Skip to content
2000
image of Progress and Application of Multifunctional Ultrasound Theranostic Agents

Abstract

Ultrasound is an indispensable technology in the biomedical field. With the continuous integration and development of ultrasound medical technology, its potential application value in disease diagnosis and treatment has become increasingly prominent. As the technical core, novel multifunctional ultrasound theranostic agents have been the main focus of research. Here, we summarized various types of multifunctional ultrasound agents, presented their latest applications in important areas, and discussed subsequent research priorities. We hope that with the combination of new technologies, multifunctional ultrasound agents can play a greater role in the diagnosis and treatment of diseases, further promoting the extensive and in-depth development of ultrasound medical technology.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010352224250304080131
2025-03-07
2025-06-23
Loading full text...

Full text loading...

References

  1. Aldrich J.E. Basic physics of ultrasound imaging. Crit. Care Med. 2007 35 5 Suppl. S131 S137 10.1097/01.CCM.0000260624.99430.22 17446771
    [Google Scholar]
  2. Lawrence J.P. Physics and instrumentation of ultrasound. Crit. Care Med. 2007 35 8 Suppl. S314 S322 10.1097/01.CCM.0000270241.33075.60 17667455
    [Google Scholar]
  3. Shriki J. Ultrasound Physics. Crit. Care Clin. 2014 30 1 1 24, v 10.1016/j.ccc.2013.08.004 24295839
    [Google Scholar]
  4. Chen T. Zhou H. Guo J. Chen Y. Intravascular ultrasound and ultrasonic flow ratio-guided zero-contrast rotational atherectomy for calcified coronary lesions. Eur. Heart J. 2023 44 2 166 10.1093/eurheartj/ehac478 36100554
    [Google Scholar]
  5. Villemain O. Baranger J. Friedberg M.K. Papadacci C. Dizeux A. Messas E. Tanter M. Pernot M. Mertens L. Ultrafast ultrasound imaging in pediatric and adult cardiology. JACC Cardiovasc. Imaging 2020 13 8 1771 1791 10.1016/j.jcmg.2019.09.019 31734211
    [Google Scholar]
  6. De Biasio M.J. Furman M. Clarke A. Hui W. Elia Y. Baranger J. Villemain O. Mertens L. Mahmud F.H. Abnormal vascular thickness and stiffness in young adults with type 1 diabetes: New insights from cutting-edge ultrasound modalities. Cardiovasc. Diabetol. 2024 23 1 178 10.1186/s12933‑024‑02280‑5 38789969
    [Google Scholar]
  7. Díaz-Gómez J.L. Mayo P.H. Koenig S.J. Point-of-care ultrasonography. N. Engl. J. Med. 2021 385 17 1593 1602 10.1056/NEJMra1916062 34670045
    [Google Scholar]
  8. Sigrist R.M.S. Liau J. Kaffas A.E. Chammas M.C. Willmann J.K. Ultrasound elastography: Review of techniques and clinical applications. Theranostics 2017 7 5 1303 1329 10.7150/thno.18650 28435467
    [Google Scholar]
  9. Ormachea J. Parker K.J. Elastography imaging: The 30 year perspective. Phys. Med. Biol. 2020 65 24 24TR06 10.1088/1361‑6560/abca00 33181486
    [Google Scholar]
  10. Hall M.M. Mautner K. Evolution of musculoskeletal and non-musculoskeletal sports ultrasound. Br. J. Sports Med. 2015 49 3 139 140 10.1136/bjsports‑2014‑094192 25738204
    [Google Scholar]
  11. Taljanovic M.S. Gimber L.H. Becker G.W. Latt L.D. Klauser A.S. Melville D.M. Gao L. Witte R.S. Shear-wave elastography: Basic physics and musculoskeletal applications. Radiographics 2017 37 3 855 870 10.1148/rg.2017160116 28493799
    [Google Scholar]
  12. Magni-Manzoni S. Muratore V. Vojinović J. Pires Marafon D. D’Agostino M.A. Naredo E. Procedures for the content, conduct and format of EULAR/PReS paediatric musculoskeletal ultrasound courses. RMD Open 2022 8 2 e002455 10.1136/rmdopen‑2022‑002455 35798512
    [Google Scholar]
  13. Frijlingh M. Juffermans L. de Leeuw R. de Bruyn C. Timmerman D. Van den Bosch T. Huirne J.A.F. How to use power Doppler ultrasound in transvaginal assessment of uterine fibroids. Ultrasound Obstet. Gynecol. 2022 60 2 277 283 10.1002/uog.24879 35195311
    [Google Scholar]
  14. Wilson S.R. Greenbaum L.D. Goldberg B.B. Contrast-enhanced ultrasound: What is the evidence and what are the obstacles? AJR Am. J. Roentgenol. 2009 193 1 55 60 10.2214/AJR.09.2553 19542395
    [Google Scholar]
