.
ResultsWhen compared to the groups treated with 20 and 50 nm, the 10 nm GNPs dramatically increased the levels of cardiac biomarkers, including Troponin I, Creatine kinase isoenzyme-MB (CK-MB), CK-Total, lactate dehydrogenase (LDH). Histopathologically, 10 nm GNPs exhibited severe cardiomyocytes degenerations, atrophy, disorganization of myocardial fibers, focal hemorrhage, congested blood vessels and interstitial inflammatory cells infiltrations. Immunohistochemically, 10 nm GNPs exhibited strongly positive expressions against anti-caspase-3 antibody confirming extensive apoptosis of cardiomyocytes. However, the majority of these pathological changes were significantly improved upon Qur treatment.
ConclusionThe size of GNPs is crucial to their toxicological impact on cardiac tissues where 10 nm GNPs can induce severe histological damage, potent cytotoxicity, and apoptosis rather than larger particles. Otherwise, pre-co-treatment with Qur revealed a significant cardioprotective effect against GNPs cardiotoxicity.
-
-
-
Gossypetin Alleviates DSS-induced Colitis by Regulating COX2 and ROS–JNK Signaling
Available online: 26 November 2024More LessBackgroundInflammatory Bowel Disease (IBD) represents a chronic and recurrent inflammatory condition affecting the gastrointestinal tract, with a rising global incidence. Current treatment approaches include surgery and drugs. However, surgeries are invasive procedures, while drug treatments often present with various side effects. Gossypetin, a flavonoid found abundantly in plants such as hibiscus, exhibits anti-oxidant and anti-cancer properties. However, its potential impact on IBD remains unexplored.
ObjectiveThis study aimed to investigate the therapeutic potential of gossypetin on colitis.
MethodsWe employed the DSS-induced colitis model to evaluate the therapeutic potential of gossypetin on colitis. The efficacy of gossypetin was assessed within this model using the Disease Activity Index (DAI) score and histological analysis. Additionally, we utilized qRT-PCR to measure the levels of inflammatory cytokines and Superoxide Dismutase (SOD). Immunohistochemistry confirmed the expression of tight junction markers, COX-2, and phosphorylated JNK protein, normally associated with disease progression. Furthermore, Western blot analysis was conducted to examine the SOD levels and anti-apoptotic effects of gossypetin.
ResultsIn DSS-induced colitis mice, gossypetin treatment ameliorated weight loss and reduced colon length caused by DSS treatment. Additionally, gossypetin-treated groups exhibited DAI scores and reduced histological damage. Moreover, gossypetin treatment increased tight junction expression, decreased inflammatory responses, reduced ROS levels, attenuated JNK signaling, and decreased apoptosis.
ConclusionGossypetin shows therapeutic potential for mitigating the symptoms and progression of colitis by targeting ROS–JNK signaling involved in inflammation and tissue damage. This highlights the potential of natural compounds such as gossypetin for targeted therapies with reduced side effects and improved efficacy.
-
-
-
Therapeutic Modulation of the Microbiome in Oncology: Current Trends and Future Directions
Authors: Istuti Saraswat and Anjana GoelAvailable online: 14 November 2024More LessCancer is a predominant cause of mortality worldwide, necessitating the development of innovative therapeutic techniques. The human microbiome, particularly the gut microbiota, has become a significant element in cancer research owing to its essential role in sustaining health and influencing disease progression. This review examines the microbiome's makeup and essential functions, including immunological modulation and metabolic regulation, which may be evaluated using sophisticated methodologies such as metagenomics and 16S rRNA sequencing. The microbiome influences cancer development by promoting inflammation, modulating the immune system, and producing carcinogenic compounds. Dysbiosis, or microbial imbalance, can undermine the epithelial barrier and facilitate cancer. The microbiome influences chemotherapy and radiation results by modifying drug metabolism, either enhancing or reducing therapeutic efficacy and contributing to side effects and toxicity. Comprehending these intricate relationships emphasises the microbiome's significance in oncology and accentuates the possibility for microbiome-targeted therapeutics. Contemporary therapeutic approaches encompass the utilisation of probiotics and dietary components to regulate the microbiome, enhance treatment efficacy, and minimise unwanted effects. Advancements in research indicate that personalised microbiome-based interventions, have the potential to transform cancer therapy, by providing more effective and customised treatment alternatives. This study aims to provide a comprehensive analysis of the microbiome's influence on the onset and treatment of cancer, while emphasising current trends and future possibilities for therapeutic intervention.
