Skip to content
2000
image of SIRT3, a New Hope in Liver Diseases from Pathogenic Mechanisms to Therapeutic Strategies

Abstract

The liver, the largest internal organ in the human body, regulates multiple reactions and processes, including detoxification, regeneration, and immune defense. Liver diseases have emerged as a significant global public health issue. Numerous studies have indicated that the mitochondrial deacetylase SIRT3 has played various roles in the pathogenesis and pathological progression of liver diseases.

Objectives

This review aims to explore the advances in the study of SIRT3 and liver disease and review possible mechanisms. Natural and chemical activators of SIRT3 are also discussed. The role of SIRT3 in the pathogenic mechanisms and therapeutic strategies of liver disease is summarized by reviewing Pubmed. SIRT3 alleviates liver diseases by regulating fatty acid metabolism, mitochondrial function, and immune-inflammatory response. Meanwhile, Withaferin A, lipoic acid, major royal jelly proteins, and berberine can activate SIRT3 or upregulate its expression, thereby alleviating liver damage. SIRT3 can effectively slow down the progression of liver disease and protect the liver from further damage. The use of SIRT3 as a pharmacological target for the treatment of liver disease is a potential therapeutic approach.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010340592241011052133
2024-10-24
2024-12-28
Loading full text...

Full text loading...

References

  1. Ahn B.H. Kim H.S. Song S. Lee I.H. Liu J. Vassilopoulos A. Deng C.X. Finkel T. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. USA 2008 105 38 14447 14452 10.1073/pnas.0803790105 18794531
    [Google Scholar]
  2. Onyango P. Celic I. McCaffery J.M. Boeke J.D. Feinberg A.P. SIRT3, a human SIR2 homologue, is an NAD- dependent deacetylase localized to mitochondria. Proc. Natl. Acad. Sci. USA 2002 99 21 13653 13658 10.1073/pnas.222538099 12374852
    [Google Scholar]
  3. van de Ven R.A.H. Santos D. Haigis M.C. Mitochondrial Sirtuins and molecular mechanisms of aging. Trends Mol. Med. 2017 23 4 320 331 10.1016/j.molmed.2017.02.005 28285806
    [Google Scholar]
  4. Zhang J. Xiang H. Liu J. Chen Y. He R.R. Liu B. Mitochondrial Sirtuin 3: New emerging biological function and therapeutic target. Theranostics 2020 10 18 8315 8342 10.7150/thno.45922 32724473
    [Google Scholar]
  5. Lombard D.B. Alt F.W. Cheng H.L. Bunkenborg J. Streeper R.S. Mostoslavsky R. Kim J. Yancopoulos G. Valenzuela D. Murphy A. Yang Y. Chen Y. Hirschey M.D. Bronson R.T. Haigis M. Guarente L.P. Farese R.V. Jr Weissman S. Verdin E. Schwer B. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 2007 27 24 8807 8814 10.1128/MCB.01636‑07 17923681
    [Google Scholar]
  6. Kim T.S. Jin Y.B. Kim Y.S. Kim S. Kim J.K. Lee H.M. Suh H.W. Choe J.H. Kim Y.J. Koo B.S. Kim H.N. Jung M. Lee S.H. Kim D.K. Chung C. Son J.W. Min J.J. Kim J.M. Deng C.X. Kim H.S. Lee S.R. Jo E.K. SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions. Autophagy 2019 15 8 1356 1375 10.1080/15548627.2019.1582743 30774023
    [Google Scholar]
  7. Ansari A. Rahman M.S. Saha S.K. Saikot F.K. Deep A. Kim K.H. Function of the SIRT 3 mitochondrial deacetylase in cellular physiology, cancer, and neurodegenerative disease. Aging Cell 2017 16 1 4 16 10.1111/acel.12538 27686535
    [Google Scholar]
  8. Xu X. Zhu X.P. Bai J.Y. Xia P. Li Y. Lu Y. Li X.Y. Gao X. Berberine alleviates nonalcoholic fatty liver induced by a high‐fat diet in mice by activating SIRT3. FASEB J. 2019 33 6 7289 7300 10.1096/fj.201802316R 30848932
    [Google Scholar]
  9. Andrade R.J. Chalasani N. Björnsson E.S. Suzuki A. Kullak-Ublick G.A. Watkins P.B. Devarbhavi H. Merz M. Lucena M.I. Kaplowitz N. Aithal G.P. Drug-induced liver injury. Nat. Rev. Dis. Primers 2019 5 1 58 10.1038/s41572‑019‑0105‑0 31439850
    [Google Scholar]
