Skip to content
2000
image of Phytochemical Composition of Urtica dioica Essential Oil with Antioxidant and Anti-inflammatory Properties: In Vitro and In Vivo Studies

Abstract

Background

(Urticaceae) has outstanding medicinal and pharmacological properties. This investigation was aimed to assess the chemical composition, the total polyphenol and flavonoid content, antioxidant, anti-proliferative, and anti-inflammatory effects of essential oil (UDEO).

Methods

GC/MS analysis was performed to assess the chemical composition, standard antioxidative test, the DPPH assay, the reducing power assay, as well as the anti-proliferative capacities of UDEO against HeLa cell lines using the MTT test. In addition, the anti-inflammatory activities of UDEO were evaluated using paw thickness measurements in rats with carrageenan-induced paw edema and pathologic evaluation of inflammation in paw sections.

Results

GC/MS analysis revealed benzene dicarboxylic acid (14.69%), β-linalool (9.79%), phytol (9.52%), menthol (6.65%), borneol (6.45%), 3-Eicosene (E) (6.10%), 1-8 cineole (5.60%) and camphor (5.36%) as the major components of UDEO.

results showed that UDEO contained 191 ± 2.04 mg GAE/g of polyphenols and 83.59 ± 4.7 mg CE/g of flavonoids. In addition, the UDEO showed a radical scavenging activity with IC = 0.14 ± 0.003 mg/mL and a ferric reducing antioxidant power (FRAP) (optical density = 0.556). A side from the UDEO's antioxidant properties, our findings revealed a reduction in ROS generation in the HeLa cell line. Furthermore, the anti-proliferative activity of UDEO is accompanied by a cytotoxicity effect (IC at 3.20 µg ml-1).

Data from inflammation models revealed that UDEO has an anti-inflammatory effect. The pretreatment with UDEO or Indomethacin (Ind) reduced significantly the volume of edema induced by Carr, the level of C-reactive protein (CRP), the reactive thiobarbituric acid (TBARS), the conjugated dienes (CD), the carbonyl proteins (CP) and the advanced protein oxidation products (AOPP). Furthermore, it restored the hematology parameters such as white blood cells (WBC), lymphocytes (LYM), and platelets (PLT). In addition, it increased the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). In UDEO-treated rats, the histopathological examinations of the paws revealed little infiltration of inflammatory cells.

Conclusion

The decrease in paw edema and human cell lines HeLa cytotoxicity showed that UDEO possesses anti-inflammatory and antioxidant properties, which could be attributed to the high amount of phenolic and flavonoid contents.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/1389201023666220829104541
2024-10-24
2024-12-28
Loading full text...

Full text loading...

