Skip to content
2000
image of A Fed-batch Process for the Production of Recombinant Adeno-Associated Virus (rAAV) Vectors Using the Sf9-Rhabdovirus-Negative Cell Line

Abstract

Background

Gene therapy has been effectively applied in many biological studies and for the treatment of many genetic or cancer diseases. Currently Recombinant Adeno-Associated Viruses (rAAVs) are one of the main types of delivery vectors used for gene therapy. rAAV vectors produced via the Sf9 cells have the advantages of high rAAV yields easy scale-up and low cost.

Method

Here we used Sf9 rhabdovirus-negative (Sf9-RVN) cells to validate and optimize the rAAV production process and the fed-batch process increased the rAAV production titre.

Results

In the fed-batch procedure the cell density reached 12.9×106 cells/mL which was approximately twice as high as in the batch culture process. The rAAV titre was also approximately 8-fold higher in the fed-batch process reaching 1.5×1012 VG/mL. The optimized process was validated by generating rAAVs with various serotypes and genes of interest (GOI) all of which gave production titres greater than 1×1012 VG/mL.

Conclusion

We used Sf9-RVN cells to develop a fed-batch rAAV production process that replaces Sf9 cells to meet regulatory standards. This process has good applicability and the rAAV titre can reach at least 1×1012 VG/mL which is higher than the level of 1011 VG/mL reported in the literature.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010355060250108034118
2025-01-23
2025-03-26
Loading full text...

Full text loading...