  10. Guan C. Huang X. Yue J. Xiang H. Shaheen S. Jiang Z. Tao Y. Tu J. Liu Z. Yao Y. Yang W. Hou Z. Liu J. Yang X.D. Zou Q. Su B. Liu Z. Ni J. Cheng J. Wu X. SIRT3-mediated deacetylation of NLRC4 promotes inflammasome activation. Theranostics 2021 11 8 3981 3995 10.7150/thno.55573 33664876
    [Google Scholar]
  11. Hu J. Liu T. Fu F. Cui Z. Lai Q. Zhang Y. Yu B. Liu F. Kou J. Li F. Omentin1 ameliorates myocardial ischemia-induced heart failure via SIRT3/FOXO3a-dependent mitochondrial dynamical homeostasis and mitophagy. J. Transl. Med. 2022 20 1 447 10.1186/s12967‑022‑03642‑x 36192726
    [Google Scholar]
  12. Li R. Wang Z. Wang Y. Sun R. Zou B. Tian X. Liu D. Zhao X. Zhou J. Zhao Y. Yao J. SIRT3 regulates mitophagy in liver fibrosis through deacetylation of PINK1/NIPSNAP1. J. Cell. Physiol. 2023 238 9 2090 2102 10.1002/jcp.31069 37417912
    [Google Scholar]
  13. Tu L.F. Cao L.F. Zhang Y.H. Guo Y.L. Zhou Y.F. Lu W.Q. Zhang T.Z. Zhang T. Zhang G.X. Kurihara H. Li Y.F. He R.R. Sirt3‐dependent deacetylation of COX‐1 counteracts oxidative stress‐induced cell apoptosis. FASEB J. 2019 33 12 14118 14128 10.1096/fj.201900708R 31647884
    [Google Scholar]
  14. Ning L. Rui X. Guorui L. Tinglv F. Donghang L. Chenzhen X. Xiaojing W. Qing G. A novel mechanism for the protection against acute lung injury by melatonin: mitochondrial quality control of lung epithelial cells is preserved through SIRT3-dependent deacetylation of SOD2. Cell. Mol. Life Sci. 2022 79 12 610 10.1007/s00018‑022‑04628‑0 36449070
    [Google Scholar]
  15. Li X. Li D. Pi W. Wang B. Xu S. Yu L. Yao L. Sun Z. Jiang J. Mi Y. LCZ696 protects against doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation. Int. Immunopharmacol. 2022 113 Pt A 109379
    [Google Scholar]
  16. Wise D.R. Ward P.S. Shay J.E.S. Cross J.R. Gruber J.J. Sachdeva U.M. Platt J.M. DeMatteo R.G. Simon M.C. Thompson C.B. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. USA 2011 108 49 19611 19616 10.1073/pnas.1117773108 22106302
    [Google Scholar]
  17. Zhao C. Liang W. Yang Z. Chen Z. Du Z. Gong S. SIRT3-mediated deacetylation protects inner hair cell synapses in a H2O2-induced oxidative stress model in vitro. Exp. Cell Res. 2022 418 2 113280 10.1016/j.yexcr.2022.113280 35835175
    [Google Scholar]
  18. Wu L. Yan X. Sun R. Ma Y. Yao W. Gao B. Zhang Q. You J. Wang H. Han Q. Sun X. Sirt3 restricts tumor initiation via promoting LONP1 deacetylation and K63 ubiquitination. J. Transl. Med. 2023 21 1 81 10.1186/s12967‑023‑03925‑x 36739437
    [Google Scholar]
  19. Li Y. Liang J. Tian X. Chen Q. Zhu L. Wang H. Liu Z. Dai X. Bian C. Sun C. Intermittent fasting promotes adipocyte mitochondrial fusion through Sirt3-mediated deacetylation of Mdh2. Br. J. Nutr. 2023 130 9 1473 1486 10.1017/S000711452300048X 36815302
    [Google Scholar]
  20. Wang D. Tan K.S. Arias-Moreno X. Tan W. Cheng G. Sirt3 increases CNPase enzymatic activity through deacetylation and facilitating substrate accessibility. Biochem. Biophys. Res. Commun. 2021 571 181 187 10.1016/j.bbrc.2021.07.079 34330062
    [Google Scholar]
  21. Song Y.F. Zheng H. Luo Z. Hogstrand C. Bai Z.Y. Wei X.L. Dietary Choline Alleviates High-Fat Diet-Induced Hepatic Lipid Dysregulation via UPRmt Modulated by SIRT3-Mediated mtHSP70 Deacetylation. Int. J. Mol. Sci. 2022 23 8 4204 10.3390/ijms23084204 35457022
    [Google Scholar]
  22. Katwal G. Baral D. Fan X. Weiyang H. Zhang X. Ling L. Xiong Y. Ye Q. Wang Y. SIRT3 a Major Player in Attenuation of Hepatic Ischemia‐Reperfusion Injury by Reducing ROS via Its Downstream Mediators: SOD2, CYP‐D, and HIF‐1 α. Oxid. Med. Cell. Longev. 2018 2018 1 2976957 10.1155/2018/2976957 30538800
    [Google Scholar]
  23. Lehwald N. Tao G.Z. Jang K.Y. Sorkin M. Knoefel W.T. Sylvester K.G. Wnt-β-catenin signaling protects against hepatic ischemia and reperfusion injury in mice. Gastroenterology 2011 141 2 707 718.e5, 718.e1-718.e5 10.1053/j.gastro.2011.04.051 21679710