-
-
-
Advances and Challenges of Microneedle Assisted Drug Delivery for Biomedicals Applications: A Review
Authors: Shiv Bahadur, Radhika, Kantrol Kumar Sahu and Arun Kumar SinghAvailable online: 04 November 2024More LessMicroneedles have been explored as a novel way of delivering active ingredients into the skin. They have various advantages, such as quick and efficient drug delivery, mechanical stability, minimal pain, variable capacity and easy use. Microneedles are enabled for the delivery of vaccine, peptides, medicinal components and in cosmetology, which couldn’t go unnoticed. The novel approaches in the transdermal drug delivery system have increased the efficiency of drug delivery into the skin by crossing the skin barriers. This platform has a wide range of applications and can also be used to deliver non-transdermal biomedicals. The variety in the design of microneedles has demanded similar diversity in their methods of fabrication; micro molding and drawing lithography may be useful methods. There are different types of polymers and materials for the fabrication of microneedles. Several synthetic and natural materials are used in the fabrication of microneedles. Unique shapes, materials, and mechanical properties are modified for organ-specific applications in microneedle engineering. In this review, we discuss several factors and their roles to cross the biological barriers for transdermal drug delivery in various sites, such as in ocular, vascular, oral, and mucosal tissue. Additionally, this article highlights the future scope of transdermal drug delivery systems through microneedles.
-
-
-
Influence of Nanomedicine as a Smart Weapon on Multidrug Resistance in Cancer Therapy
Authors: Safal Kumar Paikray, Liza Sahoo, Nigam Sekhar Tripathy and Fahima DilnawazAvailable online: 31 October 2024More LessCancer is the leading cause of death worldwide. The effectiveness of chemotherapy in cancer patients is still significantly hampered by Multidrug Resistance (MDR). Tumors exploit the MDR pathways to invade the host and limit the efficacy of chemotherapeutic drugs that are delivered as single drugs or combinations. Further, overexpression of ATP-binding Cassette transporter (ABC transporter) proteins augments the efflux of chemotherapeutic drugs and lowers their intracellular accumulation. Recent progress in the development of nanotechnology and nanocarrier-based drug delivery systems has shown a better perspective with respect to the improvement of cancer chemotherapy. Nanoparticles/nanomaterials are designed to target the immune system and tumor microenvironment of cancer cells for a variety of cancer treatments in order to improve bioavailability and reduce toxicity. This review elucidates the successful use of nanomaterials for cancer therapy and addressing the MDR and throws some light on the present obstacles impeding their translation to clinical use.
-
-
-
Considerations and Challenges to Develop Drug-drug Coamorphous System: A Recent Update
Authors: Madhura Tiwari, Kavita Singh and Bappaditya ChatterjeeAvailable online: 30 October 2024More LessPoor water solubility of several drugs, especially BCS class II and IV drugs, restricts their dissolution and negatively affects oral absorption. Amorphization of drugs is a year-old approach to enhance solubility and dissolution of poorly water-soluble drugs. Polymeric amorphous systems have been proven effective but have disadvantages, such as low drug loading, high carrier content, etc. In a coamorphous system, a small molecule can be used as a coformer that keeps the amorphous form of a drug stable. In a drug-drug coamorphous system (CAS), one therapeutically active moiety can act as a coformer for the other drug. Although effective, the rationale of selecting the drugs and optimising the ratio without compromising therapeutic effect and safety is challenging. The preparation method is also a challenge because the stress during the processing method may result in the loss of crystallinity. Hence, the processing stability of the amorphous drug is a significant concern. A stable CAS is formed when two drugs generate some molecular-level interaction. In silico prediction of miscibility, molecular dynamic simulation, functional group analysis by Fourier Transform infrared spectroscopy, Raman spectroscopy, NMR, etc. contribute to the analysis of molecular-level interaction. Additionally, the article discusses the preparation method and the fact that the excipient must be selected carefully to form an effective CAS.