References

  1. Keeler A.M. Flotte T.R. Recombinant adeno-associated virus gene therapy in light of Luxturna (and Zolgensma and Glybera): Where are we, and how did we get here? Annu. Rev. Virol. 2019 6 1 601 621 10.1146/annurev‑virology‑092818‑015530 31283441
    [Google Scholar]
  2. Merten O.W. Development of stable packaging and producer cell lines for the production of AAV vectors. Microorganisms 2024 12 2 384 10.3390/microorganisms12020384 38399788
    [Google Scholar]
  3. Kang L. Jin S. Wang J. Lv Z. Xin C. Tan C. Zhao M. Wang L. Liu J. AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J. Control. Release 2023 355 458 473 10.1016/j.jconrel.2023.01.067 36736907
    [Google Scholar]
  4. Wang J.H. Gessler D.J. Zhan W. Gallagher T.L. Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct. Target. Ther. 2024 9 1 78 10.1038/s41392‑024‑01780‑w 38565561
    [Google Scholar]
  5. Mendell J.R. Zaidy A.S.A. Klapac R.L.R. Goodspeed K. Gray S.J. Kay C.N. Boye S.L. Boye S.E. George L.A. Salabarria S. Corti M. Byrne B.J. Tremblay J.P. Current clinical applications of in vivo gene therapy with AAVs. Mol. Ther. 2021 29 2 464 488 10.1016/j.ymthe.2020.12.007 33309881
    [Google Scholar]
  6. Wang D. Tai P.W.L. Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019 18 5 358 378 10.1038/s41573‑019‑0012‑9 30710128
    [Google Scholar]
  7. Giles A. Lock M. Chen S.J. Turner K. Wesolowski G. Prongay A. Petkov B.N. Olagbegi K. Yan H. Wilson J.M. Significant differences in capsid properties and potency between adeno-associated virus vectors produced in Sf9 and HEK293 cells. Hum. Gene Ther. 2023 34 19-20 1003 1021 10.1089/hum.2022.116 37597192
    [Google Scholar]
  8. Park S. Shin S. Lee H. Jang J.H. Lee G.M. Enhancing the production of adeno‐associated virus (AAV)2 and AAV9 with high full capsid ratio in HEK293 cells through design‐of‐experiment optimization of triple plasmid ratio. Biotechnol. J. 2024 19 3 2300667 10.1002/biot.202300667 38479987
    [Google Scholar]
  9. Marwidi Y. Nguyen H.O.B. Santos D. Wangzor T. Bhardwaj S. Ernie G. Prawdzik G. Lew G. Shivak D. Trias M. Padilla J. Tran H. Meyer K. Surosky R. Ward A.M. A robust and flexible baculovirus-insect cell system for AAV vector production with improved yield, capsid ratios and potency. Mol. Ther. Methods Clin. Dev. 2024 32 2 101228 10.1016/j.omtm.2024.101228 38524756
    [Google Scholar]
  10. Liu S Li J Peraramelli S Luo N Chen A Dai M Systematic comparison of rAAV vectors manufactured using large-scale suspension cultures of Sf9 and HEK293 cells. Mol. Ther. 2024 32 1 74 83 10.1016/j.ymthe.2023.11.022
    [Google Scholar]
  11. Rumachik N.G. Malaker S.A. Poweleit N. Maynard L.H. Adams C.M. Leib R.D. Cirolia G. Thomas D. Stamnes S. Holt K. Sinn P. May A.P. Paulk N.K. Methods matter: Standard production platforms for recombinant AAV produce chemically and functionally distinct vectors. Mol. Ther. Methods Clin. Dev. 2020 18 98 118 10.1016/j.omtm.2020.05.018 32995354
    [Google Scholar]
  12. Joshi P.R.H. Sanchez V.A. Recombinant AAV production. Methods Mol. Biol. 2024 2829 203 214 10.1007/978‑1‑0716‑3961‑0_14 38951336
    [Google Scholar]
  13. Ma H. Galvin T.A. Glasner D.R. Shaheduzzaman S. Khan A.S. Identification of a novel rhabdovirus in Spodoptera frugiperda cell lines. J. Virol. 2014 88 12 6576 6585 10.1128/JVI.00780‑14 24672045
    [Google Scholar]
  14. Ma H. Nandakumar S. Bae E.H. Chin P.J. Khan A.S. The Spodoptera frugiperda Sf9 cell line is a heterogeneous population of rhabdovirus-infected and virus-negative cells: Isolation and characterization of cell clones containing rhabdovirus X-gene variants and virus-negative cell clones. Virology 2019 536 125 133 10.1016/j.virol.2019.08.001 31494355
    [Google Scholar]
  15. Geisler C. A new approach for detecting adventitious viruses shows Sf-rhabdovirus-negative Sf-RVN cells are suitable for safe biologicals production. BMC Biotechnol. 2018 18 1 8 10.1186/s12896‑017‑0412‑z 29415704
    [Google Scholar]
  16. Majumdar S. Desai R. Hans A. Dandekar P. Jain R. From efficiency to yield: Exploring recent advances in CHO cell line development for monoclonal antibodies. Mol. Biotechnol. 2024 10.1007/s12033‑024‑01060‑6 38363529
    [Google Scholar]
  17. Ou J. Tang Y. Xu J. Tucci J. Borys M.C. Khetan A. Recent advances in upstream process development for production of recombinant adeno‐associated virus. Biotechnol. Bioeng. 2024 121 1 53 70 10.1002/bit.28545 37691172
    [Google Scholar]
  18. Xu W.J. Lin Y. Mi C.L. Pang J.Y. Wang T.Y. Progress in fed-batch culture for recombinant protein production in CHO cells. Appl. Microbiol. Biotechnol. 2023 107 4 1063 1075 10.1007/s00253‑022‑12342‑x 36648523
    [Google Scholar]
  19. Mellahi K. Brochu D. Gilbert M. Perrier M. Ansorge S. Durocher Y. Henry O. Assessment of fed-batch cultivation strategies for an inducible CHO cell line. J. Biotechnol. 2019 298 45 56 10.1016/j.jbiotec.2019.04.005 30959136
    [Google Scholar]
  20. Schellenberg J. Nagraik T. Wohlenberg O.J. Ruhl S. Bahnemann J. Scheper T. Solle D. Stress‐induced increase of monoclonal antibody production in CHO cells. Eng. Life Sci. 2022 22 5 427 436 10.1002/elsc.202100062 35573136