    [Google Scholar]
  24. Liu L. Xie B. Fan M. Candas-Green D. Jiang J.X. Wei R. Wang Y. Chen H.W. Hu Y. Li J.J. Low-Level Saturated Fatty Acid Palmitate Benefits Liver Cells by Boosting Mitochondrial Metabolism via CDK1-SIRT3-CPT2 Cascade. Dev. Cell 2020 52 2 196 209.e9 10.1016/j.devcel.2019.11.012 31866205
    [Google Scholar]
  25. Cimen H. Han M.J. Yang Y. Tong Q. Koc H. Koc E.C. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 2010 49 2 304 311 10.1021/bi901627u 20000467
    [Google Scholar]
  26. Bell E.L. Guarente L. The SirT3 divining rod points to oxidative stress. Mol. Cell 2011 42 5 561 568 10.1016/j.molcel.2011.05.008 21658599
    [Google Scholar]
  27. Hirschey M.D. Shimazu T. Goetzman E. Jing E. Schwer B. Lombard D.B. Grueter C.A. Harris C. Biddinger S. Ilkayeva O.R. Stevens R.D. Li Y. Saha A.K. Ruderman N.B. Bain J.R. Newgard C.B. Farese R.V. Jr Alt F.W. Kahn C.R. Verdin E. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010 464 7285 121 125 10.1038/nature08778 20203611
    [Google Scholar]
  28. Yu A. Xu Y. Hogstrand C. Zhao T. Tan X.Y. Wei X. Song Y.F. Luo Z. Klf4-Sirt3/Pparα-Lcad pathway contributes to high phosphate-induced lipid degradation. Cell Commun. Signal. 2023 21 1 5 10.1186/s12964‑022‑01008‑w 36624473
    [Google Scholar]
  29. Lu Z. Chen Y. Aponte A.M. Battaglia V. Gucek M. Sack M.N. Prolonged fasting identifies heat shock protein 10 as a Sirtuin 3 substrate: elucidating a new mechanism linking mitochondrial protein acetylation to fatty acid oxidation enzyme folding and function. J. Biol. Chem. 2015 290 4 2466 2476 10.1074/jbc.M114.606228 25505263
    [Google Scholar]
  30. Li R. Xin T. Li D. Wang C. Zhu H. Zhou H. Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: The role of the ERK-CREB pathway and Bnip3-mediated mitophagy. Redox Biol. 2018 18 229 243 10.1016/j.redox.2018.07.011 30056271
    [Google Scholar]
  31. Barroso E. Rodríguez-Rodríguez R. Zarei M. Pizarro-Degado J. Planavila A. Palomer X. Villarroya F. Vázquez-Carrera M. SIRT3 deficiency exacerbates fatty liver by attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through Nrf2. Cell Commun. Signal. 2020 18 1 147 10.1186/s12964‑020‑00640‑8 32912335
    [Google Scholar]
  32. Lambona C. Zwergel C. Valente S. Mai A. SIRT3 Activation a Promise in Drug Development? New Insights into SIRT3 Biology and Its Implications on the Drug Discovery Process. J. Med. Chem. 2024 67 3 1662 1689 10.1021/acs.jmedchem.3c01979 38261767
    [Google Scholar]
  33. Poole B. Oshins R. Huo Z. Aranyos A. West J. Duarte S. Clark V.C. Beduschi T. Zarrinpar A. Brantly M. Khodayari N. Sirtuin3 promotes the degradation of hepatic Z alpha-1 antitrypsin through lipophagy. Hepatol. Commun. 2024 8 2 0370 10.1097/HC9.0000000000000370
    [Google Scholar]
  34. Zhang T. Liu J. Shen S. Tong Q. Ma X. Lin L. SIRT3 promotes lipophagy and chaperon-mediated autophagy to protect hepatocytes against lipotoxicity. Cell Death Differ. 2020 27 1 329 344 10.1038/s41418‑019‑0356‑z 31160717
    [Google Scholar]
  35. Li A. Gao M. Liu B. Qin Y. chen L. Liu H. Wu H. Gong G. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease. Cell Death Dis. 2022 13 5 444 10.1038/s41419‑022‑04906‑6 35534453
    [Google Scholar]
  36. Yu W. Gao B. Li N. Wang J. Qiu C. Zhang G. Liu M. Zhang R. Li C. Ji G. Zhang Y. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: Role of Foxo3A-Parkin-mediated mitophagy. Biochim. Biophys. Acta Mol. Basis Dis. 2017 1863 8 1973 1983 10.1016/j.bbadis.2016.10.021 27794418
    [Google Scholar]
  37. Han R. Liu Y. Li S. Li X.J. Yang W. PINK1-PRKN mediated mitophagy: differences between in vitro and in vivo models. Autophagy 2023 19 5 1396 1405 10.1080/15548627.2022.2139080 36282767
    [Google Scholar]
  38. Gao E. Sun X. Thorne R.F. Zhang X.D. Li J. Shao F. Ma J. Wu M. NIPSNAP1 directs dual mechanisms to restrain senescence in cancer cells. J. Transl. Med. 2023 21 1 401 10.1186/s12967‑023‑04232‑1 37340421
