Skip to content
2000
image of Advances in Colon-Targeted Drug Delivery Systems: Innovative Strategies for Treating Colonic Disorders and Prospects for the Future

Abstract

Colon-specific targeting delivery systems have drawn a great deal of attention because they represent potential vehicles for treating colonic disorders like diverticulitis, colitis, salmonellosis, Crohn’s disease, etc. with less systemic adverse effects as well as for the better oral delivery of many therapeutics that are prone to enzymatic and acidic deterioration in the upper GI tract. Smart polymeric delivery systems in particular have been investigated as "intelligent" delivery systems capable of releasing entrapped pharmaceuticals at the proper time & site of action in response to certain physiological stimuli. The creation of novel polymers & crosslinkers with improved biodegradability and biocompatibility would expand and enhance applications now in use. The development of polymeric systems could result in more precise and programmable drug delivery/therapies. In addition, newer advancements have led to the development of numerous ground-breaking techniques for directing a medication molecule to the colon. This review highlighted formulation techniques pH-dependent, time-dependent, enzyme sensitive, magnetically dependent, ligand-receptor mediated, and microflora-activated systems. Moreover, several methods have been put forth that make use of the innovative idea of such delivery systems, and mechanisms in which the release of drugs is regulated by pH and time as well as pH and the colon's bacteria.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010323922240924053921
2024-10-09
2024-11-20
Loading full text...

Full text loading...

References

  1. Fedoruk M.J. Hong S. Gastrointestinal System. Encyclopedia of Toxicology. 3rd ed Elsevier 2014 702 705 10.1016/B978‑0‑12‑386454‑3.00026‑9
    [Google Scholar]
  2. Picture of the human colon anatomy & common colon conditions. Available from:webmd.com/digestive-disorders/picture-of-the-colon(accessed on 27-8-2024)
  3. Fedoruk M.J. Guidotti T.L. Gastrointestinal System. Encyclopedia of Toxicology. Elsevier 2005 410 416 10.1016/B0‑12‑369400‑0/00446‑4
    [Google Scholar]
  4. Barrett K.E. Gastrointestinal Physiology. Reference Module in Biomedical Sciences Elsevier 2014
    [Google Scholar]
  5. Konturek P.C. Brzozowski T. Konturek S.J. Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options. J. Physiol. Pharmacol. 2011 62 6 591 599 22314561
    [Google Scholar]
  6. Greenwald D. Brandt L.J. Gastrointestinal System: Function and Dysfunction. Encyclopedia of Gerontology Elsevier 2007
    [Google Scholar]
  7. Ismail M.K. Shrestha S. Gastrointestinal Complications of Neuromuscular Disorders. Neuromuscular Disorders: Treatment and Management. Elsevier 2021 79 96
    [Google Scholar]
  8. Krishnamurthy S. Schuffler M.D. Pathology of neuromuscular disorders of the small intestine and colon. Gastroenterology 1987 93 3 610 639 10.1016/0016‑5085(87)90926‑7 3301518
    [Google Scholar]
  9. US Preventive Services Task Force Bibbins-Domingo, K.; Grossman, D.C.; Curry, S.J.; Davidson, K.W.; Epling, J. W.; García, F.A.R.; Gillman, M.W.; Harper, D.M.; Kemper, A.R.; Krist, A.H.; Kurth, A.E.; Landefeld, C.S.; Mangione, C.M.; Owens, D.K.; Phillips, W.R.; Phipps, M.G.; Pignone, M.P.; Siu, A.L. Screening for Colorectal Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2016 315 23 2564 2575 27304597