    [Google Scholar]
  21. Ha T.K. Hansen A.H. Kildegaard H.F. Lee G.M. Knockout of sialidase and pro-apoptotic genes in Chinese hamster ovary cells enables the production of recombinant human erythropoietin in fed-batch cultures. Metab. Eng. 2020 57 182 192 10.1016/j.ymben.2019.11.008 31785386
    [Google Scholar]
  22. Maltais J.S. Dufour L.S. Morasse A. Stuible M. Loignon M. Durocher Y. Repressing expression of difficult‐to‐express recombinant proteins during the selection process increases productivity of CHO stable pools. Biotechnol. Bioeng. 2023 120 10 2840 2852 10.1002/bit.28435 37232536
    [Google Scholar]
  23. Virgolini N. Hagan R. Correia R. Silvano M. Fernandes S. Alves P.M. Clarke C. Roldão A. Isidro I.A. Transcriptome analysis of Sf9 insect cells during production of recombinant Adeno‐associated virus. Biotechnol. J. 2023 18 2 2200466 10.1002/biot.202200466 36401834
    [Google Scholar]
  24. Bruder M.R. Aucoin M.G. Evaluation of virus-free manufacture of recombinant proteins using CRISPR-mediated gene disruption in baculovirus-infected insect cells. Vaccines 2023 11 2 225 10.3390/vaccines11020225 36851104
    [Google Scholar]
  25. Guapo F. Donohue N. Strasser L. Boi S. Füssl F. Fletcher R.A. Getty P. Anderson I. Barron N. Bones J. A direct comparison of rAAV5 variants derived from the baculovirus expression system using LC-MS workflows demonstrates key differences in overall production yield, product quality and vector efficiency. Int. J. Mol. Sci. 2024 25 5 2785 10.3390/ijms25052785 38474031
    [Google Scholar]
  26. Mena J.A. Aucoin M.G. Montes J. Chahal P.S. Kamen A.A. Improving adeno‐associated vector yield in high density insect cell cultures. J. Gene Med. 2010 12 2 157 167 10.1002/jgm.1420 20101623
    [Google Scholar]
  27. Joshi P.R.H. Cervera L. Ahmed I. Kondratov O. Zolotukhin S. Schrag J. Chahal P.S. Kamen A.A. Achieving high-yield production of functional AAV5 gene delivery vectors via fedbatch in an insect cell-one baculovirus system. Mol. Ther. Methods Clin. Dev. 2019 13 279 289 10.1016/j.omtm.2019.02.003 30886878
    [Google Scholar]
  28. Croissant C. Armitano J. Lazuech B. Švec D. Pugin C. Guesdon A. Bryan L. Castro A. Neuhaus L. Fonti G. Martinis J. Wurm M.J. Wurm F.M. Pino P. A new T‐antigen negative HEK293 cell line with improved AAV productivity. Biotechnol. Bioeng. 2023 120 7 1953 1960 10.1002/bit.28414 37232541
    [Google Scholar]
  29. Zhao H. Lee K.J. Daris M. Lin Y. Wolfe T. Sheng J. Plewa C. Wang S. Meisen W.H. Creation of a high-yield AAV vector production platform in suspension cells using a design-of-experiment approach. Mol. Ther. Methods Clin. Dev. 2020 18 312 320 10.1016/j.omtm.2020.06.004 32671134
    [Google Scholar]
  30. Roldão A. Oliveira R. Carrondo M.J.T. Alves P.M. Error assessment in recombinant baculovirus titration: Evaluation of different methods. J. Virol. Methods 2009 159 1 69 80 10.1016/j.jviromet.2009.03.007 19442848
    [Google Scholar]
  31. Mena JA Ramírez OT Palomares LA Titration of non-occluded baculovirus using a cell viability assay. Biotechniques 2003 34 2 260 264 10.2144/03342bm05
    [Google Scholar]
  32. Tennant J.R. Evaluation of the trypan blue technique for determination of cell viability. Transplantation 1964 2 6 685 694 10.1097/00007890‑196411000‑00001 14224649
    [Google Scholar]
  33. Kondratov O Marsic D Crosson SM Gomez M.HR Moskalenko O Mietzsch M Direct head-to-head evaluation of recombinant adeno-associated viral vectors manufactured in human versus insect cells. Molecul. Ther. 2017 25 12 2661 2675 10.1016/j.ymthe.2017.08.003
    [Google Scholar]
  34. Bulcha J.T. Wang Y. Ma H. Tai P.W.L. Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 2021 6 1 53 10.1038/s41392‑021‑00487‑6 33558455
    [Google Scholar]
  35. Webster T.A. Hadley B.C. Dickson M. Busa J.K. Jaques C. Mason C. Feedback control of two supplemental feeds during fed-batch culture on a platform process using inline Raman models for glucose and phenylalanine concentration. Bioprocess Biosyst. Eng. 2021 44 1 127 140 10.1007/s00449‑020‑02429‑y 32816075
    [Google Scholar]
  36. Xiang S. Zhang J. Yu L. Tian J. Tang W. Tang H. Xu K. Wang X. Cui Y. Ren K. Cao W. Su Y. Zhou W. Developing an ultra‐intensified fed‐batch cell culture process with greatly improved performance and productivity. Biotechnol. Bioeng. 2024 121 2 696 709 10.1002/bit.28605 37994547
    [Google Scholar]
  37. Kuang B. Hoang D. Wang Z. Yoon S. Cell metabolic diagnosis and control in CHO Fed-batch process. IFAC-PapersOnLine 2022 55 7 37 44 10.1016/j.ifacol.2022.07.419
    [Google Scholar]
  38. Liu X. Zhao L. Wang Y. Zhang X. Tan W.S. Effects of calcium ion on adenovirus production with high densities of HEK293 cells. Biotechnol. Bioprocess Eng.; BBE 2010 15 3 414 420 10.1007/s12257‑009‑3032‑1
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010355060250108034118
Loading
/content/journals/cpb/10.2174/0113892010355060250108034118
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Sf9-RVN ; baculovirus ; process development ; fed-batch ; rAAV
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test