    [Google Scholar]
  39. Sun Z. Fang C. Xu S. Wang B. Li D. Liu X. Mi Y. Guo H. Jiang J. SIRT3 attenuates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome via autophagy. Biochem. Pharmacol. 2023 207 115354 10.1016/j.bcp.2022.115354 36435202
    [Google Scholar]
  40. Zhao W. Sui M. Chen R. Lu H. Zhu Y. Zhang L. Zeng L. SIRT3 protects kidneys from ischemia-reperfusion injury by modulating the DRP1 pathway to induce mitochondrial autophagy. Life Sci. 2021 286 120005 10.1016/j.lfs.2021.120005 34606850
    [Google Scholar]
  41. Li D.P. Chen Y.L. Jiang H.Y. Chen Y. Zeng X.Q. Xu L.L. Ye Y. Ke C.Q. Lin G. Wang J.Y. Gao H. Phosphocreatine attenuates Gynura segetum-induced hepatocyte apoptosis via a SIRT3-SOD2-mitochondrial reactive oxygen species pathway. Drug Des. Devel. Ther. 2019 13 2081 2096 10.2147/DDDT.S203564 31417240
    [Google Scholar]
  42. Li Y. Wang Q. Li J. Shi B. Liu Y. Wang P. SIRT3 affects mitochondrial metabolic reprogramming via the AMPK–PGC‐1α axis in the development of benign prostatic hyperplasia. Prostate 2021 81 15 1135 1148 10.1002/pros.24208 34411320
    [Google Scholar]
  43. Liu J. Li D. Zhang T. Tong Q. Ye R.D. Lin L. SIRT3 protects hepatocytes from oxidative injury by enhancing ROS scavenging and mitochondrial integrity. Cell Death Dis. 2017 8 10 e3158 10.1038/cddis.2017.564 29072685
    [Google Scholar]
  44. Huang L. Zeng X. Li B. Wang C. Zhou M. Lang H. Yi L. Mi M. Dihydromyricetin attenuates palmitic acid-induced oxidative stress by promoting autophagy via SIRT3-ATG4B signaling in hepatocytes. Nutr. Metab. (Lond.) 2021 18 1 83 10.1186/s12986‑021‑00612‑w 34503544
    [Google Scholar]
  45. Su S. Chen G. Gao M. Zhong G. Zhang Z. Wei D. Luo X. Wang Q. Kai-Xin-San protects against mitochondrial dysfunction in Alzheimer’s disease through SIRT3/NLRP3 pathway. Chin. Med. 2023 18 1 26 10.1186/s13020‑023‑00722‑y 36918872
    [Google Scholar]
  46. Traba J. Geiger S.S. Kwarteng-Siaw M. Han K. Ra O.H. Siegel R.M. Gius D. Sack M.N. Prolonged fasting suppresses mitochondrial NLRP3 inflammasome assembly and activation via SIRT3-mediated activation of superoxide dismutase 2. J. Biol. Chem. 2017 292 29 12153 12164 10.1074/jbc.M117.791715 28584055
    [Google Scholar]
  47. Lu Z. Bourdi M. Li J.H. Aponte A.M. Chen Y. Lombard D.B. Gucek M. Pohl L.R. Sack M.N. SIRT3‐dependent deacetylation exacerbates acetaminophen hepatotoxicity. EMBO Rep. 2011 12 8 840 846 10.1038/embor.2011.121 21720390
    [Google Scholar]
  48. Li X. Song S. Xu M. Hua Y. Ding Y. Shan X. Meng G. Wang Y. Sirtuin3 deficiency exacerbates carbon tetrachloride−induced hepatic injury in mice. J. Biochem. Mol. Toxicol. 2019 33 2 e22249 10.1002/jbt.22249 30368983
    [Google Scholar]
  49. Shi C. Jiao F. Wang Y. Chen Q. Wang L. Gong Z. SIRT3 inhibitor 3-TYP exacerbates thioacetamide-induced hepatic injury in mice. Front. Physiol. 2022 13 915193 10.3389/fphys.2022.915193 35923224
    [Google Scholar]
  50. Coleman M.C. Olivier A.K. Jacobus J.A. Mapuskar K.A. Mao G. Martin S.M. Riley D.P. Gius D. Spitz D.R. Superoxide mediates acute liver injury in irradiated mice lacking sirtuin 3. Antioxid. Redox Signal. 2014 20 9 1423 1435 10.1089/ars.2012.5091 23919724
    [Google Scholar]
  51. Mandala A. Chen W.J. Armstrong A. Malhotra M.R. Chavalmane S. McCommis K.S. Chen A. Carpenter D. Biswas P. Gnana-Prakasam J.P. PPARα agonist fenofibrate attenuates iron-induced liver injury in mice by modulating the Sirt3 and β-catenin signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 2021 321 3 G262 G269 10.1152/ajpgi.00129.2021 34287090
    [Google Scholar]
  52. Zhao L. Jin Y. Donahue K. Tsui M. Fish M. Logan C.Y. Wang B. Nusse R. Tissue Repair in the Mouse Liver Following Acute Carbon Tetrachloride Depends on Injury‐Induced Wnt/β‐Catenin Signaling. Hepatology 2019 69 6 2623 2635 10.1002/hep.30563 30762896
    [Google Scholar]