-
-
-
Virus-like Particles-Based Vaccine to Combat Neurodegenerative Diseases
Available online: 29 October 2024More LessNeurodegenerative diseases are regarded as gradual, incurable conditions with an insidious onset. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two of the most prevalent neurodegenerative diseases reported globally. Developing effective treatment strategies for neurodegenerative diseases has remained a primary objective and a huge challenge for researchers. The therapeutic medications that are now approved for the treatment of neurodegenerative diseases merely treat the symptoms; the underlying pathology is not addressed. Therefore, the emergence of novel disease-modifying therapeutic modalities such as immunotherapy has opened a new path in developing effective treatments for neurogenerative diseases. Compared to other types of subunit active vaccines, virus-like particles (VLPs) are considerably more immunogenic as they present dense and repetitive viral antigen epitopes on their surface, which can trigger both humoral and cell-mediated immune responses. They are also a much safer option than the traditional inactivated and live-attenuated vaccines since they are devoid of viral genomes and are, therefore, non-pathogenic and non-infectious. Researchers have turned their attention to VLPs as an active immunotherapy candidate for AD due to the lessons learned from the AN1792 trial. Studies have shown that they effectively induce anti-Aβ, anti-tau, and anti-α-Synuclein antibodies while avoiding T-cell-related immune reactions in animal models of AD and PD. This review compiles the findings of preclinical animal model studies and clinical investigations on VLP-based vaccines for neurogenerative diseases thus far. The technical limitations and potential difficulties associated with the future application of VLP-based vaccines in patients with neurodegenerative diseases have also been covered.
-
-
-
Tryptophan Stability and Palatability in the Food Formulation: A Review
Available online: 29 October 2024More LessTryptophan, an essential amino acid, plays a vital role in the synthesis of critical compounds like serotonin, melatonin, and niacin, which impact mood, sleep, and metabolic processes. It holds promise for improving the well-being of individuals with mood issues or sleep disorders through dietary enrichment. However, incorporating tryptophan into food products presents challenges related to stability, bitterness, and susceptibility to oxidative degradation. These issues can reduce consumer acceptability and effectiveness and may lead to the formation of harmful byproducts. This review comprehensively examines innovative strategies for enriching food products with tryptophan. Crucial approaches include using nano-emulsion systems to encapsulate tryptophan, thereby protecting it from environmental factors and enhancing its bioavailability, adding antioxidants to prevent degradation, and utilizing functional derivatives as alternatives to pure tryptophan. These strategies aim to improve the stability of tryptophan, reduce bitterness, and enhance consumer acceptability. This review provides valuable insights into practical methods for incorporating tryptophan into food formulations, with the goal of optimizing its health benefits and ensuring a positive consumer experience.