    [Google Scholar]
  10. Rahier J.F. Magro F. Abreu C. Armuzzi A. Ben-Horin S. Chowers Y. Cottone M. de Ridder L. G D. Ehehalt R. Esteve M. Katsanos K. Lees C.W. MacMahon E. Moreels T. Reinisch W. Tilg H. Tremblay L. Veereman-Wauters G. Viget N. Yazdanpanah Y. Eliakim R. Colombel J.F. European Crohn’s and Colitis Organisation (ECCO) Second European evidence-based consensus on the prevention, diagnosis and management of opportunistic infections in inflammatory bowel disease. J. Crohn’s Colitis 2014 8 6 443 468 10.1016/j.crohns.2013.12.013 24613021
    [Google Scholar]
  11. Souza T. Figueiredo L. Gonçalves M. Azoia N. Güebitz G. Cavaco-Paulo A. Polymeric Nanoparticles for Colonic Drug Delivery: Advances and Challenges. Nanomedicine (Lond.) 2021 16 12 1057 1072
    [Google Scholar]
  12. Sharma S. Sinha V.R. Pawar V.K. Lipid-Based Nanoparticles for Colon-Targeted Drug Delivery: Recent Advances and Future Prospects. Int. J. Pharm. 2020 585 119498
    [Google Scholar]
  13. Qiu Y. Hu H. Xu X. Azo Prodrugs for Targeted Drug Delivery: Recent Advances and Challenges. J. Pharm. Sci. 2022 111 3 875 888
    [Google Scholar]
  14. Patel M.M. Amin A.F. Bhadani A. Glycoside Prodrugs for Colonic Drug Delivery: Design, Synthesis, and Biological Evaluation. Bioorg. Med. Chem. 2019 27 12 2651 2660
    [Google Scholar]
  15. Li X. Chen D. Williams G.R. Wang H. Hydrogels for Colon-Targeted Drug Delivery: Recent Advances and Future Perspectives. Carbohydr. Polym. 2021 260 117813
    [Google Scholar]
  16. Xu Q. Deng Y. Fu Y. Hu K. Polysaccharides for Mucoadhesive Drug Delivery Systems: A Review of Recent Developments. Carbohydr. Polym. 2021 256 117559
    [Google Scholar]
  17. Wu H. Zhu L. Xu Y. Yin L. Prebiotics and Synbiotics in Colonic Drug Delivery: Enhancing Therapeutic Efficacy. Curr. Opin. Biotechnol. 2023 74 54 62
    [Google Scholar]
  18. Hua S. de Matos M.B. Metselaar J.M. Storm G. Enzyme-Responsive Drug Delivery Systems: Recent Advances and Future Prospects. Adv. Drug Deliv. Rev. 2021 172 71 87
    [Google Scholar]
  19. Wang Y. Yin L. Ding J. pH-Responsive Polymers for Colon-Targeted Drug Delivery: Recent Developments and Future Perspectives. Macromol. Rapid Commun. 2022 43 3 2100736
    [Google Scholar]
  20. Liu Y. Feng L. Liu T. Redox-Sensitive Polymers for Targeted Drug Delivery. J. Mater. Chem. B Mater. Biol. Med. 2020 8 8 1435 1448
    [Google Scholar]
  21. Clark S.J. Goyanes A. Trenfield S.J. Tan H.X. Gaisford S. Basit A.W. 3D Printing in Pharmaceutical Manufacturing: Recent Advances and Future Prospects. Pharm. Res. 2022 39 1 15 30
    [Google Scholar]
  22. Goyanes A. Fina F. Martorana A. Sedough D. Gaisford S. Basit A.W. Multi-Layered Tablets for Complex Drug Release Profiles: A 3D Printing Approach. J. Control. Release 2021 334 194 205
    [Google Scholar]
  23. Zhang H. Yin L. Cheng J. Personalized Medicine in Colonic Drug Delivery: Current Trends and Future Directions. Trends Pharmacol. Sci. 2023 44 2 134 145
    [Google Scholar]
  24. Martin A. Becker K. Spagnuolo V. Lühmann T. Combination Therapies for Colonic Disorders: Synergistic Effects and Future Directions. Drug Discov. Today 2023 28 5 1022 1035
    [Google Scholar]
  25. Regulatory Considerations for Advanced Drug Delivery Systems. U.S. Food and Drug Administration. 2023
    [Google Scholar]