  53. Hirschey M.D. Shimazu T. Jing E. Grueter C.A. Collins A.M. Aouizerat B. Stančáková A. Goetzman E. Lam M.M. Schwer B. Stevens R.D. Muehlbauer M.J. Kakar S. Bass N.M. Kuusisto J. Laakso M. Alt F.W. Newgard C.B. Farese R.V. Jr Kahn C.R. Verdin E. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 2011 44 2 177 190 10.1016/j.molcel.2011.07.019 21856199
    [Google Scholar]
  54. Cheng Y. Mai J. Hou T. Ping J. MicroRNA-421 induces hepatic mitochondrial dysfunction in non-alcoholic fatty liver disease mice by inhibiting sirtuin 3. Biochem. Biophys. Res. Commun. 2016 474 1 57 63 10.1016/j.bbrc.2016.04.065 27107702
    [Google Scholar]
  55. Nasoni M.G. Carloni S. Canonico B. Burattini S. Cesarini E. Papa S. Pagliarini M. Ambrogini P. Balduini W. Luchetti F. Melatonin reshapes the mitochondrial network and promotes intercellular mitochondrial transfer via tunneling nanotubes after ischemic‐like injury in hippocampal HT22 cells. J. Pineal Res. 2021 71 1 e12747 10.1111/jpi.12747 34085316
    [Google Scholar]
  56. Weng S.W. Wu J.C. Shen F.C. Chang Y.H. Su Y.J. Lian W.S. Tai M.H. Su C.H. Chuang J.H. Lin T.K. Liou C.W. Chu T.H. Kao Y.H. Wang F.S. Wang P.W. Chaperonin counteracts diet-induced non-alcoholic fatty liver disease by aiding sirtuin 3 in the control of fatty acid oxidation. Diabetologia 2023 66 5 913 930 10.1007/s00125‑023‑05869‑9 36692509
    [Google Scholar]
  57. Zhang S.J. Li Y.F. Wang G.E. Tan R.R. Tsoi B. Mao G.W. Zhai Y.J. Cao L.F. Chen M. Kurihara H. Wang Q. He R.R. Caffeine ameliorates high energy diet-induced hepatic steatosis: sirtuin 3 acts as a bridge in the lipid metabolism pathway. Food Funct. 2015 6 8 2578 2587 10.1039/C5FO00247H 26114447
    [Google Scholar]
  58. Wang Y. Li C. Gu J. Chen C. Duanmu J. Miao J. Yao W. Tao J. Tu M. Xiong B. Zhao L. Liu Z. Celastrol exerts anti‐inflammatory effect in liver fibrosis via activation of AMPK‐SIRT3 signalling. J. Cell. Mol. Med. 2020 24 1 941 953 10.1111/jcmm.14805 31742890
    [Google Scholar]
  59. Zhang Y. Deng Y. Tang K. Chen R. Liang S. Liang Y. Han L. Jin L. Liang Z. Chen Y. Yang Q. Berberine Ameliorates High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Rats via Activation of SIRT3/AMPK/ACC Pathway. Curr. Med. Sci. 2019 39 1 37 43 10.1007/s11596‑019‑1997‑3 30868489
    [Google Scholar]
  60. Sun R. Kang X. Zhao Y. Wang Z. Wang R. Fu R. Li Y. Hu Y. Wang Z. Shan W. Zhou J. Tian X. Yao J. Sirtuin 3‐mediated deacetylation of acyl‐ CoA synthetase family member 3 by protocatechuic acid attenuates non‐alcoholic fatty liver disease. Br. J. Pharmacol. 2020 177 18 4166 4180 10.1111/bph.15159 32520409
    [Google Scholar]
  61. Jacobs K.M. Pennington J.D. Bisht K.S. Aykin-Burns N. Kim H.S. Mishra M. Sun L. Nguyen P. Ahn B.H. Leclerc J. Deng C.X. Spitz D.R. Gius D. SIRT3 interacts with the daf-16 homolog FOXO3a in the Mitochondria, as well as increases FOXO3a Dependent Gene expression. Int. J. Biol. Sci. 2008 4 5 291 299 10.7150/ijbs.4.291 18781224
    [Google Scholar]
  62. Zhang J. Song X. Cao W. Lu J. Wang X. Wang G. Wang Z. Chen X. Autophagy and mitochondrial dysfunction in adjuvant-arthritis rats treatment with resveratrol. Sci. Rep. 2016 6 1 32928 10.1038/srep32928 27611176
    [Google Scholar]
  63. Zhang B. Cui S. Bai X. Zhuo L. Sun X. Hong Q. Fu B. Wang J. Chen X. Cai G. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3–FOXO1 signaling pathway. Age (Omaha) 2013 35 6 2237 2253 10.1007/s11357‑013‑9520‑4 23494737
    [Google Scholar]
  64. Wang Y. Chen J. Kong W. Zhu R. Liang K. Kan Q. Lou Y. Liu X. Regulation of SIRT3/FOXO1 Signaling Pathway in Rats with Non-alcoholic Steatohepatitis by Salvianolic Acid B. Arch. Med. Res. 2017 48 6 506 512 10.1016/j.arcmed.2017.11.016 29224910
    [Google Scholar]
  65. Zheng Y. Wang S. Wu J. Wang Y. Mitochondrial metabolic dysfunction and non-alcoholic fatty liver disease: new insights from pathogenic mechanisms to clinically targeted therapy. J. Transl. Med. 2023 21 1 510 10.1186/s12967‑023‑04367‑1 37507803
