Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Breast cancer remains a leading cause of cancer-related deaths among women, primarily attributed to the formidable challenge of multidrug resistance, often driven by the overexpression of the gene.

Objective

This study aimed to assess the synergistic effects of siRNA, doxorubicin, and vinorelbine on gene expression and cell viability in doxorubicin-resistant MCF-7/ADR breast cancer cells, with siRNA targeting ABCB1 to reduce its expression and doxorubicin/ vinorelbine to eradicate cancer cells.

Methods

Our methodology involved culturing MCF-7 and MCF-7/ADR cells in standard cell culture conditions. The synthesized siRNA sequences transfected cells with siRNA at final concentrations of 10, 20, and 30 nM and assessed cell viability using the MTT assay was performed. Real-time PCR was employed to quantify ABCB1 mRNA expression levels.

Results

Results indicated that MCF-7/ADR cells exhibited substantial resistance to vinorelbine and doxorubicin compared to MCF-7 cells, displaying resistance at 12.50 μM and 25.00 μM for vinorelbine and 6.25 μM and 25.00 μM for doxorubicin. Remarkably, siRNA treatment effectively reversed drug resistance in MCF-7/ADR cells across all concentrations of vinorelbine and doxorubicin tested. When combined, siRNA, doxorubicin, and vinorelbine yielded a significantly greater reduction in cell viability compared to individual drug treatments, particularly at a 20 μM siRNA concentration. This combination therapy also significantly suppressed ABCB1 gene expression by a factor of 41.48 in MCF-7 cells relative to MCF-7/ADR cells.

Conclusion

these findings suggest that combining siRNA, doxorubicin, and vinorelbine holds promise as a therapeutic strategy to overcome ABCB1-mediated multidrug resistance in breast cancer. Further investigations and clinical trials are warranted to evaluate its clinical efficacy rigorously.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010284774240328144105
2025-04-01
2025-06-18
Loading full text...

Full text loading...