  26. Harel E. Rubinstein A. Nissan A. Khazanov E. Nadler Milbauer M. Barenholz Y. Tirosh B. Enhanced transferrin receptor expression by proinflammatory cytokines in enterocytes as a means for local delivery of drugs to inflamed gut mucosa. PLoS One 2011 6 9 e24202 10.1371/journal.pone.0024202 21915296
    [Google Scholar]
  27. Inflammatory bowel disease (IBD). Available from:mayoclinic.org/diseases-conditions/inflammatory-bowel-disease/diagnosis-treatment/drc-20353320(accessed on 27-8-2024)
  28. Inflammatory Bowel Disease (Overview). Available from:my.clevelandclinic.org/health/diseases/15587-inflammatory-bowel-disease-overview(accessed on 27-8-2024)
  29. DaCosta L.R. What is inflammatory bowel disease? Can. J. Gastroenterol. 1993 7 6 503 508 10.1155/1993/653712
    [Google Scholar]
  30. Brasky T.M. Darke A.K. Song X. Tangen C.M. Goodman P.J. Thompson I.M. Meyskens F.L. Jr Goodman G.E. Minasian L.M. Parnes H.L. Klein E.A. Kristal A.R. Plasma phospholipid fatty acids and prostate cancer risk in the SELECT trial. J. Natl. Cancer Inst. 2013 105 15 1132 1141 10.1093/jnci/djt174 23843441
    [Google Scholar]
  31. de Klaver W. Wisse P.H.A. van Wifferen F. Bosch L.J.W. Jimenez C.R. van der Hulst R.W.M. Fijneman R.J.A. Kuipers E.J. Greuter M.J.E. Carvalho B. Spaander M.C.W. Dekker E. Coupé V.M.H. de Wit M. Meijer G.A. Clinical Validation of a Multitarget Fecal Immunochemical Test for Colorectal Cancer Screening. Ann. Intern. Med. 2021 174 9 1224 1231 10.7326/M20‑8270 34280333
    [Google Scholar]
  32. Screening Tests to Detect Colorectal Cancer and Polyps. Available from:cancer.gov/types/colorectal/screening-fact-sheet(accessed on 27-8-2024)
  33. Amidon S. Brown J.E. Dave V.S. Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech 2015 16 4 731 741 10.1208/s12249‑015‑0350‑9 26070545
    [Google Scholar]
  34. Reddy R.B.D. Malleshwari K. Prasad G. Pavani G. COLON TARGETED DRUG DELIVERY SYSTEM: A REVIEW. IJPSR 2013 4 1 42 54
    [Google Scholar]
  35. Lee S.H. Bajracharya R. Min J.Y. Han J.W. Park B.J. Han H.K. Strategic Approaches for Colon Targeted Drug Delivery: An Overview of Recent Advancements. Pharmaceutics 2020 12 1 68 10.3390/pharmaceutics12010068 31952340
    [Google Scholar]
  36. Sahu K.K. Pandey R.S. Development and characterization of HBsAg-loaded Eudragit nanoparticles for effective colonic immunization. Pharm. Dev. Technol. 2019 24 2 166 175 10.1080/10837450.2018.1444639 29468926
    [Google Scholar]
  37. Ibekwe V.C. Liu F. Fadda H.M. Khela M.K. Evans D.F. Parsons G.E. Basit A.W. An investigation into the in vivo performance variability of pH responsive polymers for ileo-colonic drug delivery using gamma scintigraphy in humans. J. Pharm. Sci. 2006 95 12 2760 2766 10.1002/jps.20742 16917845
    [Google Scholar]
  38. Chourasia M.K. Jain S.K. Polysaccharides for colon targeted drug delivery. Drug Deliv. 2004 11 2 129 148 10.1080/10717540490280778 15200012
    [Google Scholar]
  39. Zeeshan M. Ali H. Khan S. Khan S.A. Weigmann B. Advances in orally-delivered pH-sensitive nanocarrier systems; an optimistic approach for the treatment of inflammatory bowel disease. Int. J. Pharm. 2019 558 201 214 10.1016/j.ijpharm.2018.12.074 30615925
    [Google Scholar]
  40. Govindarajan S. Begum M.J. Sandireddy R. Rajendra Y. Colon targeted drug delivery system: A review. Int J Pharm Technol. 2012 3 4 1657 1672
    [Google Scholar]
  41. Kelm G.R. Manring G.L. Pharmaceutical dosage form with multiple enteric polymer coatings for colonic delivery. U.S. Patent 5,914,132A, 1999.