References

  1. Xiong L. McCoy M. Komuro H. West X.Z. Yakubenko V. Gao D. Dudiki T. Milo A. Chen J. Podrez E.A. Trapp B. Byzova T.V. Inflammation dependent oxidative stress metabolites as a hallmark of amyotrophic lateral sclero-sis. Free Radic. Biol. Med. 2022 178 125 133 10.1016/j.freeradbiomed.2021.11.031 34871763
    [Google Scholar]
  2. Lu R.M. Hwang Y.C. Liu I.J. Lee C.C. Tsai H.Z. Li H.J. Wu H.C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 2020 27 1 1 30 10.1186/s12929‑019‑0592‑z 31894001
    [Google Scholar]
  3. Perrone M.R. Artesani M.C. Viola M. Gaeta F. Caringi M. Quaratino D. Romano A. Tolerability of rofecoxib in patients with adverse reactions to nonsteroidal anti-inflammatory drugs: A study of 216 patients and literature re-view. Int. Arch. Allergy Immunol. 2003 132 1 82 86 10.1159/000073268 14555862
    [Google Scholar]
  4. Li T.T. Yang J. Huo Y.Y. Zeng Z.Y. Huang H.Y. Xu F.R. Dong X. Control of pathogenic fungi on Panax noto-ginseng by volatile oils from the food ingredients Allium sa-tivum and Foeniculum vulgare. Lett. Appl. Microbiol. 2022 75 1 89 102 10.1111/lam.13706 35334116
    [Google Scholar]
  5. Basholli S.M. Schuster R. Hajdari A. Mulla D. Viern-stein H. Mustafa B. Mueller M. Phytochemical composi-tion, anti inflammatory activity and cytotoxic effects of essen-tial oils from three Pinus spp. Pharm. Biol. 2017 55 1 1553 1560 10.1080/13880209.2017.1309555 28385055
    [Google Scholar]
  6. Majedi S. Abdulsattar F.T. Jalal A.H. Hussain H.S. A review of biochemical structures of Urtica dioica metabolites and their pharmaceutical effects. Chem. Rev. Lett. 2021 4 206 212
    [Google Scholar]
  7. Mansoori B. Mohammadi A. Hashemzadeh S. Shirjang S. Baradaran A. Asadi M. Doustvandi M.A. Baradaran B. Urtica dioica extract suppresses miR-21 and metastasis-related genes in breast cancer. Biomed. Pharmacother. 2017 93 95 102 10.1016/j.biopha.2017.06.021 28628833
    [Google Scholar]
  8. Taheri Y. Quispe C. Herrera B.J. Sharifi R.J. Ezzat S. Merghany R. Cho W. Urtica dioica derived phytochemicals for pharmacological and therapeutic applications. Evid.-based Complement. Altern. Med. 2022 2022 4024331
    [Google Scholar]
  9. Giulitti F. Petrungaro S. Mandatori S. Tomaipitinca L. de Franchis V. D’Amore A. Filippini A. Gaudio E. Ziparo E. Giampietri C. Anti-tumor effect of oleic acid in hepatocel-lular carcinoma cell lines via autophagy reduction. Front. Cell Dev. Biol. 2021 9 629182 10.3389/fcell.2021.629182 33614661
    [Google Scholar]
  10. AOAC Official methods of analysis of AOAC International 18th ed; Gaithersburg, Maryland 2005 6 1
    [Google Scholar]
  11. American Association of Cereal Chemists Approved Methods of the AACC. 10th ed Methods 2000 30 25
    [Google Scholar]
  12. ISO. Water quality - Determination of mercury - Atomic absorption spectrometry (AAS) method with and without enrichment. 1994 5961 10
    [Google Scholar]
  13. Wei X. Koo I. Kim S. Zhang X. Compound identification in GC-MS by simultaneously evaluating the mass spectrum and retention index. Analyst (Lond.) 2014 139 10 2507 2514 10.1039/C3AN02171H 24665464
    [Google Scholar]
  14. Singlandon V. Rossi J. Colorimandry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965 16 3 144 158
    [Google Scholar]
  15. Chang C. Yang M. Wen H. Chern J. Estimation of total flavonoid content in propolice by two complementary colori-metric methods. Yao Wu Shi Pin Fen Xi 2002 91 3 178 182
    [Google Scholar]
  16. Yen G.C. Chen H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995 43 1 27 32 10.1021/jf00049a007
    [Google Scholar]
  17. Barros L. Ferreira M.J. Queirós B. Ferreira I.C.F.R. Bap-tista P. Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem. 2007 103 2 413 419 10.1016/j.foodchem.2006.07.038
    [Google Scholar]
  18. Winter C.A. Risley E.A. Nuss G.W. Carrageenin induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Exp. Biol. Med. (Maywood) 1962 111 3 544 547 10.3181/00379727‑111‑27849 14001233
    [Google Scholar]
  19. Sarkhel S. Evaluation of the anti inflammatory activities of Quillaja saponaria Mol. saponin extract in mice. Toxicol. Rep. 2016 3 1 3 10.1016/j.toxrep.2015.11.006 28959520
    [Google Scholar]