  15. Kitano M. Sakamoto H. Kudo M. Contrast‐enhanced endoscopic ultrasound. Dig. Endosc. 2014 26 S1 Suppl. 1 79 85 10.1111/den.12179 24118242
    [Google Scholar]
  16. Pang E.H.T. Chan A. Ho S.G. Harris A.C. Contrast-enhanced ultrasound of the liver: Optimizing technique and clinical applications. AJR Am. J. Roentgenol. 2018 210 2 320 332 10.2214/AJR.17.17843 29220210
    [Google Scholar]
  17. Squires J.H. McCarville M.B. Contrast-enhanced ultrasound in children: Implementation and key diagnostic applications. AJR Am. J. Roentgenol. 2021 217 5 1217 1231 10.2214/AJR.21.25713 33908269
    [Google Scholar]
  18. Salib A. Halpern E. Eisenbrey J. Chandrasekar T. Chung P.H. Forsberg F. Trabulsi E.J. The evolving role of contrast-enhanced ultrasound in urology: A review. World J. Urol. 2022 41 3 673 678 10.1007/s00345‑022‑04088‑y 35969244
    [Google Scholar]
  19. Carson P.L. Ultrasound: Imaging, development, application. Med. Phys. 2023 50 S1 Suppl. 1 35 39 10.1002/mp.16293 36928605
    [Google Scholar]
  20. Golemati S. Cokkinos D.D. Recent advances in vascular ultrasound imaging technology and their clinical implications. Ultrasonics 2022 119 106599 10.1016/j.ultras.2021.106599 34624584
    [Google Scholar]
  21. Drukker L. Noble J.A. Papageorghiou A.T. Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology. Ultrasound Obstet. Gynecol. 2020 56 4 498 505 10.1002/uog.22122 32530098
    [Google Scholar]
  22. Zhang G. Liao C. Hu J.R. Hu H.M. Lei Y.M. Harput S. Ye H.R. Nanodroplet-based super-resolution ultrasound localization microscopy. ACS Sens. 2023 8 9 3294 3306 10.1021/acssensors.3c00418 37607403
    [Google Scholar]
  23. Akbar A. Pillalamarri N. Jonnakuti S. Ullah M. Artificial intelligence and guidance of medicine in the bubble. Cell Biosci. 2021 11 1 108 10.1186/s13578‑021‑00623‑3 34108005
    [Google Scholar]
  24. Rix A. Lederle W. Theek B. Lammers T. Moonen C. Schmitz G. Kiessling F. Advanced ultrasound technologies for diagnosis and therapy. J. Nucl. Med. 2018 59 5 740 746 10.2967/jnumed.117.200030 29496981
    [Google Scholar]
  25. Zhang G. Ye H.R. Sun Y. Guo Z.Z. Ultrasound molecular imaging and its applications in cancer diagnosis and therapy. ACS Sens. 2022 7 10 2857 2864 10.1021/acssensors.2c01468 36190830
    [Google Scholar]
  26. Quaia E. Microbubble ultrasound contrast agents: An update. Eur. Radiol. 2007 17 8 1995 2008 10.1007/s00330‑007‑0623‑0 17351779
    [Google Scholar]
  27. Unnikrishnan S. Klibanov A.L. Microbubbles as ultrasound contrast agents for molecular imaging: Preparation and application. AJR Am. J. Roentgenol. 2012 199 2 292 299 10.2214/AJR.12.8826 22826389
    [Google Scholar]
  28. Klibanov A.L. Ultrasound contrast. Invest. Radiol. 2021 56 1 50 61 10.1097/RLI.0000000000000733 33181574
    [Google Scholar]
  29. Stride E. Segers T. Lajoinie G. Cherkaoui S. Bettinger T. Versluis M. Borden M. Microbubble agents: New directions. Ultrasound Med. Biol. 2020 46 6 1326 1343 10.1016/j.ultrasmedbio.2020.01.027 32169397
    [Google Scholar]
  30. Schutt E.G. Klein D.H. Mattrey R.M. Riess J.G. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: The key role of perfluorochemicals. Angew. Chem. Int. Ed. 2003 42 28 3218 3235 10.1002/anie.200200550 12876730
    [Google Scholar]
  31. Kwan J.J. Borden M.A. Lipid monolayer collapse and microbubble stability. Adv. Colloid Interface Sci. 2012 183-184 82 99 10.1016/j.cis.2012.08.005 22959721
    [Google Scholar]
  32. Borden M.A. Intermolecular forces model for lipid microbubble shells. Langmuir 2019 35 31 10042 10051 10.1021/acs.langmuir.8b03641 30543753
    [Google Scholar]
  33. Omata D. Unga J. Suzuki R. Maruyama K. Lipid-based microbubbles and ultrasound for therapeutic application. Adv. Drug Deliv. Rev. 2020 154-155 236 244 10.1016/j.addr.2020.07.005 32659255
    [Google Scholar]
  34. Yin J. Dong F. An J. Guo T. Cheng H. Zhang J. Zhang J. Pattern recognition of microcirculation with super-resolution ultrasound imaging provides markers for early tumor response to anti-angiogenic therapy. Theranostics 2024 14 3 1312 1324 10.7150/thno.89306 38323316
    [Google Scholar]