  42. Neha S. Harikumar S.L. Polymers for Colon targeted drug delivery: A review. Int J Drug Dev Res. 2013 5 1 21 31
    [Google Scholar]
  43. Maroni A. Moutaharrik S. Zema L. Gazzaniga A. Enteric coatings for colonic drug delivery: state of the art. Expert Opin. Drug Deliv. 2017 14 9 1027 1029 10.1080/17425247.2017.1360864 28749188
    [Google Scholar]
  44. Ansari M. Sadarani B. Majumdar A. Colon targeted beads loaded with pterostilbene: Formulation, optimization, characterization and in vivo evaluation. Saudi Pharm. J. 2019 27 1 71 81 10.1016/j.jsps.2018.07.021 30662309
    [Google Scholar]
  45. Dodoo C.C. Wang J. Basit A.W. Stapleton P. Gaisford S. Targeted delivery of probiotics to enhance gastrointestinal stability and intestinal colonisation. Int. J. Pharm. 2017 530 1-2 224 229 10.1016/j.ijpharm.2017.07.068 28764983
    [Google Scholar]
  46. Kono Y. Gogatsubo S. Ohba T. Fujita T. Enhanced macrophage delivery to the colon using magnetic lipoplexes with a magnetic field. Drug Deliv. 2019 26 1 935 943 10.1080/10717544.2019.1662515 31530198
    [Google Scholar]
  47. Xiao B. Laroui H. Viennois E. Ayyadurai S. Charania M.A. Zhang Y. Zhang Z. Baker M.T. Zhang B. Gewirtz A.T. Merlin D. Nanoparticles with surface antibody against cd98 and carrying cd98 small interfering RNA reduce colitis in mice. Gastroenterology 2014 146 5 1289 1300 10.1053/j.gastro.2014.01.056
    [Google Scholar]
  48. Xiong S. Yu B. Wu J. Li H. Lee R.J. Preparation, therapeutic efficacy and intratumoral localization of targeted daunorubicin liposomes conjugating folate-PEG-CHEMS. Biomed. Pharmacother. 2011 65 1 2 8 10.1016/j.biopha.2010.10.003 21177069
    [Google Scholar]
  49. Prajapati S.K. Jain A. Shrivastava C. Jain A.K. Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. Int. J. Biol. Macromol. 2019 123 691 703 10.1016/j.ijbiomac.2018.11.116 30445095
    [Google Scholar]
  50. Guo F. Ouyang T. Peng T. Zhang X. Xie B. Yang X. Liang D. Zhong H. Enhanced oral absorption of insulin using colon-specific nanoparticles co-modified with amphiphilic chitosan derivatives and cell-penetrating peptides. Biomater. Sci. 2019 7 4 1493 1506 10.1039/C8BM01485J 30672923
    [Google Scholar]
  51. Naeem M. Choi M. Cao J. Lee Y. Ikram M. Yoon S. Lee J. Moon H.R. Kim M.S. Jung Y. Yoo J.W. Colon-targeted delivery of budesonide using dual pH- and time-dependent polymeric nanoparticles for colitis therapy. Drug Des. Devel. Ther. 2015 9 3789 3799 26229440
    [Google Scholar]
  52. Zhao M. Lee S.H. Song J.G. Kim H.Y. Han H.K. Enhanced oral absorption of sorafenib via the layer-by-layer deposition of a pH-sensitive polymer and glycol chitosan on the liposome. Int. J. Pharm. 2018 544 1 14 20 10.1016/j.ijpharm.2018.04.020 29655795
    [Google Scholar]