  20. Pérez G. R.M. Anti-inflammatory activity of Ambrosia artemi-siaefolia and Rhoeo spathacea. Phytomedicine 1996 3 2 163 167 10.1016/S0944‑7113(96)80030‑4 23194964
    [Google Scholar]
  21. Lowry O. Rosebrough N.J. Farr A.L. Randall R.J. Protein measurment with the folin phenol reagent. J. Biol. Chem. 1951 193 1 265 275 10.1016/S0021‑9258(19)52451‑6
    [Google Scholar]
  22. Buege J.A. Aust S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978 52 52 302 310 10.1016/S0076‑6879(78)52032‑6 672633
    [Google Scholar]
  23. Halliwell B. Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean? Br. J. Pharmacol. 2004 142 2 231 255 10.1038/sj.bjp.0705776 15155533
    [Google Scholar]
  24. Witko V. Nguyen A.T. Descamps L.B. Microtiter plate assay for phagocyte-derived Taurine-chloramines. J. Clin. Lab. Anal. 1992 6 1 47 53 10.1002/jcla.1860060110 1542083
    [Google Scholar]
  25. Reznick A.Z. Packer L. Oxidative damage to proteins: Spec-trophotometric method for carbonyl assay. Methods Enzymol. 1994 233 357 363 10.1016/S0076‑6879(94)33041‑7 8015470
    [Google Scholar]
  26. Beyer W.F.J. Fridovich I. Assaying for superoxide dis-mutase activity: Some large consequences of minor changes in conditions. Anal. Biochem. 1987 161 2 559 566 10.1016/0003‑2697(87)90489‑1 3034103
    [Google Scholar]
  27. Flohé L. Günzler W.A. Assays of glutathione peroxidase. Methods Enzymol. 1984 105 114 120 10.1016/S0076‑6879(84)05015‑1 6727659
    [Google Scholar]
  28. Aebi H. Catalase in vitro. Methods Enzymol. 1984 105 121 126 10.1016/S0076‑6879(84)05016‑3 6727660
    [Google Scholar]
  29. Benzie I.F.F. Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP as-say. Anal. Biochem. 1996 239 1 70 76 10.1006/abio.1996.0292 8660627
    [Google Scholar]
  30. Pytlakowska K. Kita A. Janoska P. Połowniak M. Kozik V. Multi-element analysis of mineral and trace elements in medicinal herbs and their infusions. Food Chem. 2012 135 2 494 501 10.1016/j.foodchem.2012.05.002 22868119
    [Google Scholar]
  31. Gül S. Demirci B. Başer K.H.C. Akpulat H.A. Aksu P. Chemical composition and in vitro cytotoxic, genotoxic ef-fects of essential oil from Urtica dioica L. Bull. Environ. Contam. Toxicol. 2012 88 5 666 671 10.1007/s00128‑012‑0535‑9 22310841
    [Google Scholar]
  32. Pourmorad F. Hosseinimehr S. Shahabimajd N. Antioxi-dant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol. 2006 5 11 1142 1145
    [Google Scholar]
  33. Salah H.B. Bouaziz H. Allouche N. Chemical composition of essential oil from Rhanterium suaveolens Desf. and its an-timicrobial activity against foodborne spoilage pathogens and mycotoxigenic fungi. J. Essent. Oil-Bear. Plants 2019 22 3 592 603 10.1080/0972060X.2019.1624199
    [Google Scholar]
  34. Vajic U.J. Grujic M.J. Miloradovic Z. Jovovic D. Ivanov M. Karanovic D. Savikin K. Bugarski B. Mihailovic S.N. Urtica dioica L. leaf extract modulates blood pressure and ox-idative stress in spontaneously hypertensive rats. Phytomedicine 2018 46 39 45 10.1016/j.phymed.2018.04.037 30097121
    [Google Scholar]
  35. Ilies D.C. Tudor I. Radulescu V. Chemical composition of the essential oil of Urtica dioica. Chem. Nat. Compd. 2012 48 3 506 507 10.1007/s10600‑012‑0291‑4
    [Google Scholar]
  36. Stanojevic L. Stankovic M.Z. Cvandkovic D. Cakic M.D. Ilić D. Nikolić V.D. Stanojević J. The effect of extraction techniques on yield, extraction kinandics, and antioxidant ac-tivity of aqueous methanolic extracts from nettle (Urtica dioi-ca L.) leaves. Sep. Sci. Technol. 2016 51 11 1817 1829 10.1080/01496395.2016.1178774
    [Google Scholar]
  37. Siddhuraju P. Becker K. The antioxidant and free radical scavenging activities of processed cowpea (Vigna unguiculata (L.) Walp.) seed extracts. Food Chem. 2007 101 1 10 19 10.1016/j.foodchem.2006.01.004
    [Google Scholar]
  38. Kardan M. Rafiei A. Golpour M. Ebrahimzadeh M.A. Akhavan N.H. Fattahi S. Urtica dioica extract inhibits cell proliferation and induces apoptosis in HepG2 and HTC116 as gastrointestinal cancer cell lines. Anticancer. Agents Med. Chem. 2020 20 8 963 969 10.2174/1871520620666200311095836 32160852
    [Google Scholar]
  39. Hirano T. Homma M. Oka K. Effects of stinging nettle root extracts and their steroidal components on the Na+,K(+)-ATPase of the benign prostatic hyperplasia. Planta Med. 1994 60 1 30 33 10.1055/s‑2006‑959402 7510891