  35. Shin Y. Lowerison M.R. Wang Y. Chen X. You Q. Dong Z. Anastasio M.A. Song P. Context-aware deep learning enables high-efficacy localization of high concentration microbubbles for super-resolution ultrasound localization microscopy. Nat. Commun. 2024 15 1 2932 10.1038/s41467‑024‑47154‑2 38575577
    [Google Scholar]
  36. Riemer K. Tan Q. Morse S. Bau L. Toulemonde M. Yan J. Zhu J. Wang B. Taylor L. Lerendegui M. Wu Q. Stride E. Dunsby C. Weinberg P.D. Tang M.X. 3D acoustic wave sparsely activated localization microscopy with phase change contrast agents. Invest. Radiol. 2024 59 5 379 390 10.1097/RLI.0000000000001033 37843819
    [Google Scholar]
  37. Blomley M.J.K. Cooke J.C. Unger E.C. Monaghan M.J. Cosgrove D.O. Science, medicine, and the future: Microbubble contrast agents: A new era in ultrasound. BMJ 2001 322 7296 1222 1225 10.1136/bmj.322.7296.1222 11358777
    [Google Scholar]
  38. Fournier L. de La Taille T. Chauvierre C. Microbubbles for human diagnosis and therapy. Biomaterials 2023 294 122025 10.1016/j.biomaterials.2023.122025 36716588
    [Google Scholar]
  39. Chowdhury S.M. Abou-Elkacem L. Lee T. Dahl J. Lutz A.M. Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook. J. Control. Release 2020 326 75 90 10.1016/j.jconrel.2020.06.008 32554041
    [Google Scholar]
  40. Jang Y. Park J. Kim P. Park E.J. Sun H. Baek Y. Jung J. Song T. Doh J. Kim H. Development of exosome membrane materials-fused microbubbles for enhanced stability and efficient drug delivery of ultrasound contrast agent. Acta Pharm. Sin. B 2023 13 12 4983 4998 10.1016/j.apsb.2023.08.022 38045059
    [Google Scholar]
  41. Bouakaz A. Michel Escoffre J. From concept to early clinical trials: 30 years of microbubble-based ultrasound-mediated drug delivery research. Adv. Drug Deliv. Rev. 2024 206 115199 10.1016/j.addr.2024.115199 38325561
    [Google Scholar]
  42. Deng Q. Mi J. Dong J. Chen Y. Chen L. He J. Zhou J. Superiorly stable three-layer air microbubbles generated by versatile ethanol–water exchange for contrast-enhanced ultrasound theranostics. ACS Nano 2023 17 1 263 274 10.1021/acsnano.2c07300 36354372
    [Google Scholar]
  43. Wang J. Wang Y. Zhong L. Yan F. Zheng H. Nanoscale contrast agents: A promising tool for ultrasound imaging and therapy. Adv. Drug Deliv. Rev. 2024 207 115200 10.1016/j.addr.2024.115200 38364906
    [Google Scholar]
  44. Hou X. Jing J. Jiang Y. Huang X. Xian Q. Lei T. Zhu J. Wong K.F. Zhao X. Su M. Li D. Liu L. Qiu Z. Sun L. Nanobubble-actuated ultrasound neuromodulation for selectively shaping behavior in mice. Nat. Commun. 2024 15 1 2253 10.1038/s41467‑024‑46461‑y 38480733
    [Google Scholar]
  45. Shakya G. Cattaneo M. Guerriero G. Prasanna A. Fiorini S. Supponen O. Ultrasound-responsive microbubbles and nanodroplets: A pathway to targeted drug delivery. Adv. Drug Deliv. Rev. 2024 206 115178 10.1016/j.addr.2023.115178 38199257
    [Google Scholar]
  46. Cooley M.B. Abenojar E.C. Wegierak D. Sen Gupta A. Kolios M.C. Exner A.A. Characterization of the interaction of nanobubble ultrasound contrast agents with human blood components. Bioact. Mater. 2023 19 642 652 10.1016/j.bioactmat.2022.05.001 35600972
    [Google Scholar]
  47. An J. Zhang J. Dong F. Yin J. Feng F. Guo W. Huang S. Wang D. Dang J. Zhang J. Cheng H. Arterial labeling ultrasound subtraction angiography (ALUSA) based on acoustic phase‐change nanodroplets. Small 2022 18 12 2105989 10.1002/smll.202105989 35088522
    [Google Scholar]
  48. Cheng C.A. Chen W. Zhang L. Wu H.H. Zink J.I. A responsive mesoporous silica nanoparticle platform for magnetic resonance imaging-guided high-intensity focused ultrasound-stimulated cargo delivery with controllable location, time, and dose. J. Am. Chem. Soc. 2019 141 44 17670 17684 10.1021/jacs.9b07591 31604010
    [Google Scholar]
  49. Lin F.C. Xie Y. Deng T. Zink J.I. Magnetism, ultrasound, and light-stimulated mesoporous silica nanocarriers for theranostics and beyond. J. Am. Chem. Soc. 2021 143 16 6025 6036 10.1021/jacs.0c10098 33857372
    [Google Scholar]