  53. Park H.J. Jung H.J. Ho M.J. Lee D.R. Cho H.R. Choi Y.S. Jun J. Son M. Kang M.J. Colon-targeted delivery of solubilized bisacodyl by doubly enteric-coated multiple-unit tablet. Eur. J. Pharm. Sci. 2017 102 172 179 10.1016/j.ejps.2017.03.006 28279763
    [Google Scholar]
  54. Foppoli A. Maroni A. Moutaharrik S. Melocchi A. Zema L. Palugan L. Cerea M. Gazzaniga A. In vitro and human pharmacoscintigraphic evaluation of an oral 5-ASA delivery system for colonic release. Int. J. Pharm. 2019 572 118723 10.1016/j.ijpharm.2019.118723 31628978
    [Google Scholar]
  55. Zhu J. Zhong L. Chen W. Song Y. Qian Z. Cao X. Huang Q. Zhang B. Chen H. Chen W. Preparation and characterization of pectin/chitosan beads containing porous starch embedded with doxorubicin hydrochloride: A novel and simple colon targeted drug delivery system. Food Hydrocoll. 2019 95 562 570 10.1016/j.foodhyd.2018.04.042
    [Google Scholar]
  56. Ren Y. Mu Y. Song Y. Xie J. Yu H. Gao S. Li S. Peng H. Zhou Y. Lu W. A new peptide ligand for colon cancer targeted delivery of micelles. Drug Deliv. 2016 23 5 1763 1772 10.3109/10717544.2015.1077293 26289214
    [Google Scholar]
  57. Grifantini R. Taranta M. Gherardini L. Naldi I. Parri M. Grandi A. Giannetti A. Tombelli S. Lucarini G. Ricotti L. Campagnoli S. De Camilli E. Pelosi G. Baldini F. Menciassi A. Viale G. Pileri P. Cinti C. Magnetically driven drug delivery systems improving targeted immunotherapy for colon-rectal cancer. J. Control. Release 2018 280 76 86 10.1016/j.jconrel.2018.04.052 29733876
    [Google Scholar]
  58. Jiang Z. Guan J. Qian J. Zhan C. Peptide ligand-mediated targeted drug delivery of nanomedicines. Biomater. Sci. 2019 7 2 461 471 10.1039/C8BM01340C 30656305
    [Google Scholar]
  59. Handali S. Moghimipour E. Rezaei M. Ramezani Z. Kouchak M. Amini M. Angali K.A. Saremy S. Dorkoosh F.A. A novel 5-Fluorouracil targeted delivery to colon cancer using folic acid conjugated liposomes. Biomed. Pharmacother. 2018 108 1259 1273 10.1016/j.biopha.2018.09.128 30372827
    [Google Scholar]
  60. Si X.Y. Merlin D. Xiao B. Recent advances in orally administered cell-specific nanotherapeutics for inflammatory bowel disease. World J. Gastroenterol. 2016 22 34 7718 7726 10.3748/wjg.v22.i34.7718 27678353
    [Google Scholar]
  61. Zhang L. Zhu W. Yang C. Guo H. Yu A. Ji J. Gao Y. Sun M. Zhai G. A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting. Int. J. Nanomedicine 2012 7 151 162 22275831
    [Google Scholar]
  62. Vafaei S.Y. Esmaeili M. Amini M. Atyabi F. Ostad S.N. Dinarvand R. Self assembled hyaluronic acid nanoparticles as a potential carrier for targeting the inflamed intestinal mucosa. Carbohydr. Polym. 2016 144 371 381 10.1016/j.carbpol.2016.01.026 27083829
    [Google Scholar]
  63. Yu M. Jambhrunkar S. Thorn P. Chen J. Gu W. Yu C. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale 2013 5 1 178 183 10.1039/C2NR32145A 23076766
    [Google Scholar]