-
-
-
Mechanisms of Bioactive Lipids to Modulate Master Regulators of Lipid Homeostasis and Inflammation in Metabolic Syndrome
Available online: 25 October 2024More LessMetabolic Syndrome (MetS) refers to the co-occurrence of a constellation of metabolic diseases in the same individual, such as abdominal/visceral obesity, insulin resistance or diabetes, alterations in the lipid profile (dyslipidemias), and/or hypertension, which promotes the development of other cardiometabolic and hepatic diseases. Dyslipidemia and metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease (NAFLD), are common MetS pathologies closely related to lipid metabolism. Alterations in the metabolism of proteins, carbohydrates, and lipids, caused by an excessive intake of nutrients and abnormal accumulation of body fat, which promotes chronic low-grade inflammation, are pivotal aspects of MetS development. To avoid damage caused by lipid overaccumulation, the transcription factors responsible for regulating lipid homeostasis and inflammation (named in this work master regulators) must modify their regular activity however, the high adiposity established for long periods causes the appearance of insulin resistance (the MetS triggering factor most widely accepted in the literature). Fortunately, scientific evidence suggests that the abnormal activity of these regulators can be conveniently modulated by distinct species of bioactive lipids, among which unsaturated fatty acids stand out, offering new alternatives for treating MetS. Therefore, this work aims to provide a general overview of scientific evidence that supports the mechanisms of action and the effective modulation by bioactive lipids of some master lipid-metabolism-and-inflammation regulators in diverse aspects of MetS
-
-
-
SIRT3, a New Hope in Liver Diseases from Pathogenic Mechanisms to Therapeutic Strategies
Authors: Sai-Ya Tan, Xiao-Xuan Chen, Rui Zhang, Pan Liu, Jian-Peng Wang, Ting Wang, and and Zhang-E XiongAvailable online: 24 October 2024More LessThe liver, the largest internal organ in the human body, regulates multiple reactions and processes, including detoxification, regeneration, and immune defense. Liver diseases have emerged as a significant global public health issue. Numerous studies have indicated that the mitochondrial deacetylase SIRT3 has played various roles in the pathogenesis and pathological progression of liver diseases.
ObjectivesThis review aims to explore the advances in the study of SIRT3 and liver disease and review possible mechanisms. Natural and chemical activators of SIRT3 are also discussed. The role of SIRT3 in the pathogenic mechanisms and therapeutic strategies of liver disease is summarized by reviewing Pubmed. SIRT3 alleviates liver diseases by regulating fatty acid metabolism, mitochondrial function, and immune-inflammatory response. Meanwhile, Withaferin A, lipoic acid, major royal jelly proteins, and berberine can activate SIRT3 or upregulate its expression, thereby alleviating liver damage. SIRT3 can effectively slow down the progression of liver disease and protect the liver from further damage. The use of SIRT3 as a pharmacological target for the treatment of liver disease is a potential therapeutic approach.
-
-
-
Phytochemical Composition of Urtica dioica Essential Oil with Antioxidant and Anti-inflammatory Properties: In Vitro and In Vivo Studies
Available online: 24 October 2024More LessBackgroundUrtica dioica (Urticaceae) has outstanding medicinal and pharmacological properties. This investigation was aimed to assess the chemical composition, the total polyphenol and flavonoid content, antioxidant, anti-proliferative, and anti-inflammatory effects of Urtica dioica essential oil (UDEO).
MethodsGC/MS analysis was performed to assess the chemical composition, standard antioxidative test, the DPPH assay, the reducing power assay, as well as the anti-proliferative capacities of UDEO against HeLa cell lines using the MTT test. In addition, the anti-inflammatory activities of UDEO were evaluated using paw thickness measurements in rats with carrageenan-induced paw edema and pathologic evaluation of inflammation in paw sections.
ResultsGC/MS analysis revealed benzene dicarboxylic acid (14.69%), β-linalool (9.79%), phytol (9.52%), menthol (6.65%), borneol (6.45%), 3-Eicosene (E) (6.10%), 1-8 cineole (5.60%) and camphor (5.36%) as the major components of UDEO.
In vitro results showed that UDEO contained 191 ± 2.04 mg GAE/g of polyphenols and 83.59 ± 4.7 mg CE/g of flavonoids. In addition, the UDEO showed a radical scavenging activity with IC50 = 0.14 ± 0.003 mg/mL and a ferric reducing antioxidant power (FRAP) (optical density = 0.556). A side from the UDEO's antioxidant properties, our findings revealed a reduction in ROS generation in the HeLa cell line. Furthermore, the anti-proliferative activity of UDEO is accompanied by a cytotoxicity effect (IC50 at 3.20 µg ml-1).