  50. Walker J.A.T. Wang X. Peter K. Kempe K. Corrie S.R. Dynamic solid-state ultrasound contrast agent for monitoring pH fluctuations in vivo. ACS Sens. 2020 5 4 1190 1197 10.1021/acssensors.0c00245 32202414
    [Google Scholar]
  51. Shang L. Yu Y. Jiang Y. Liu X. Sui N. Yang D. Zhu Z. Ultrasound-augmented multienzyme-like nanozyme hydrogel spray for promoting diabetic wound healing. ACS Nano 2023 17 16 15962 15977 10.1021/acsnano.3c04134 37535449
    [Google Scholar]
  52. Sun I.C. Dumani D.S. Emelianov S.Y. Applications of the photocatalytic and photoacoustic properties of gold nanorods in contrast-enhanced ultrasound and photoacoustic imaging. ACS Nano 2024 18 4 3575 3582 10.1021/acsnano.3c11223 38235729
    [Google Scholar]
  53. Ding M. Zhang Y. Yu N. Zhou J. Zhu L. Wang X. Li J. Augmenting immunogenic cell death and alleviating myeloid‐derived suppressor cells by sono‐activatable semiconducting polymer nanopartners for immunotherapy. Adv. Mater. 2023 35 33 2302508 10.1002/adma.202302508 37165741
    [Google Scholar]
  54. Wang F. Dong G. Ding M. Yu N. Sheng C. Li J. Dual‐programmable semiconducting polymer nanoprotacs for deep‐tissue sonodynamic‐ferroptosis activatable immunotherapy. Small 2024 20 8 2306378 10.1002/smll.202306378 37817359
    [Google Scholar]
  55. Zhou L.Q. Li P. Cui X.W. Dietrich C.F. Ultrasound nanotheranostics in fighting cancer: Advances and prospects. Cancer Lett. 2020 470 204 219 10.1016/j.canlet.2019.11.034 31790760
    [Google Scholar]
  56. Moradi Kashkooli F. Jakhmola A. Hornsby T.K. Tavakkoli J.J. Kolios M.C. Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. J. Control. Release 2023 355 552 578 10.1016/j.jconrel.2023.02.009 36773959
    [Google Scholar]
  57. Yang X. Zhao M. Wu Z. Chen C. Zhang Y. Wang L. Guo Q. Wang Q. Liang S. Hu S. Duan Y. Sun Y. Nano-ultrasonic contrast agent for chemoimmunotherapy of breast cancer by immune metabolism reprogramming and tumor autophagy. ACS Nano 2022 16 2 3417 3431 10.1021/acsnano.2c00462 35156370
    [Google Scholar]
  58. Qiu Y. Wu Z. Chen Y. Liao J. Zhang Q. Wang Q. Duan Y. Gong K. Chen S. Wang L. Fan P. Duan Y. Wang W. Dong Y. Nano ultrasound contrast agent for synergistic chemo‐photothermal therapy and enhanced immunotherapy against liver cancer and metastasis. Adv. Sci. 2023 10 21 2300878 10.1002/advs.202300878 37162268
    [Google Scholar]
  59. Qin Y. Geng X. Sun Y. Zhao Y. Chai W. Wang X. Wang P. Ultrasound nanotheranostics: Toward precision medicine. J. Control. Release 2023 353 105 124 10.1016/j.jconrel.2022.11.021 36400289
    [Google Scholar]
  60. Zhong J. Su M. Jiang Y. Huang L. Chen Y. Huang Z. Zhang X. VEGFR2 targeted microbubble-based ultrasound molecular imaging improving the diagnostic sensitivity of microinvasive cervical cancer. J. Nanobiotechnology 2023 21 1 220 10.1186/s12951‑023‑01984‑2 37438780
    [Google Scholar]
  61. Johanssen V.A. Ruan J.L. Vince O. Thomas A. Peeters S. Soto M.S. Buck J. Gray M. Stride E. Sibson N.R. Targeted opening of the blood-brain barrier using VCAM-1 functionalised microbubbles and “whole brain” ultrasound. Theranostics 2024 14 10 4076 4089 10.7150/thno.93172 38994029
    [Google Scholar]
  62. Sun M. Yue T. Wang C. Fan Z. Gazit E. Du J. Ultrasound-responsive peptide nanogels to balance conflicting requirements for deep tumor penetration and prolonged blood circulation. ACS Nano 2022 16 6 9183 9194 10.1021/acsnano.2c01407 35475348
    [Google Scholar]
  63. Wang H. Vilches-Moure J.G. Cherkaoui S. Tardy I. Alleaume C. Bettinger T. Lutz A. Paulmurugan R. Chronic model of inflammatory bowel disease in IL-10 -/- transgenic mice: Evaluation with ultrasound molecular imaging. Theranostics 2019 9 21 6031 6046 10.7150/thno.37397 31534535
    [Google Scholar]
  64. Wang Y. Jian C. Long Y. Xu X. Song Y. Yin Z. H2O2-triggered “off/on signal” nanoparticles target P-selectin for the non-invasive and contrast-enhanced theranostics for arterial thrombosis. Acta Biomater. 2023 158 769 781 10.1016/j.actbio.2022.12.026 36565786
    [Google Scholar]
  65. Kim S. Jo H. Lee S. Yang M. Jun H. Lee Y. Kim G.W. Lee D. Targeted echogenic and anti-inflammatory polymeric prodrug nanoparticles for the management of renal ischemia/reperfusion injury. J. Control. Release 2023 363 574 584 10.1016/j.jconrel.2023.10.004 37797890