  64. Ghosh D. Peng X. Leal J. Mohanty R.P. Peptides as drug delivery vehicles across biological barriers. J. Pharm. Investig. 2018 48 1 89 111 10.1007/s40005‑017‑0374‑0 29963321
    [Google Scholar]
  65. Chourasia M.K. Jain S.K. Pharmaceutical approaches to colon targeted drug delivery systems. J. Pharm. Pharm. Sci. 2003 6 1 33 66 12753729
    [Google Scholar]
  66. Liu F. Moreno P. Basit A.W. A novel double-coating approach for improved pH-triggered delivery to the ileo-colonic region of the gastrointestinal tract. Eur. J. Pharm. Biopharm. 2010 74 2 311 315 10.1016/j.ejpb.2009.11.008 19932177
    [Google Scholar]
  67. Hashem F. In Vitro and In Vivo Evaluation of Combined Time and pH- Dependent Oral Colonic Targeted Prednisolone Microspheres. Br. J. Pharm. Res. 2013 3 3 420 434 10.9734/BJPR/2013/3195
    [Google Scholar]
  68. Maurer J.M. Schellekens R.C.A. van Rieke H.M. Wanke C. Iordanov V. Stellaard F. Wutzke K.D. Dijkstra G. van der Zee M. Woerdenbag H.J. Frijlink H.W. Kosterink J.G.W. Gastrointestinal pH and Transit Time Profiling in Healthy Volunteers Using the IntelliCap System Confirms Ileo-Colonic Release of ColoPulse Tablets. PLoS One 2015 10 7 e0129076 10.1371/journal.pone.0129076 26177019
    [Google Scholar]
  69. Mutalik S. Suthar N.A. Managuli R.S. Shetty P.K. Avadhani K. Kalthur G. Kulkarni R.V. Thomas R. Development and performance evaluation of novel nanoparticles of a grafted copolymer loaded with curcumin. Int. J. Biol. Macromol. 2016 86 709 720 10.1016/j.ijbiomac.2015.11.092 26851203
    [Google Scholar]
  70. Liechty W.B. Kryscio D.R. Slaughter B.V. Peppas N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng. 2010 1 1 149 173 10.1146/annurev‑chembioeng‑073009‑100847 22432577
    [Google Scholar]
  71. Priya James H. John R. Alex A. Anoop K.R. Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharm. Sin. B 2014 4 2 120 127 10.1016/j.apsb.2014.02.005 26579373
    [Google Scholar]
  72. Yingchoncharoen P. Kalinowski D.S. Richardson D.R. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come. Pharmacol. Rev. 2016 68 3 701 787 10.1124/pr.115.012070 27363439
    [Google Scholar]
  73. Kamoun J. Krichen F. Koubaa I. Zouari N. Bougatef A. Abousalham A. Aloulou A. In vitro lipolysis and physicochemical characterization of unconventional star anise oil towards the development of new lipid-based drug delivery systems. Heliyon 2021 7 4 e06717 10.1016/j.heliyon.2021.e06717 33898835
    [Google Scholar]
  74. Varum F.J.O. Hatton G.B. Freire A.C. Basit A.W. A novel coating concept for ileo-colonic drug targeting: Proof of concept in humans using scintigraphy. Eur. J. Pharm. Biopharm. 2013 84 3 573 577 10.1016/j.ejpb.2013.01.002 23348235
    [Google Scholar]
  75. Rhodes J. Evans B.K. Delayed release oral dosage forms for treatment of intestinal disorders. U.S. Patent 5,401,512 45, 1995.