Data from inflammation models revealed that UDEO has an anti-inflammatory effect. The pretreatment with UDEO or Indomethacin (Ind) reduced significantly the volume of edema induced by Carr, the level of C-reactive protein (CRP), the reactive thiobarbituric acid (TBARS), the conjugated dienes (CD), the carbonyl proteins (CP) and the advanced protein oxidation products (AOPP). Furthermore, it restored the hematology parameters such as white blood cells (WBC), lymphocytes (LYM), and platelets (PLT). In addition, it increased the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). In UDEO-treated rats, the histopathological examinations of the paws revealed little infiltration of inflammatory cells.
ConclusionThe decrease in paw edema and human cell lines HeLa cytotoxicity showed that UDEO possesses anti-inflammatory and antioxidant properties, which could be attributed to the high amount of phenolic and flavonoid contents.
-
-
-
Revolutionizing Influenza Treatment: A Deep Dive into Targeted Drug Delivery Systems
Authors: Sourav Ghosh, Sejuti Ray Chowdhury, Monosiz Rahaman, Biswajit Basu and Bhupendra PrajapatiAvailable online: 21 October 2024More LessInfluenza, a highly transmissible respiratory infection caused by influenza viruses A and B, poses a persistent threat to global public health due to its high mutation rate, ability to develop resistance to existing antiviral drugs, and capacity for rapid spread. Current treatment options, including four main classes of antiviral agents—adamantanes, neuraminidase inhibitors, RNA-dependent RNA polymerase inhibitors, and polymerase acidic endonuclease inhibitors—are limited by the emergence of drug-resistant viral strains, non-specific drug distribution, and adverse side effects. Moreover, the effectiveness of traditional vaccines is often compromised by antigenic drift and shift, necessitating the development of alternative therapeutic strategies. This review comprehensively explores the potential of novel targeted drug delivery systems to address these limitations and improve influenza management. Nanotechnology-based platforms, including lipid-based, polymer-based, inorganic, and hybrid nanoparticles, offer enhanced drug delivery through improved bioavailability, targeted action, and controlled release, thus minimizing systemic toxicity and optimizing therapeutic outcomes. Inhalation delivery systems such as dry powder inhalers (DPIs), nebulizers, and nanotechnology-based inhalation formulations provide direct delivery of antiviral agents to the respiratory tract, ensuring rapid onset of action with reduced systemic side effects. Transdermal delivery methods, including microneedle patches and hydrogel-based systems, offer non-invasive alternatives that enhance patient compliance and allow for sustained drug release. Furthermore, this review discusses recent innovations, such as responsive drug delivery systems and multifunctional nanoparticles capable of simultaneous delivery of multiple therapeutic agents, representing a significant advancement in the fight against influenza. These novel approaches promise improved targeting and efficacy and enable personalized treatment strategies, enhancing patient outcomes in both seasonal flu and pandemic scenarios. Integrating these advanced drug delivery systems into clinical practice could revolutionize the management of influenza, offering a promising pathway toward more effective and safer therapies.
-
-
-
Discovery of New Natural Phytocompounds: The Modern Tools to Fight Against Traditional Bacterial Pathogens
Available online: 21 October 2024More LessOngoing competition between disease-causing bacteria and human hosts has resulted in the discovery of a wide array of antibacterials. The advent of antibacterials ushered in a promising period in the realm of microbiology, but its brilliance was short-lived and soon diminished. The excessive and incorrect use of antibacterials results in limited selection pressure on the targeted microorganisms, which in turn promotes the evolution of microbes instead of killing them. Consequently, antibacterial resistance has developed and given rise to strains that are resistant to many drugs, leading to a significant increase in mortality rates. The current review delves into the potential of novel natural phytocompounds as innovative solutions to combat these potential bacterial threats. The review begins by showcasing the modus operandi of conventional antibacterial drugs followed by addressing the mechanisms of resistance to antibacterial agents, which have significantly lowered the efficacy of conventional treatments. In contrast, the review explores the mechanism of antibacterial activity of plant-derived phytochemicals, unraveling the various ways in which natural compounds interact with bacterial targets. Furthermore, the review examines the synergism between plant phytochemicals and conventional antibiotics, showcasing the efficacy of this combinatorial approach in overcoming resistance. The review concludes by summarizing the current research and offering valuable insights into challenges in the use of plant phytochemicals as antibacterial therapeutics. This comprehensive overview reinforces the promise of incorporating modern scientific tools with traditional phytotherapy to develop effective strategies against resistant bacterial pathogens.