    [Google Scholar]
  66. Pathak V. Nolte T. Rama E. Rix A. Dadfar S.M. Paefgen V. Banala S. Buhl E.M. Weiler M. Schulz V. Lammers T. Kiessling F. Molecular magnetic resonance imaging of Alpha-v-Beta-3 integrin expression in tumors with ultrasound microbubbles. Biomaterials 2021 275 120896 10.1016/j.biomaterials.2021.120896 34090049
    [Google Scholar]
  67. Li Z. Lai M. Zhao S. Zhou Y. Luo J. Hao Y. Xie L. Wang Y. Yan F. Ultrasound molecular imaging for multiple biomarkers by serial collapse of targeting microbubbles with distinct acoustic pressures. Small 2022 18 22 2108040 10.1002/smll.202108040 35499188
    [Google Scholar]
  68. Li M. Wang L. Tang D. Zhao G. Ni Z. Gu N. Yang F. Hemodynamic mimic shear stress for platelet membrane nanobubbles preparation and integrin α IIb β 3 conformation regulation. Nano Lett. 2022 22 1 271 279 10.1021/acs.nanolett.1c03731 34894698
    [Google Scholar]
  69. Pochon S. Tardy I. Bussat P. Bettinger T. Brochot J. von Wronski M. Passantino L. Schneider M. BR55: A lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest. Radiol. 2010 45 2 89 95 10.1097/RLI.0b013e3181c5927c 20027118
    [Google Scholar]
  70. Whitman G.J. Hortobagyi G.N. Ultrasound molecular imaging: A good start. J. Clin. Oncol. 2017 35 19 2101 2102 10.1200/JCO.2016.71.9997 28498783
    [Google Scholar]
  71. Willmann J.K. Bonomo L. Testa A.C. Rinaldi P. Rindi G. Valluru K.S. Petrone G. Martini M. Lutz A.M. Gambhir S.S. Ultrasound molecular imaging with BR55 in patients with breast and ovarian lesions: First-in-human results. J. Clin. Oncol. 2017 35 19 2133 2140 10.1200/JCO.2016.70.8594 28291391
    [Google Scholar]
  72. Smeenge M. Tranquart F. Mannaerts C.K. de Reijke T.M. van de Vijver M.J. Laguna M.P. Pochon S. de la Rosette J.J.M.C.H. Wijkstra H. First-in-human ultrasound molecular imaging with a VEGFR2-specific ultrasound molecular contrast agent (BR55) in prostate cancer. Invest. Radiol. 2017 52 7 419 427 10.1097/RLI.0000000000000362 28257340
    [Google Scholar]
  73. Helbert A. Von Wronski M. Colevret D. Botteron C. Padilla F. Bettinger T. Tardy I. Hyvelin J.M. Ultrasound molecular imaging with BR55, a predictive tool of antiangiogenic treatment efficacy in a chemo-induced mammary tumor model. Invest. Radiol. 2020 55 10 657 665 10.1097/RLI.0000000000000661 32229739
    [Google Scholar]
  74. Li C. Yang X.Q. An J. Cheng K. Hou X.L. Zhang X.S. Hu Y.G. Liu B. Zhao Y.D. Red blood cell membrane-enveloped O 2 self-supplementing biomimetic nanoparticles for tumor imaging-guided enhanced sonodynamic therapy. Theranostics 2020 10 2 867 879 10.7150/thno.37930 31903156
    [Google Scholar]
  75. Jugniot N. Massoud T.F. Dahl J.J. Paulmurugan R. Biomimetic nanobubbles for triple-negative breast cancer targeted ultrasound molecular imaging. J. Nanobiotechnology 2022 20 1 267 10.1186/s12951‑022‑01484‑9 35689262
    [Google Scholar]
  76. Huang J. Hong X. Chen S. He Y. Xie L. Gao F. Zhu C. Jin X. Yan H. Ye Y. Shao M. Du X. Feng G. Biomimetic metal–organic framework gated nanoplatform for sonodynamic therapy against extensively drug resistant bacterial lung infection. Adv. Sci. 2024 11 33 2402473 10.1002/advs.202402473 38962911
    [Google Scholar]
  77. Shan T. Wang W. Fan M. Bi J. He T. Sun Y. Zheng M. Yan D. Effective glioblastoma immune sonodynamic treatment mediated by macrophage cell membrane cloaked biomimetic nanomedicines. J. Control. Release 2024 370 866 878 10.1016/j.jconrel.2024.04.043 38685386
    [Google Scholar]
  78. Zhou A. Fang T. Chen K. Xu Y. Chen Z. Ning X. Biomimetic activator of sonodynamic ferroptosis amplifies inherent peroxidation for improving the treatment of breast cancer. Small 2022 18 12 2106568 10.1002/smll.202106568 35092152
    [Google Scholar]
  79. Yang M.Y. Tu Y.F. Feng K.K. Yin M.D. Fang Y.F. Le J.Q. Luo B.Y. Tan X.R. Shao J.W. A erythrocyte-platelet hybrid membrane coated biomimetic nanosystem based on ginsenosides and PFH combined with ultrasound for targeted delivery in thrombus therapy. Colloids Surf. B Biointerfaces 2023 229 113468 10.1016/j.colsurfb.2023.113468 37515961