  76. Barbosa J.A.C. Al-Kauraishi M.M. Smith A.M. Conway B.R. Merchant H.A. Achieving gastroresistance without coating: Formulation of capsule shells from enteric polymers. Eur. J. Pharm. Biopharm. 2019 144 174 179 10.1016/j.ejpb.2019.09.015 31541663
    [Google Scholar]
  77. Maurer J.M. Schellekens R.C.A. van Rieke H.M. Stellaard F. Wutzke K.D. Buurman D.J. Dijkstra G. Woerdenbag H.J. Frijlink H.W. Kosterink J.G.W. ColoPulse tablets perform comparably in healthy volunteers and Crohn’s patients and show no influence of food and time of food intake on bioavailability. J. Control. Release 2013 172 3 618 624 10.1016/j.jconrel.2013.09.021 24096020
    [Google Scholar]
  78. Hua S. Marks E. Schneider J.J. Keely S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine 2015 11 5 1117 1132 10.1016/j.nano.2015.02.018 25784453
    [Google Scholar]
  79. Vargason A.M. Anselmo A.C. Mitragotri S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 2021 5 9 951 967 10.1038/s41551‑021‑00698‑w 33795852
    [Google Scholar]
  80. Soppimath K.S. Aminabhavi T.M. Kulkarni A.R. Rudzinski W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 2001 70 1-2 1 20 10.1016/S0168‑3659(00)00339‑4 11166403
    [Google Scholar]
  81. McCoubrey L.E. Favaron A. Awad A. Orlu M. Gaisford S. Basit A.W. Colonic drug delivery: Formulating the next generation of colon-targeted therapeutics. J. Control. Release 2023 353 1107 1126 10.1016/j.jconrel.2022.12.029 36528195
    [Google Scholar]
  82. Kaur M. Kaur G. Kaur R. Kaur H. Recent Advances in Colonic Drug Delivery Systems: A Review. Drug Deliv. 2020 27 1 1 14 31818156
    [Google Scholar]
  83. Bansal M. Gupta V. Gupta P. Singh S. A Review on Natural Polymers in Colon Drug Delivery. J. Drug Deliv. Sci. Technol. 2019 49 1 10
    [Google Scholar]
  84. Choudhury H. Ghosh A. Choudhury P. Karmakar P. Colon-Specific Drug Delivery Systems: A Review. Int. J. Pharm. Sci. Res. 2021 12 3 1292 1302
    [Google Scholar]
  85. Hwang S.J. Park K. Colon-Specific Drug Delivery Systems: Recent Advances and Future Perspectives. Expert Opin. Drug Deliv. 2021 18 5 575 586
    [Google Scholar]
  86. Sahin U. Karikó K. Türeci Ö. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug Discov. 2014 13 10 759 780 10.1038/nrd4278 25233993
    [Google Scholar]
  87. Wu P. Han J. Gong Y. Liu C. Yu H. Xie N. Nanoparticle-Based Drug Delivery Systems Targeting Tumor Microenvironment for Cancer Immunotherapy Resistance: Current Advances and Applications. Pharmaceutics 2022 14 10 1990 10.3390/pharmaceutics14101990 36297426
    [Google Scholar]
  88. Chandrasekaran A.R. Nuclease resistance of DNA nanostructures. Nat. Rev. Chem. 2021 5 4 225 239 10.1038/s41570‑021‑00251‑y
    [Google Scholar]
  89. Chen D. Liu X. Lu X. Tian J. Nanoparticle drug delivery systems for synergistic delivery of tumor therapy. Front. Pharmacol. 2023 14 1111991 10.3389/fphar.2023.1111991 36874010
    [Google Scholar]
  90. Drug Available from:https://en.wikipedia.org/wiki/Drug(accessed on 27-8-2024)
  91. Snyder I.S. Cuthbert A.W. Rang H.P. Scarne J. Bloom F.E. Thomas J.A. Stringer J.L. Drug. Available from:https://www.britannica.com/science/drug-chemical-agent(accessed on 27-8-2024)
  92. Gisbert J.P. Gomollón F. Maté J. Pajares J.M. Role of 5-aminosalicylic acid (5-ASA) in treatment of inflammatory bowel disease: a systematic review. Dig. Dis. Sci. 2002 47 3 471 488 10.1023/A:1017987229718 11911332
    [Google Scholar]
  93. Drugs.com - Prescription Drug Information. Available from: https://www.drugs.com(accessed on 27-8-2024)
  94. Mohammadzadeh V. Rahiman N. Hosseinikhah S.M. Barani M. Rahdar A. Jaafari M.R. Sargazi S. Zirak M.R. Pandey S. Bhattacharjee R. Gupta A.K. Thakur V.K. Sibuh B.Z. Gupta P.K. Novel EPR-enhanced strategies for targeted drug delivery in pancreatic cancer: An update. J. Drug Deliv. Sci. Technol. 2022 73 103459 10.1016/j.jddst.2022.103459
    [Google Scholar]
  95. Tenchov R. Bird R. Curtze A.E. Zhou Q. Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021 15 11 16982 17015 10.1021/acsnano.1c04996 34181394
    [Google Scholar]