-
-
-
Comparative Study on Enhanced Skin Permeation Efficiency of Phenylephrine via Novel Lipid Vesicles: A Promising Approach in Preventing Chemotherapy-induced Alopecia Management
Authors: Ravi Shankar, Manish Kumar and Prabhat Kumar UpadhyayAvailable online: 18 October 2024More LessBackgroundChemotherapy-induced alopecia (CIA) significantly impacts patients' emotional and psychological well-being and treatment regimen. Phenylephrine, a topical vasoconstrictor, can potentially reduce hair loss by limiting chemotherapy drug delivery to hair follicles. However, effective delivery of Phenylephrine through the skin remains challenging. This study investigates lipid vesicles as delivery vehicles to enhance Phenylephrine's skin permeation and sustained release due to their biocompatibility and encapsulation capabilities.
ObjectiveThis study aimed to formulate and compare different lipid vesicles of Phenylephrine HCl for enhanced permeation through the skin for deep dermal delivery with sustained release of the drug so as to achieve local vasoconstriction.
MethodsPhenylephrine-loaded ethosomes, invasomes, and transfersomes were prepared and characterized for particle size (PS), polydispersity index (PDI), and entrapment efficiency (EE %). These lipid vesicles were incorporated into hydrogels to facilitate sustained drug release to deep dermal layers where they could target local vasculature and cause vasoconstriction. The prepared vesicular gels were evaluated for various permeation parameters.
ResultsThe entrapment efficiencies of the developed vesicles ranged from 49.51 ± 3.25% to 69.09 ± 2.32%, with vesicle sizes ranging from 162.5 ± 5.21 nm to 321.32 ± 3.75 nm. Statistical analysis revealed significantly higher flux values (Jss, µg/cm2 h) of 0.6251, 0.6314, and 0.4075 for invasomal gel, ethosomal gel, and transfersomal gel, respectively, compared to plain gel (0.1254) (p < 0.005). The enhancement factors were 4.9848, 5.0350, and 3.2496 for invasomal gel, ethosomal gel, and transfersomal gel, respectively, indicating superior permeation abilities of ethosomal and invasomal formulations.
ConclusionThe results demonstrate that ethosomal and invasomal formulations were efficient in delivering the drug to deep dermal layers of skin in a sustained manner. These findings suggest that these Lipidic vesicles would be able to target the local vasoconstrictor to vasculature, causing reduced hair loss by limiting chemotherapy drug delivery to hair follicles and managing chemotherapy-induced alopecia.
-
-
-
Unwinding the Threads of Mesoporous Silica Nanoparticles as Cutting-Edge for the Management of Inflammation: An Updated Review
Authors: Priya Dhiman, Sukhbir Singh, Sandeep Arora, Neelam Sharma, Ritu Gulia and Ladli KishoreAvailable online: 11 October 2024More LessBackgroundInflammation serves as a protective response to combat cellular and tissue damage. There is currently a wide array of synthetic and traditional therapies available for the treatment of inflammatory diseases. However, it is necessary to create a drug delivery system based on nanotechnology that can improve the solubility, permeability, and bioavailability of current treatments. Mesoporous silica nanoparticles (MSNPs) are inorganic materials known for their organised porous interiors, high pore volumes, substantial surface area, exceptional selectivity, permeability, low refractive index, and customisable pore sizes.
ObjectiveThis review offers concise insights into the progression of the pathophysiology of inflammation, as well as the inducers, mediators, and effectors that are involved in the inflammatory pathway. This study focuses on the growing significance of MSNPs in the treatment of neuroinflammation, inflammatory bowel disease, arthritic inflammation, lung inflammation, and wound healing applications. This review also presents the latest information on the crucial role of MSNPs in delivering herbal medicines for the treatment of inflammation.