    [Google Scholar]
  40. Esposito S. Bianco A. Russo R. Di Maro A. Isernia C. Pedone P. Therapeutic perspectives of molecules from Urtica dioica extracts for cancer treatment. Molecules 2019 24 15 2753 10.3390/molecules24152753 31362429
    [Google Scholar]
  41. Zouari B.K. Bardaa S. Khimiri M. Rebaii T. Tounsi S. Jlaiel L. Trigui M. Exploring the Urtica dioica leaves hemo-static and wound healing potential. BioMed Res. Int. 2017 2017 1 10 10.1155/2017/1047523 29201895
    [Google Scholar]
  42. Ben Khedir S. Mzid M. Bardaa S. Moalla D. Sahnoun Z. Rebai T. In vivo evaluation of the anti-inflammatory effect of Pistacia lentiscus fruit oil and its effects on oxidative stress. Evid. Based Complement. Alternat. Med. 2016 2016 1 12 10.1155/2016/6108203 28070202
    [Google Scholar]
  43. Blunder M. Pferschy W.E.M. Fabian W.M.F. Hüfner A. Kunert O. Saf R. Schühly W. Bauer R. Derivatives of schisandrin with increased inhibitory potential on prostaglan-din E2 and leukotriene B4 formation in vitro. Bioorg. Med. Chem. 2010 18 7 2809 2815 10.1016/j.bmc.2009.10.031 20236826
    [Google Scholar]
  44. Mzid M. Ben Khedir S. Bardaa S. Sahnoun Z. Rebai T. Chemical composition, phytochemical constituents, antioxi-dant and anti-inflammatory activities of Urtica urens L. leaves. Arch. Physiol. Biochem. 2017 123 2 93 104 10.1080/13813455.2016.1255899 27960552
    [Google Scholar]
  45. González G.J. García M.M.V. Sánchez C.S. Tuñón M.J. Fruit polyphenols, immunity and inflammation. Br. J. Nutr. 2010 104 S3 Suppl. 3 S15 S27 10.1017/S0007114510003910 20955647
    [Google Scholar]
  46. Nematgorgani S. Agah S. Shidfar F. Gohari M. Faghihi A. Effects of Urtica dioica leaf extract on inflammation, oxi-dative stress, ESR, blood cell count and quality of life in pa-tients with inflammatory bowel disease. J. Herb. Med. 2017 9 32 41 10.1016/j.hermed.2017.05.002
    [Google Scholar]
  47. Ngugi C.C. Oyoo O.E. Mugo B.J. Orina P.S. Chemoiwa E.J. Aloo P.A. Effects of dietary administration of stinging nettle (Urtica dioica) on the growth performance, biochemi-cal, hematological and immunological parameters in juvenile and adult Victoria labeo (Labeo victorianus) challenged with Aeromonas hydrophila. Fish Shellfish Immunol. 2015 44 2 533 541 10.1016/j.fsi.2015.03.025 25827627
    [Google Scholar]
  48. Zemmouri H. Sekiou O. Ammar S. El Feki A. Bouaziz M. Messarah M. Boumendjel A. Urtica dioica attenuates ovalbumin-induced inflammation and lipid peroxidation of lung tissues in rat asthma model. Pharm. Biol. 2017 55 1 1561 1568 10.1080/13880209.2017.1310905 28385108
    [Google Scholar]
  49. Mehdi K. Vahid R. Sakineh A. Growth performance, blood matbolites, antioxidant stability and carcass characteristics of broiler chickens fed diands containing nettle (Urtica dioica. L) powder or essential oil. Int. J. Adv. Biol. Biomed. Res. 2014 2 9 2553 2561
    [Google Scholar]
  50. Lobo V. Patil A. Phatak A. Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010 4 8 118 126 10.4103/0973‑7847.70902 22228951
    [Google Scholar]
  51. Mittal M. Siddiqui M.R. Tran K. Reddy S.P. Malik A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014 20 7 1126 1167 10.1089/ars.2012.5149 23991888
    [Google Scholar]
  52. Özen T. Korkmaz H. Modulatory effect of Urtica dioica L. (Urticaceae) leaf extract on biotransformation enzyme sys-tems, antioxidant enzymes, lactate dehydrogenase and lipid peroxidation in mice. Phytomedicine 2003 10 5 405 415 10.1078/0944‑7113‑00275 12834006
    [Google Scholar]
  53. Felhi S. Saoudi M. Daoud A. Hajlaoui H. Ncir M. Chaabane R. El Feki A. Gharsallah N. Kadri A. Investiga-tion of phytochemical contents, in vitro antioxidant and anti-bacterial behavior and in vivo anti-inflammatory potential of Ecballium elaterium methanol fruits extract. Food Sci. Tech-nol. 2017 37 4 558 563 10.1590/1678‑457x.26316
    [Google Scholar]
/content/journals/cpb/10.2174/1389201023666220829104541
Loading
/content/journals/cpb/10.2174/1389201023666220829104541
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: GC/MS ; anti-proliferative ; antioxidant ; Essential oil ; Urtica dioica ; anti-inflammatory
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test