    [Google Scholar]
  66. Li S. Dou X. Ning H. Song Q. Wei W. Zhang X. Shen C. Li J. Sun C. Song Z. Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity. Hepatology 2017 66 3 936 952 10.1002/hep.29229 28437863
    [Google Scholar]
  67. Chen P. Yuan M. Yao L. Xiong Z. Liu P. Wang Z. Jiang Y. Li L. Human umbilical cord-derived mesenchymal stem cells ameliorate liver fibrosis by improving mitochondrial function via Slc25a47-Sirt3 signaling pathway. Biomed. Pharmacother. 2024 171 116133 10.1016/j.biopha.2024.116133 38198960
    [Google Scholar]
  68. Zhang Y. Wen P. Luo J. Ding H. Cao H. He W. Zen K. Zhou Y. Yang J. Jiang L. Sirtuin 3 regulates mitochondrial protein acetylation and metabolism in tubular epithelial cells during renal fibrosis. Cell Death Dis. 2021 12 9 847 10.1038/s41419‑021‑04134‑4 34518519
    [Google Scholar]
  69. Gu J. Chen C. Wang J. Chen T. Yao W. Yan T. Liu Z. Withaferin A. Withaferin A Exerts Preventive Effect on Liver Fibrosis through Oxidative Stress Inhibition in a Sirtuin 3-Dependent Manner. Oxid. Med. Cell. Longev. 2020 2020 1 17 10.1155/2020/2452848 33029279
    [Google Scholar]
  70. Li Y.H. Choi D.H. Lee E.H. Seo S.R. Lee S. Cho E.H. Sirtuin 3 (SIRT3) Regulates α-Smooth Muscle Actin (α-SMA) Production through the Succinate Dehydrogenase-G Protein-coupled Receptor 91 (GPR91) Pathway in Hepatic Stellate Cells. J. Biol. Chem. 2016 291 19 10277 10292 10.1074/jbc.M115.692244 26912655
    [Google Scholar]
  71. Ren J.H. Chen X. Zhou L. Tao N.N. Zhou H.Z. Liu B. Li W.Y. Huang A.L. Chen J. Protective Role of Sirtuin3 (SIRT3) in Oxidative Stress Mediated by Hepatitis B Virus X Protein Expression. PLoS One 2016 11 3 e0150961 10.1371/journal.pone.0150961 26950437
    [Google Scholar]
  72. Bei J. Chen Y. Zhang Q. Wang X. Lin L. Huang J. Huang W. Cai M. Cai W. Guo Y. Zhu K. HBV suppresses macrophage immune responses by impairing the TCA cycle through the induction of CS/PDHC hyperacetylation. Hepatol. Commun. 2023 7 11 0294
    [Google Scholar]
  73. Ren J.H. Hu J.L. Cheng S.T. Yu H.B. Wong V.K.W. Law B.Y.K. Yang Y.F. Huang Y. Liu Y. Chen W.X. Cai X.F. Tang H. Hu Y. Zhang W.L. Liu X. Long Q.X. Zhou L. Tao N.N. Zhou H.Z. Yang Q.X. Ren F. He L. Gong R. Huang A.L. Chen J. SIRT3 restricts hepatitis B virus transcription and replication through epigenetic regulation of covalently closed circular DNA involving suppressor of variegation 3‐9 homolog 1 and SET domain containing 1A histone methyltransferases. Hepatology 2018 68 4 1260 1276 10.1002/hep.29912 29624717
    [Google Scholar]
  74. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  75. Wang R. Liu Y. Mi X. Chen Q. Jiang P. Hou J. Lin Y. Li S. Ji B. Fang Y. Sirt3 promotes hepatocellular carcinoma cells sensitivity to regorafenib through the acceleration of mitochondrial dysfunction. Arch. Biochem. Biophys. 2020 689 108415 10.1016/j.abb.2020.108415 32562663
    [Google Scholar]
  76. Tao N.N. Zhou H.Z. Tang H. Cai X.F. Zhang W.L. Ren J.H. Zhou L. Chen X. Chen K. Li W.Y. Liu B. Yang Q.X. Cheng S.T. Huang L.X. Huang A.L. Chen J. Sirtuin 3 enhanced drug sensitivity of human hepatoma cells through glutathione S-transferase pi 1/JNK signaling pathway. Oncotarget 2016 7 31 50117 50130 10.18632/oncotarget.10319 27367026
    [Google Scholar]
  77. Jo H. Park Y. Kim T. Kim J. Lee J.S. Kim S.Y. Chung J. Ko H. Pyun J.C. Kim K.S. Lee M. Yun M. Modulation of SIRT3 expression through CDK4/6 enhances the anti-cancer effect of sorafenib in hepatocellular carcinoma cells. BMC Cancer 2020 20 1 332 10.1186/s12885‑020‑06822‑4 32306906
    [Google Scholar]
  78. De Matteis S. Scarpi E. Granato A.M. Vespasiani-Gentilucci U. La Barba G. Foschi F.G. Bandini E. Ghetti M. Marisi G. Cravero P. Gramantieri L. Cucchetti A. Ercolani G. Santini D. Frassineti G.L. Faloppi L. Scartozzi M. Cascinu S. Casadei-Gardini A. Role of SIRT-3, p-mTOR and HIF-1α in Hepatocellular Carcinoma Patients Affected by Metabolic Dysfunctions and in Chronic Treatment with Metformin. Int. J. Mol. Sci. 2019 20 6 1503 10.3390/ijms20061503 30917505