    [Google Scholar]
  80. Zhang Y. Wang Y. Zhu A. Yu N. Xia J. Li J. Dual‐targeting biomimetic semiconducting polymer nanocomposites for amplified theranostics of bone metastasis. Angew. Chem. Int. Ed. 2024 63 2 e202310252 10.1002/anie.202310252 38010197
    [Google Scholar]
  81. Liu Z. Lammers T. Ehling J. Fokong S. Bornemann J. Kiessling F. Gätjens J. Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging. Biomaterials 2011 32 26 6155 6163 10.1016/j.biomaterials.2011.05.019 21632103
    [Google Scholar]
  82. Jin Z. Chang J. Dou P. Jin S. Jiao M. Tang H. Jiang W. Ren W. Zheng S. Tumor targeted multifunctional magnetic nanobubbles for MR/US dual imaging and focused ultrasound triggered drug delivery. Front. Bioeng. Biotechnol. 2020 8 586874 10.3389/fbioe.2020.586874 33365305
    [Google Scholar]
  83. Liu R. Tang J. Xu Y. Dai Z. Bioluminescence imaging of inflammation in vivo based on bioluminescence and fluorescence resonance energy transfer using nanobubble ultrasound contrast agent. ACS Nano 2019 13 5 5124 5132 10.1021/acsnano.8b08359 31059237
    [Google Scholar]
  84. Wang Y. Zhang J. Lv X. Wang L. Zhong Z. Yang D.P. Si W. Zhang T. Dong X. Mitoxantrone as photothermal agents for ultrasound/fluorescence imaging-guided chemo-phototherapy enhanced by intratumoral H2O2-Induced CO. Biomaterials 2020 252 120111 10.1016/j.biomaterials.2020.120111 32422493
    [Google Scholar]
  85. Shin U. Kim J. Lee J. Park D. Lee C. Jung H.C. Park J. Lee K. Lee M.W. Kim S.W. Seo J. Development of 64Cu-loaded perfluoropentane nanodroplet: A potential tumor theragnostic nano-carrier and dual-modality PET-ultrasound imaging agents. Ultrasound Med. Biol. 2020 46 10 2775 2784 10.1016/j.ultrasmedbio.2020.05.019 32653208
    [Google Scholar]
  86. Schneider M.K. Wang J. Kare A. Adkar S.S. Salmi D. Bell C.F. Alsaigh T. Wagh D. Coller J. Mayer A. Snyder S.J. Borowsky A.D. Long S.R. Lansberg M.G. Steinberg G.K. Heit J.J. Leeper N.J. Ferrara K.W. Combined near infrared photoacoustic imaging and ultrasound detects vulnerable atherosclerotic plaque. Biomaterials 2023 302 122314 10.1016/j.biomaterials.2023.122314 37776766
    [Google Scholar]
  87. Dhamija P. Mehata A.K. Setia A. Priya V. Malik A.K. Bonlawar J. Verma N. Badgujar P. Randhave N. Muthu M.S. Nanotheranostics: Molecular diagnostics and nanotherapeutic evaluation by photoacoustic/ultrasound imaging in small animals. Mol. Pharm. 2023 20 12 6010 6034 10.1021/acs.molpharmaceut.3c00708 37931040
    [Google Scholar]
  88. Zhao S. Hartanto J. Joseph R. Wu C.H. Zhao Y. Chen Y.S. Hybrid photoacoustic and fast super-resolution ultrasound imaging. Nat. Commun. 2023 14 1 2191 10.1038/s41467‑023‑37680‑w 37072402
    [Google Scholar]
  89. Yu Y. Feng T. Qiu H. Gu Y. Chen Q. Zuo C. Ma H. Simultaneous photoacoustic and ultrasound imaging: A review. Ultrasonics 2024 139 107277 10.1016/j.ultras.2024.107277 38460216
    [Google Scholar]
  90. Sirsi S.R. Borden M.A. State-of-the-art materials for ultrasound-triggered drug delivery. Adv. Drug Deliv. Rev. 2014 72 3 14 10.1016/j.addr.2013.12.010 24389162
    [Google Scholar]
  91. Zhang L. Lin Z. Zeng L. Zhang F. Sun L. Sun S. Wang P. Xu M. Zhang J. Liang X. Ge H. Ultrasound-induced biophysical effects in controlled drug delivery. Sci. China Life Sci. 2022 65 5 896 908 10.1007/s11427‑021‑1971‑x 34453275
    [Google Scholar]
  92. Deprez J. Lajoinie G. Engelen Y. De Smedt S.C. Lentacker I. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery. Adv. Drug Deliv. Rev. 2021 172 9 36 10.1016/j.addr.2021.02.015 33705877
    [Google Scholar]
  93. Xie L. Wang J. Song L. Jiang T. Yan F. Cell-cycle dependent nuclear gene delivery enhances the effects of E-cadherin against tumor invasion and metastasis. Signal Transduct. Target. Ther. 2023 8 1 182 10.1038/s41392‑023‑01398‑4 37150786
    [Google Scholar]
  94. Wang J. Li Z. Pan M. Fiaz M. Hao Y. Yan Y. Sun L. Yan F. Ultrasound-mediated blood–brain barrier opening: An effective drug delivery system for theranostics of brain diseases. Adv. Drug Deliv. Rev. 2022 190 114539 10.1016/j.addr.2022.114539 36116720
    [Google Scholar]