MethodsA comprehensive literature search was conducted for this aim, utilising the Google Scholar, PubMed, and ScienceDirect databases. A systematic review was undertaken utilising scholarly articles published in peer-reviewed journals from 2000 to 2024.
ResultsThe inflammatory mediators involved in the pathophysiology of inflammation include platelet-activating factor, lipoxygenase, cyclooxygenase, Interferon-α, interleukin-6, interleukin-1β, matrix metalloproteinases, inducible nitric oxide synthase, nuclear factor-κB, prostaglandins, nitric oxide, and phospholipase A2. MSNPs have the potential to be used in the treatment of neuroinflammation, inflammatory bowel disease, arthritic inflammation, lung inflammation, and wound healing. The investigation of the MSNPs of plant-based compounds such as berberine, tetrahydrocannabinol, curcumin, and resveratrol has shown successful results in recent years for the purpose of managing inflammation.
ConclusionThis review demonstrates that MSNPs have a strong potential to play a positive role in delivering synthetic and plant-based therapies for the treatment of inflammatory illnesses.
-
-
-
Role of Medicinal Plants in the Management of Multiple Sclerosis
Authors: Aaryan Gupta, Arpita Roy, Amit Roy, Vaseem Raja, Kuldeep Sharma and Rajan VermaAvailable online: 10 October 2024More LessThere is a rapid spread of Multiple Sclerosis disorder across the globe, around 2.8 million cases of Multiple Sclerosis in the world. Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by demyelination, neuroinflammation, and a wide spectrum of clinical manifestations. Many drugs have been tested on MS patients but there is no effective treatment for MS till now. So to inhibit the symptoms caused by MS we performed a study in which we identified various naturally occurring materials with neuroprotective effects on the body that can treat Multiple Sclerosis. The therapeutic strategies portion of the paper reviews the array of disease-modifying therapies currently available for MS management. This paper evaluated their mechanisms of action, efficacy, and safety profiles. It also addressed emerging treatment paradigms by using different naturally occurring materials, including personalized medicine approaches and novel therapies in development. This paper provides a comprehensive overview of the current state of knowledge regarding MS, focusing on its pathogenesis, diagnostic approaches, and therapeutic strategies.
-
-
-
Jiangu Recipe Suppresses ER Stress-Induced Apoptosis and Inhibits Extracellular Matrix Degradation in Chondrocytes through Upregulating SIRT1 Expression
Authors: Jie Qiao, Chang Cheng, Gongxu Yang, Chuanqi Zhong, Jun Jin and Bin WuAvailable online: 09 October 2024More LessObjectiveThis study aimed to explore the effects of Jiangu Recipe (JGR) on chondrocyte responses under tert-Butyl hydroperoxide (TBHP)-induced oxidative stress, specifically focusing on apoptosis and extracellular matrix (ECM) degradation.
MethodsChondrocytes were treated with varying JGR concentrations, and cell viability was assessed. The impact of JGR on TBHP-induced apoptosis and protein expression levels of apoptosis-related molecules (Bcl-2, Bax, and cleaved caspase-3) and ECM components (Collagen II, Aggrecan, MMP-13) was evaluated.
ResultsJGR exhibited protective effects against oxidative stress in chondrocytes. Moreover, it maintained cell viability under tert-butyl hydroperoxide (TBHP) induction, suppressing apoptosis (Bax, cleaved caspase-3) and enhancing anti-apoptotic Bcl-2. JGR also attenuated extracellular matrix (ECM) degradation, promoting Collagen II and Aggrecan while reducing MMP-13 expression. Investigating endoplasmic reticulum (ER) stress, it was found that JGR downregulated TBHP-induced GRP78, CHOP, ATF4, p-PERK, and p-eIF2α, thus indicating ER stress modulation. SIRT1 played a key role, as JGR upregulated SIRT1, mitigating TBHP-induced downregulation. SIRT1 knockdown reversed JGR's protective effects, highlighting its crucial role in JGR-mediated responses.
