Skip to content
2000
Volume 20, Issue 13
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background: Periodontal disease is the most common oral condition that affects the tissue surrounding the teeth. The oral cavity is colonized by an impressive array of micro-organisms, many of which can colonize the implants such as Guided Tissue Regeneration (GTR) often utilized in recovering procedures that result in inflammation interfering with the bone regeneration. Methods: In the current study, a nano-hybrid GTR membrane is developed as a heliacal structure scaffold with localized drug delivery function (Ibuprofen) as an anti-inflammatory agent. Polycaprolactone (PCL) and a blend of Polyvinyl alcohol (PVA)/collagen (Col) (50/50) were electrospun by electrospinning. Ibuprofen (Ibu) was loaded once in the PCL context and once in the hydrophilic portion (PVA/Col). Results: The in vitro release behavior was investigated in each case. Chemical and physical properties were studied for each item. Morphology investigation indicated a heliacal structure with the total average diameter of 1266 nm consististing of porous pores with the average diameter of 256nm. Conclusion: The membranes indicated proper mechanical properties and appropriate biodegradation rate as a potential GTR membrane. The controlled and sustained release of Ibu was obtained from both PCL and PVA/COL loaded membranes. Kinetic model study indicated the following zero-order and Higuchi models for the optimum case of PCL loaded and PVA/Col Ibu loaded scaffolds respectively.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/1389201020666190722161004
2019-11-01
2025-06-16
Loading full text...

Full text loading...

/content/journals/cpb/10.2174/1389201020666190722161004
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test