  95. Schoen S. Jr Kilinc M.S. Lee H. Guo Y. Degertekin F.L. Woodworth G.F. Arvanitis C. Towards controlled drug delivery in brain tumors with microbubble-enhanced focused ultrasound. Adv. Drug Deliv. Rev. 2022 180 114043 10.1016/j.addr.2021.114043 34801617
    [Google Scholar]
  96. Perolina E. Meissner S. Raos B. Harland B. Thakur S. Svirskis D. Translating ultrasound-mediated drug delivery technologies for CNS applications. Adv. Drug Deliv. Rev. 2024 208 115274 10.1016/j.addr.2024.115274 38452815
    [Google Scholar]
  97. Zhu P. Simon I. Kokalari I. Kohane D.S. Rwei A.Y. Miniaturized therapeutic systems for ultrasound-modulated drug delivery to the central and peripheral nervous system. Adv. Drug Deliv. Rev. 2024 208 115275 10.1016/j.addr.2024.115275 38442747
    [Google Scholar]
  98. Qu F. Wang P. Zhang K. Shi Y. Li Y. Li C. Lu J. Liu Q. Wang X. Manipulation of Mitophagy by “All-in-One” nanosensitizer augments sonodynamic glioma therapy. Autophagy 2020 16 8 1413 1435 10.1080/15548627.2019.1687210 31674265
    [Google Scholar]
  99. Lin C.Y. Lin Y.C. Huang C.Y. Wu S.R. Chen C.M. Liu H.L. Ultrasound-responsive neurotrophic factor-loaded microbubble- liposome complex: Preclinical investigation for Parkinson’s disease treatment. J. Control. Release 2020 321 519 528 10.1016/j.jconrel.2020.02.044 32112852
    [Google Scholar]
  100. Kim T. Kim H.J. Choi W. Lee Y.M. Pyo J.H. Lee J. Kim J. Kim J. Kim J.H. Kim C. Kim W.J. Deep brain stimulation by blood–brain-barrier-crossing piezoelectric nanoparticles generating current and nitric oxide under focused ultrasound. Nat. Biomed. Eng. 2022 7 2 149 163 10.1038/s41551‑022‑00965‑4 36456857
    [Google Scholar]
  101. Toccaceli G. Barbagallo G. Peschillo S. Low-intensity focused ultrasound for the treatment of brain diseases: Safety and feasibility. Theranostics 2019 9 2 537 539 10.7150/thno.31765 30809291
    [Google Scholar]
  102. Rezai A.R. Ranjan M. D’Haese P.F. Haut M.W. Carpenter J. Najib U. Mehta R.I. Chazen J.L. Zibly Z. Yates J.R. Hodder S.L. Kaplitt M. Noninvasive hippocampal blood−brain barrier opening in Alzheimer’s disease with focused ultrasound. Proc. Natl. Acad. Sci. USA 2020 117 17 9180 9182 10.1073/pnas.2002571117 32284421
    [Google Scholar]
  103. Gorick C.M. Breza V.R. Nowak K.M. Cheng V.W.T. Fisher D.G. Debski A.C. Hoch M.R. Demir Z.E.F. Tran N.M. Schwartz M.R. Sheybani N.D. Price R.J. Applications of focused ultrasound-mediated blood-brain barrier opening. Adv. Drug Deliv. Rev. 2022 191 114583 10.1016/j.addr.2022.114583 36272635
    [Google Scholar]
  104. Martinez P.J. Green A.L. Borden M.A. Targeting diffuse midline gliomas: The promise of focused ultrasound-mediated blood-brain barrier opening. J. Control. Release 2024 365 412 421 10.1016/j.jconrel.2023.11.037 38000663
    [Google Scholar]
  105. Zhao P. Wu T. Tian Y. You J. Cui X. Recent advances of focused ultrasound induced blood-brain barrier opening for clinical applications of neurodegenerative diseases. Adv. Drug Deliv. Rev. 2024 209 115323 10.1016/j.addr.2024.115323 38653402
    [Google Scholar]
  106. Li B. Lin Y. Chen G. Cai M. Zhong H. Xiao Z. Lin M. Li T. Cai Y. Shuai X. Ren J. Anchoring microbubbles on cerebrovascular endothelium as a new strategy enabling low‐energy ultrasound‐assisted delivery of varisized agents across blood‐brain barrier. Adv. Sci. 2023 10 33 2302134 10.1002/advs.202302134 37870165
    [Google Scholar]
  107. Ashar H. Ranjan A. Immunomodulation and targeted drug delivery with high intensity focused ultrasound (HIFU): Principles and mechanisms. Pharmacol. Ther. 2023 244 108393 10.1016/j.pharmthera.2023.108393 36965581
    [Google Scholar]
  108. Tang R. He H. Lin X. Wu N. Wan L. Chen Q. Hu Y. Cheng C. Cao Y. Guo X. Zhou Y. Xiong X. Zheng M. Wang Q. Li F. Zhou Y. Li P. Novel combination strategy of high intensity focused ultrasound (HIFU) and checkpoint blockade boosted by bioinspired and oxygen-supplied nanoprobe for multimodal imaging-guided cancer therapy. J. Immunother. Cancer 2023 11 1 e006226 10.1136/jitc‑2022‑006226 36650023
    [Google Scholar]