References

  1. WilkinsonL. GathaniT. Understanding breast cancer as a global health concern.Br. J. Radiol.20229511302021103310.1259/bjr.20211033 34905391
    [Google Scholar]
  2. Amiri-KordestaniL. BassevilleA. KurdzielK. FojoA.T. BatesS.E. Targeting MDR in breast and lung cancer: Discriminating its potential importance from the failure of drug resistance reversal studies.Drug Resist. Updat.2012151-2506110.1016/j.drup.2012.02.002 22464282
    [Google Scholar]
  3. KinnelB. SinghS.K. Oprea-IliesG. SinghR. Targeted therapy and mechanisms of drug resistance in breast cancer.Cancers2023154132010.3390/cancers15041320 36831661
    [Google Scholar]
  4. ModiA. RoyD. SharmaS. VishnoiJ.R. PareekP. ElhenceP. SharmaP. PurohitP. ABC transporters in breast cancer: Their roles in multidrug resistance and beyond.J. Drug Target.202230992794710.1080/1061186X.2022.2091578 35758271
    [Google Scholar]
  5. EmranT.B. ShahriarA. MahmudA.R. RahmanT. AbirM.H. SiddiqueeM.F.R. AhmedH. RahmanN. NainuF. WahyudinE. MitraS. DhamaK. HabiballahM.M. HaqueS. IslamA. HassanM.M. Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches.Front. Oncol.20221289165210.3389/fonc.2022.891652 35814435
    [Google Scholar]
  6. VasanN. BaselgaJ. HymanD.M. A view on drug resistance in cancer.Nature2019575778229930910.1038/s41586‑019‑1730‑1 31723286
    [Google Scholar]
  7. JohnstonR.F. HopewellP.C. Chemotherapy of pulmonary tuberculosis.Ann. Intern. Med.196970235936710.7326/0003‑4819‑70‑2‑359 4974415
    [Google Scholar]
  8. ChenH-K. ABCB1 regulates immune genes in breast cancer.Breast Cancer20231580181110.2147/BCTT.S421213
    [Google Scholar]
  9. AdorniM.P. GalettiM. La MonicaS. IncertiM. RuffoniA. ElviriL. ZanottiI. PapottiB. CavalloD. AlfieriR. PetroniniP.G. BerniniF. A new ABCB1 inhibitor enhances the anticancer effect of doxorubicin in both in vitro and in vivo models of NSCLC.Int. J. Mol. Sci.202324298910.3390/ijms24020989 36674503
    [Google Scholar]
  10. LambY.N. Pexidartinib: First approval.Drugs201979161805181210.1007/s40265‑019‑01210‑0 31602563
    [Google Scholar]
  11. VarellaL. CristofanilliM. Evaluating elacestrant in the management of ER-positive, HER2-negative advanced breast cancer: Evidence to date.OncoTargets Ther.20231618919610.2147/OTT.S400563 36993871
    [Google Scholar]
  12. Abd El-AzizY.S. SpillaneA.J. JanssonP.J. SahniS. Role of ABCB1 in mediating chemoresistance of triple-negative breast cancers.Biosci. Rep.2021412BSR2020409210.1042/BSR20204092 33543229
    [Google Scholar]
  13. ChoiY. YuA.M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development.Curr. Pharm. Des.201420579380710.2174/138161282005140214165212 23688078
    [Google Scholar]
  14. TamakiA. IeranoC. SzakacsG. RobeyR.W. BatesS.E. The controversial role of ABC transporters in clinical oncology.Essays Biochem.2011501209232 21967059
    [Google Scholar]
  15. PengnamS. PlianwongS. PatrojanasophonP. RadchatawedchakoonW. YingyongnarongkulB. OpanasopitP. CharoensuksaiP. Synergistic effect of doxorubicin and siRNA-mediated silencing of Mcl-1 using cationic niosomes against 3d MCF-7 spheroids.Pharmaceutics202113455010.3390/pharmaceutics13040550 33919902
    [Google Scholar]
  16. DongJ. YuanL. HuC. ChengX. QinJ.J. Strategies to overcome cancer multidrug resistance (MDR) through targeting P-glycoprotein (ABCB1): An updated review.Pharmacol. Ther.202324910848810.1016/j.pharmthera.2023.108488 37442207
    [Google Scholar]
  17. KumarK. RaniV. MishraM. ChawlaR. New paradigm in combination therapy of siRNA with chemotherapeutic drugs for effective cancer therapy.Curr. Res. Pharmacol. Drug Discov.2022310010310.1016/j.crphar.2022.100103 35586474
    [Google Scholar]
  18. FisusiF.A. AkalaE.O. Drug combinations in breast cancer therapy.Pharm. Nanotechnol.20197132310.2174/2211738507666190122111224 30666921
    [Google Scholar]
  19. NorouziP. MotasadizadehH. AtyabiF. DinarvandR. GholamiM. FarokhiM. ShokrgozarM.A. MottaghitalabF. Combination therapy of breast cancer by codelivery of doxorubicin and survivin siRNA using polyethylenimine modified silk fibroin nanoparticles.ACS Biomater. Sci. Eng.2021731074108710.1021/acsbiomaterials.0c01511 33539074
    [Google Scholar]
  20. SaadM. GarbuzenkoO.B. MinkoT. Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer.Nanomedicine20083676177610.2217/17435889.3.6.761
    [Google Scholar]
  21. ChenH. ShienK. SuzawaK. TsukudaK. TomidaS. SatoH. TorigoeH. WatanabeM. NambaK. YamamotoH. SohJ. AsanoH. MiyoshiS. ToyookaS. Elacridar, a third-generation ABCB1 inhibitor, overcomes resistance to docetaxel in non-small cell lung cancer.Oncol. Lett.20171444349435410.3892/ol.2017.6678 28959367
    [Google Scholar]