    [Google Scholar]
  79. Liu Y. Liu Y.L. Cheng W. Yin X.M. Jiang B. The expression of SIRT3 in primary hepatocellular carcinoma and the mechanism of its tumor suppressing effects. Eur. Rev. Med. Pharmacol. Sci. 2017 21 5 978 998 28338198
    [Google Scholar]
  80. Wang J.X. Yi Y. Li Y.W. Cai X.Y. He H.W. Ni X.C. Zhou J. Cheng Y.F. Jin J.J. Fan J. Qiu S.J. Down-regulation of sirtuin 3 is associated with poor prognosis in hepatocellular carcinoma after resection. BMC Cancer 2014 14 1 297 10.1186/1471‑2407‑14‑297 24774224
    [Google Scholar]
  81. Torrens-Mas M. Oliver J. Roca P. Sastre-Serra J. SIRT3: Oncogene and Tumor Suppressor in Cancer. Cancers (Basel) 2017 9 7 90 10.3390/cancers9070090 28704962
    [Google Scholar]
  82. Huang X. Xiao G. Huang T. Chen Z. Gao W. Zheng B. Wang X. SIRT3 functions as a tumor suppressor in hepatocellular carcinoma. Tumour. Biol. 2021 39 3 1 8 10.21203/rs.3.rs‑420738/v1
    [Google Scholar]
  83. Bu L. Zhang Z. Chen J. Fan Y. Guo J. Su Y. Wang H. Zhang X. Wu X. Jiang Q. Gao B. Wang L. Hu K. Zhang X. Xie W. Wei W. Kuang M. Guo J. High-fat diet promotes liver tumorigenesis via palmitoylation and activation of AKT. Gut 2024 73 7 1156 1168 10.1136/gutjnl‑2023‑330826 38191266
    [Google Scholar]
  84. Zeng X. Wang N. Zhai H. Wang R. Wu J. Pu W. SIRT3 functions as a tumor suppressor in hepatocellular carcinoma. Tumour Biol. 2017 39 3 10.1177/1010428317691178 28347248
    [Google Scholar]
  85. Jin J. Bai L. Wang D. Ding W. Cao Z. Yan P. Li Y. Xi L. Wang Y. Zheng X. Wei H. Ding C. Wang Y. SIRT3 ‐dependent delactylation of cyclin E2 prevents hepatocellular carcinoma growth. EMBO Rep. 2023 24 5 e56052 10.15252/embr.202256052 36896611
    [Google Scholar]
  86. Kim H. Moon S. Lee D. Park J. Kim C.H. Kim Y.M. Choi Y.K. Korean Red Ginseng-Induced SIRT3 Promotes the Tom22–HIF-1α Circuit in Normoxic Astrocytes. Cells 2023 12 11 1512 10.3390/cells12111512 37296633
    [Google Scholar]
  87. Koh Y.C. Lin S.J. Hsu K.Y. Nagabhushanam K. Ho C.T. Pan M.H. Pterostilbene Enhances Thermogenesis and Mitochondrial Biogenesis by Activating the SIRT1/PGC‐1α/SIRT3 Pathway to Prevent Western Diet‐Induced Obesity. Mol. Nutr. Food Res. 2023 67 18 2300370 10.1002/mnfr.202300370 37485771
    [Google Scholar]
  88. Jin H. Zhao K. Li J. Xu Z. Liao S. Sun S. Matrine alleviates oxidative stress and ferroptosis in severe acute pancreatitis-induced acute lung injury by activating the UCP2/SIRT3/PGC1α pathway. Int. Immunopharmacol. 2023 117 109981 10.1016/j.intimp.2023.109981 37012871
    [Google Scholar]
  89. Li Q. Liao J. Chen W. Zhang K. Li H. Ma F. Zhang H. Han Q. Guo J. Li Y. Hu L. Pan J. Tang Z. NAC alleviative ferroptosis in diabetic nephropathy via maintaining mitochondrial redox homeostasis through activating SIRT3-SOD2/Gpx4 pathway. Free Radic. Biol. Med. 2022 187 158 170 10.1016/j.freeradbiomed.2022.05.024 35660452
    [Google Scholar]
  90. Lv D. Luo M. Cheng Z. Wang R. Yang X. Guo Y. Huang L. Li X. Huang B. Shen J. Luo S. Yan J. Tubeimoside I. Tubeimoside I Ameliorates Myocardial Ischemia‐Reperfusion Injury through SIRT3‐Dependent Regulation of Oxidative Stress and Apoptosis. Oxid. Med. Cell. Longev. 2021 2021 1 5577019 10.1155/2021/5577019 34795840
    [Google Scholar]
  91. Chang G. Chen Y. Zhang H. Zhou W. Trans sodium crocetinate alleviates ischemia/reperfusion-induced myocardial oxidative stress and apoptosis via the SIRT3/FOXO3a/SOD2 signaling pathway. Int. Immunopharmacol. 2019 71 361 371 10.1016/j.intimp.2019.03.056 30952100
    [Google Scholar]
  92. Wei L. Sun X. Qi X. Zhang Y. Li Y. Xu Y. Dihydromyricetin Ameliorates Cardiac Ischemia/Reperfusion Injury through Sirt3 Activation. BioMed Res. Int. 2019 2019 1 9 10.1155/2019/6803943 31139646
    [Google Scholar]