  109. Meng Z. Zhang Y. Shen E. Li W. Wang Y. Sathiyamoorthy K. Gao W. C Kolios M. Bai W. Hu B. Wang W. Zheng Y. Marriage of virus-mimic surface topology and microbubble-assisted ultrasound for enhanced intratumor accumulation and improved cancer theranostics. Adv. Sci. 2021 8 13 2004670 10.1002/advs.202004670 34258156
    [Google Scholar]
  110. Shin Low S. Nong Lim C. Yew M. Siong Chai W. Low L.E. Manickam S. Ti Tey B. Show P.L. Recent ultrasound advancements for the manipulation of nanobiomaterials and nanoformulations for drug delivery. Ultrason. Sonochem. 2021 80 105805 10.1016/j.ultsonch.2021.105805 34706321
    [Google Scholar]
  111. Eck M. Aronovich R. Ilovitsh T. Efficacy optimization of low frequency microbubble-mediated sonoporation as a drug delivery platform to cancer cells. Int. J. Pharm. X 2022 4 100132 10.1016/j.ijpx.2022.100132 36189459
    [Google Scholar]
  112. Pan M. Hu D. Yuan L. Yu Y. Li Y. Qian Z. Newly developed gas-assisted sonodynamic therapy in cancer treatment. Acta Pharm. Sin. B 2023 13 7 2926 2954 10.1016/j.apsb.2022.12.021 37521874
    [Google Scholar]
  113. Zhang Y. Zhang X. Yang H. Yu L. Xu Y. Sharma A. Yin P. Li X. Kim J.S. Sun Y. Advanced biotechnology-assisted precise sonodynamic therapy. Chem. Soc. Rev. 2021 50 20 11227 11248 10.1039/D1CS00403D 34661214
    [Google Scholar]
  114. Son S. Kim J.H. Wang X. Zhang C. Yoon S.A. Shin J. Sharma A. Lee M.H. Cheng L. Wu J. Kim J.S. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. 2020 49 11 3244 3261 10.1039/C9CS00648F 32337527
    [Google Scholar]
  115. Liang S. Deng X. Ma P. Cheng Z. Lin J. Recent advances in nanomaterial‐assisted combinational sonodynamic cancer therapy. Adv. Mater. 2020 32 47 2003214 10.1002/adma.202003214 33064322
    [Google Scholar]
  116. Canaparo R. Foglietta F. Barbero N. Serpe L. The promising interplay between sonodynamic therapy and nanomedicine. Adv. Drug Deliv. Rev. 2022 189 114495 10.1016/j.addr.2022.114495 35985374
    [Google Scholar]
  117. Xu M. Zhou L. Zheng L. Zhou Q. Liu K. Mao Y. Song S. Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer Lett. 2021 497 229 242 10.1016/j.canlet.2020.10.037 33122099
    [Google Scholar]
  118. Hu H. Zhao J. Ma K. Wang J. Wang X. Mao T. Xiang C. Luo H. Cheng Y. Yu M. Qin Y. Yang K. Li Q. Sun Y. Wang S. Sonodynamic therapy combined with phototherapy: Novel synergistic strategy with superior efficacy for antitumor and antiinfection therapy. J. Control. Release 2023 359 188 205 10.1016/j.jconrel.2023.05.041 37286136
    [Google Scholar]
  119. Song X. Zhang Q. Chang M. Ding L. Huang H. Feng W. Xu T. Chen Y. Nanomedicine‐enabled sonomechanical, sonopiezoelectric, sonodynamic, and sonothermal therapy. Adv. Mater. 2023 35 31 2212259 10.1002/adma.202212259 36812400
    [Google Scholar]
  120. Li X. Khorsandi S. Wang Y. Santelli J. Huntoon K. Nguyen N. Yang M. Lee D. Lu Y. Gao R. Kim B.Y.S. de Gracia Lux C. Mattrey R.F. Jiang W. Lux J. Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles. Nat. Nanotechnol. 2022 17 8 891 899 10.1038/s41565‑022‑01134‑z 35637356
    [Google Scholar]
  121. Konofagou E.E. Microbubble ultrasound maps hidden signs of heart disease. Nature 2024 629 8012 541 542 10.1038/d41586‑024‑01194‑2 38741013
    [Google Scholar]
  122. Zheng H. Niu L. Qiu W. Liang D. Long X. Li G. Liu Z. Meng L. The emergence of functional ultrasound for noninvasive brain-computer interface. Research 2023 6 0200 10.34133/research.0200
    [Google Scholar]
  123. Athanassiadis A.G. Ma Z. Moreno-Gomez N. Melde K. Choi E. Goyal R. Fischer P. Ultrasound-responsive systems as components for smart materials. Chem. Rev. 2022 122 5 5165 5208 10.1021/acs.chemrev.1c00622 34767350
    [Google Scholar]
  124. Wang Z. Wang X. Chang M. Guo J. Chen Y. Ultrasound nanomedicine and materdicine. J. Mater. Chem. B Mater. Biol. Med. 2023 11 24 5350 5377 10.1039/D2TB02640F 36946288
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010352224250304080131
Loading
/content/journals/cpb/10.2174/0113892010352224250304080131
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: microbubbles ; nanoparticles ; Ultrasound ; drug delivery ; tumor targeting ; theranostics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test