  22. Kepekçi̇A.H. GündoğanG.I. KigC. In vitro Physiological effects of betahistine on cell lines of various origins.Turk. J. Pharm. Sci.202118214014510.4274/tjps.galenos.2020.88155 33900698
    [Google Scholar]
  23. EngleK. KumarG. Cancer multidrug-resistance reversal by ABCB1 inhibition: A recent update.Eur. J. Med. Chem.202223911454210.1016/j.ejmech.2022.114542 35751979
    [Google Scholar]
  24. MiriA. GharechahiJ. Samiei MoslehI. SharifiK. JajarmiV. Identification of co-regulated genes associated with doxorubicin resistance in the MCF-7/ADR cancer cell line.Front. Oncol.202313113583610.3389/fonc.2023.1135836 37397367
    [Google Scholar]
  25. MengH. LiongM. XiaT. LiZ. JiZ. ZinkJ.I. NelA.E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line.ACS Nano2010484539455010.1021/nn100690m 20731437
    [Google Scholar]
  26. AbbasiM. LavasanifarA. Uludaˇ, H. Recent attempts at RNAi‐mediated P‐glycoprotein downregulation for reversal of multidrug resistance in cancer.Med. Res. Rev.2013331335310.1002/med.20244 21523793
    [Google Scholar]
  27. LiemA.A. AppleyardM.V.C.L. O’NeillM.A. HuppT.R. ChamberlainM.P. ThompsonA.M. Doxorubicin and vinorelbine act independently via p53 expression and p38 activation respectively in breast cancer cell lines.Br. J. Cancer20038881281128410.1038/sj.bjc.6600898 12698197
    [Google Scholar]
  28. PanasciL. Jean-ClaudeB.J. VosilescuD. MustafaA. DamianS. DamianZ. GeorgesE. LiuZ. BatistG. Leyland-JonesB. Sensitization to doxorubicin resistance in breast cancer cell lines by tamoxifen and megestrol acetate.Biochem. Pharmacol.19965271097110210.1016/0006‑2952(96)00456‑X 8831729
    [Google Scholar]
  29. LibertiM.V. LocasaleJ.W. The Warburg effect: How does it benefit cancer cells?Trends Biochem. Sci.201641321121810.1016/j.tibs.2015.12.001 26778478
    [Google Scholar]
  30. HoK.K. McGuireV.A. KooC.Y. MuirK.W. de OlanoN. MaifoshieE. KellyD.J. McGovernU.B. MonteiroL.J. GomesA.R. NebredaA.R. CampbellD.G. ArthurJ.S.C. LamE.W.F. Phosphorylation of FOXO3a on Ser-7 by p38 promotes its nuclear localization in response to doxorubicin.J. Biol. Chem.201228721545155510.1074/jbc.M111.284224 22128155
    [Google Scholar]
  31. SusaM. IyerA.K. RyuK. ChoyE. HornicekF.J. MankinH. MilaneL. AmijiM.M. DuanZ. Inhibition of ABCB1 (MDR1) expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma.PLoS One201055e1076410.1371/journal.pone.0010764 20520719
    [Google Scholar]
  32. WangX. ChenY. RenJ. QuX. Small interfering RNA for effective cancer therapies.Mini Rev. Med. Chem.201111211412410.2174/138955711794519528 21222575
    [Google Scholar]
  33. GöknurK. siRNA targeting ABCB1 potentiates the efficacy of chemotherapy in human triple-negative breast cancer cells.HJBC2022504349358
    [Google Scholar]
  34. CarlisiD. De BlasioA. Drago-FerranteR. Di FioreR. ButtittaG. MorrealeM. ScerriC. VentoR. TesoriereG. Parthenolide prevents resistance of MDA-MB231 cells to doxorubicin and mitoxantrone: The role of Nrf2.Cell Death Discov.2017311707810.1038/cddiscovery.2017.78 29354292
    [Google Scholar]
  35. ThornC.F. OshiroC. MarshS. Hernandez-BoussardT. McLeodH. KleinT.E. AltmanR.B. Doxorubicin pathways.Pharmacogenet. Genomics201121744044610.1097/FPC.0b013e32833ffb56 21048526
    [Google Scholar]
  36. CapassoA. Vinorelbine in cancer therapy.Curr. Drug Targets20121381065107110.2174/138945012802009017 22594474
    [Google Scholar]
  37. IkedaH. TairaN. NogamiT. ShienK. OkadaM. ShienT. DoiharaH. MiyoshiS. Combination treatment with fulvestrant and various cytotoxic agents (doxorubicin, paclitaxel, docetaxel, vinorelbine, and 5‐fluorouracil) has a synergistic effect in estrogen receptor‐positive breast cancer.Cancer Sci.2011102112038204210.1111/j.1349‑7006.2011.02050.x 21801281
    [Google Scholar]
  38. MilesD. MinckwitzG. SeidmanA.D. Combination versus sequential single-agent therapy in metastatic breast cancer.Oncologist20027S6131910.1634/theoncologist.2002‑0013 12454315
    [Google Scholar]
  39. NakamuraH. TakadaK. Reactive oxygen species in cancer: Current findings and future directions.Cancer Sci.2021112103945395210.1111/cas.15068 34286881
    [Google Scholar]
  40. TacarO. DassC.R. Doxorubicin-induced death in tumour cells and cardiomyocytes: Is autophagy the key to improving future clinical outcomes?J. Pharm. Pharmacol.201365111577158910.1111/jphp.12144 24102557
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010284774240328144105
Loading
/content/journals/cpb/10.2174/0113892010284774240328144105
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Doxorubicin; drug resistance; MCF-7 cells; multiple; small interfering RNA; vinorelbine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test