  93. Eid R.A. Bin-Meferij M.M. El-kott A.F. Eleawa S.M. Zaki M.S.A. Al-Shraim M. El-Sayed F. Eldeen M.A. Alkhateeb M.A. Alharbi S.A. Aldera H. Khalil M.A. Exendin-4 Protects Against Myocardial Ischemia-Reperfusion Injury by Upregulation of SIRT1 and SIRT3 and Activation of AMPK. J. Cardiovasc. Transl. Res. 2021 14 4 619 635 10.1007/s12265‑020‑09984‑5 32239434
    [Google Scholar]
  94. Xu S. Li L. Wu J. An S. Fang H. Han Y. Huang Q. Chen Z. Zeng Z. Melatonin Attenuates Sepsis-Induced Small-Intestine Injury by Upregulating SIRT3-Mediated Oxidative-Stress Inhibition, Mitochondrial Protection, and Autophagy Induction. Front. Immunol. 2021 12 625627 10.3389/fimmu.2021.625627 33790896
    [Google Scholar]
  95. Wang J. Li J. He Y. Huang X. Feng J. Liu L. Liu Y. Jiang X. Jia J. The SIRT3 activator ganoderic acid D regulates airway mucin MUC5AC expression via the NRF2/GPX4 pathway. Pulm. Pharmacol. Ther. 2023 83 102262 10.1016/j.pupt.2023.102262 37879430
    [Google Scholar]
  96. Liu J. Zhang T. Zhu J. Ruan S. Li R. Guo B. Lin L. Honokiol attenuates lipotoxicity in hepatocytes via activating SIRT3-AMPK mediated lipophagy. Chin. Med. 2021 16 1 115 10.1186/s13020‑021‑00528‑w 34758848
    [Google Scholar]
  97. Qin Y. Shi Y. Yu Q. Yang S. Wang Y. Dai X. Li G. Cheng Z. Vitamin B12 alleviates myocardial ischemia/reperfusion injury via the SIRT3/AMPK signaling pathway. Biomed. Pharmacother. 2023 163 114761 10.1016/j.biopha.2023.114761 37126929
    [Google Scholar]
  98. Yu L.M. Dong X. Xu Y.L. Zhou Z.J. Huang Y.T. Zhao J.K. Xu D.Y. Xue X.D. Zhao Q.S. Liu T. Yin Z.T. Jiang H. Wang H.S. Icariin attenuates excessive alcohol consumption-induced susceptibility to atrial fibrillation through SIRT3 signaling. Biochim. Biophys. Acta Mol. Basis Dis. 2022 1868 10 166483 10.1016/j.bbadis.2022.166483 35798229
    [Google Scholar]
  99. Ji-hong Y. Yu M. Ling-hong Y. Jing-jing G. Ling-li X. Lv W. Yong-mei J. Baicalein attenuates bleomycin-induced lung fibroblast senescence and lung fibrosis through restoration of Sirt3 expression. Pharm. Biol. 2023 61 1 288 297 10.1080/13880209.2022.2160767 36815239
    [Google Scholar]
  100. Wang X. Wu H. An J. Zhang G. Chen Y. Fu L. Tao L. Liang G. Shen X. Cyclovirobuxine D alleviates aldosterone-induced myocardial hypertrophy by protecting mitochondrial function depending on the mutual regulation of Nrf2-SIRT3. Biomed. Pharmacother. 2023 167 115618 10.1016/j.biopha.2023.115618 37793277
    [Google Scholar]
  101. Zhang X. Lu X. Zhou Y. Guo X. Chang Y. Major royal jelly proteins prevents NAFLD by improving mitochondrial function and lipid accumulation through activating the AMPK/SIRT3 pathway in vitro. J. Food Sci. 2021 86 3 1105 1113 10.1111/1750‑3841.15625 33580500
    [Google Scholar]
  102. Valdecantos M.P. Pérez-Matute P. González-Muniesa P. Prieto-Hontoria P.L. Moreno-Aliaga M.J. Martínez J.A. Lipoic acid improves mitochondrial function in nonalcoholic steatosis through the stimulation of sirtuin 1 and sirtuin 3. Obesity (Silver Spring) 2012 20 10 1974 1983 10.1038/oby.2012.32 22327056
    [Google Scholar]
  103. He H. Liu P. Li P. Dexmedetomidine Ameliorates Cardiac Ischemia/Reperfusion Injury by Enhancing Autophagy Through Activation of the AMPK/SIRT3 Pathway. Drug Des. Devel. Ther. 2023 17 3205 3218 10.2147/DDDT.S428024 37908314
    [Google Scholar]
  104. Qin S.G. Tian H.Y. Wei J. Han Z.H. Zhang M.J. Hao G.H. Liu X. Pan L.F. 3-Bromo-4,5-Dihydroxybenzaldehyde Protects Against Myocardial Ischemia and Reperfusion Injury Through the Akt-PGC1α-Sirt3 Pathway. Front. Pharmacol. 2018 9 722 10.3389/fphar.2018.00722 30042676
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010340592241011052133
Loading
/content/journals/cpb/10.2174/0113892010340592241011052133
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: SIRT3 ; mitochondrial autophagy ; oxidative stress ; lipid metabolism ; liver disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test