ConclusionOur findings suggest that JGR mitigated TBHP-induced chondrocyte apoptosis and ECM degradation, highlighting its potential therapeutic application in osteoarthritis. Mechanistically, our study highlights that SIRT1 plays a crucial role in mediating the protective effects of JGR against ER stress-induced chondrocyte apoptosis and ECM degradation, providing a foundation for further clinical exploration in managing osteoarthritic conditions.
-
-
-
Bridging the GAP: Probiotic Douches Redefining the Feminine Hygiene
Authors: Akash Kumar, Sadique Hussain, Nitya Srivastava, Gurvinder Singh, Monica Gulati and Rajesh KumarAvailable online: 09 October 2024More LessVaginal douching is a centuries-old practice which is still in use, especially among adolescents. “Probiotic douches” are the vaginal douches that are formulated with probiotics and are intended to restore or maintain the vaginal microbiome balance. Probiotic douches are a new type of feminine hygiene product that claims to promote a balanced vaginal microbiome and improve overall well-being. However, the evidence supporting the use of probiotics for vaginal health is limited because of the variability in probiotic strains and dosages studied, and the lack of more comprehensive, long-term clinical trials. Most of the existing scientific literature on probiotics focuses on oral probiotic supplements and vaginal probiotic suppositories. Some potential benefits of probiotic douches include restoring a balanced vaginal microbiota, preventing, or managing infections, supporting local immune function, reducing odor and discharge, and enhancing overall vaginal comfort. However, it is important to note that these benefits have not been definitively proven and remain a subject of ongoing research. There are also potential risks associated with their use including disruption of the natural vaginal ecosystem by introducing foreign substances, risk of infection, and stability issues with the formulation that may lead to negative consequences. This review attempts to comprehend the critical need for robust scientific research to guide the safe and effective incorporation of probiotic douches into modern feminine hygiene practices, revolutionizing women's health, and well-being.
-
-
-
Integrated Transcriptomics and Metabolomics Studies Reveal Steroid Biosynthesis Pathway and BCL2 Inhibitory Diazo-Progesterone of Drimia indica for Conservation and Sustainable Utilization
Authors: Vivek Shit, Mahesh Kumar Dhakar and Manoj KumarAvailable online: 09 October 2024More LessBackgroundThis study is the first report on the sequence of the transcriptome of Drimia indica, a non-model plant with medicinal properties found in a forest tribal belt, using the Illumina NovaSeq platform. The primary objectives of this study were to elucidate the gene expression profiles in different tissues, identify key regulatory genes and pathways involved in secondary metabolite biosynthesis, and explore the plant's potential pharmacological properties.
MethodsThe study generated 670087 unigenes from both leaves and roots and identified putative homologs of annotated sequences against UniProt/Swiss-Prot and KEGG databases. The functional annotation of the identified unigenes revealed the secondary metabolite biosynthetic process as the most prominent pathway, with gene enrichment analysis predominantly accounting for secondary metabolite pathways, such as terpenoid, steroid, flavonoid, alkaloid, selenocompound, and cortisol synthesis. The study also identified regulatory genes NAC, Bhlh, WRKY, and C2H2 on the transcriptome dataset.
ResultsThe functionally annotated unigenes suggested phytocompounds in Drimia indica to have multi-potent properties, such as anti-cancer, anti-inflammatory, and anti-diabetic activities, which has been further validated by GC-MS-based metabolite profiling. Notably, we have identified two novel molecules, di-azo progesterone and 4H-pyran-4-one 2,3-dihydro-3,5-dihydroxy-6-methyl, with potential BCL2 inhibitory anticancer properties, supported by stable binding interactions observed in molecular docking and dynamics simulations. Additionally, an abundance of mono-nucleotide SSR markers has been identified, useful for genetic diversity studies.
ConclusionThis study provides a foundational understanding of the molecular mechanisms in Drimia indica, highlighting its potential as a source for novel therapeutic agents and contributing valuable insights for future pharmacological and agricultural applications. However, further in vivo studies are warranted to confirm these findings and validate their pharmacological efficacy and therapeutic potential. The SSR markers identified also offer valuable tools for molecular genetics, plant breeding, and sustainable drug development.
-