  96. Basit A.W. Ibekwe V.C. Colonic drug delivery formulation. U.S. Patent US 2007/0243253 A1, 2007.
  97. Sengel Turk C.T. Hascicek C. Gönül N. Colon targeted drug delivery systems. Ankara Universitesi Eczacilik Fakultesi Dergisi. 2006 35 125 148
    [Google Scholar]
  98. Rubinstein A. Sintov A. Colonic drug delivery system. E.Patent 0 527 942 B1, 1999.
  99. Theeuwes F. Altos L. Guittard G.V. Patrick C. Delivery of drug to colon by oral disage form. U.S. Patent 4,904,474, 1990.
  100. Johnson L.K. Sleisenger M.H. Use of 2-hydroxy-5-phenylazobenzoic acid derivative as colon cancer chemoprophylaxis agent and chemotherapeutic agent. WO 95/18622, 1995.
  101. Angiostatin and its use in inhibiting angiogenesis. JP 3880593B2 , 2006.
  102. Scott R.A. Cole E.T. Enteric and colonic delivery using HPMC capsules. U.S. Patent 7,094.425 B2, 2006.
  103. Murray A. Nguyen T.M. Parker C.E. Feagan B.G. MacDonald J.K. Oral 5-aminosalicylic acid for induction of remission in ulcerative colitis. Cochrane Database Syst. Rev. 2020 8 8 CD000543 32786164
    [Google Scholar]
  104. Creed T.J. Probert C.S.J. Review article: steroid resistance in inflammatory bowel disease – mechanisms and therapeutic strategies. Aliment. Pharmacol. Ther. 2007 25 2 111 122 10.1111/j.1365‑2036.2006.03156.x 17229236
    [Google Scholar]
  105. Gisbert J.P. Linares P.M. McNicholl A.G. Maté J. Gomollón F. Meta‐analysis: the efficacy of azathioprine and mercaptopurine in ulcerative colitis. Aliment. Pharmacol. Ther. 2009 30 2 126 137 10.1111/j.1365‑2036.2009.04023.x 19392869
    [Google Scholar]
  106. Glimelius B. Stintzing S. Marshall J. Yoshino T. de Gramont A. Metastatic colorectal cancer: Advances in the folate-fluoropyrimidine chemotherapy backbone. Cancer Treat. Rev. 2021 98 102218 10.1016/j.ctrv.2021.102218 34015686
    [Google Scholar]
  107. Sara J.D. Kaur J. Khodadadi R. Rehman M. Lobo R. Chakrabarti S. Herrmann J. Lerman A. Grothey A. 5-fluorouracil and cardiotoxicity: a review. Ther. Adv. Med. Oncol. 2018 10 10.1177/1758835918780140 29977352
    [Google Scholar]
  108. Pathak S. Banerjee A. Meng W.J. Kumar Nandy S. Gopinath M. Sun X.F. Significant expression of tafazzin (TAZ) protein in colon cancer cells and its downregulation by radiation. Int. J. Radiat. Biol. 2018 94 1 79 87 10.1080/09553002.2018.1400191 29099643
    [Google Scholar]
  109. Dey A. Mitra A. Pathak S. Prasad S. Zhang A.S. Zhang H. Sun X.F. Banerjee A. Recent Advancements, Limitations, and Future Perspectives of the use of Personalized Medicine in Treatment of Colon Cancer. Technol. Cancer Res. Treat. 2023 22 8403 10.1177/15330338231178403 37248615
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010323922240924053921
Loading
/content/journals/cpb/10.2174/0113892010323922240924053921
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Polymer ; Colonic disorders ; Colon drug delivery ; Targeted delivery ; Colon
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test