Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Gastric cancer is a common malignant tumor of the digestive tract, both domestically and internationally. It has high incidence and mortality rates, posing a significant threat to human health. The levels of blood copper are elevated in patients with gastric cancer. However, the exact relationship between copper overload and the malignant phenotype of gastric cancer is still unclear. This study aims to investigate the role of the Cuproptosis-related factor FDX1 in the conversion of gastric cancer to a malignant phenotype.

Methods

Firstly, the relative mRNA and protein expression levels of FDX1 in gastric cancer were detected. Secondly, lentiviral transfection of gastric cancer cell lines was performed, and the effects of FDX1 functional intervention on the proliferation, invasion and migration of gastric cancer cells were assessed by CCK-8, colony formation, EdU proliferation, cell scratch and Transwell assays. Thirdly, the differential alteration of genes after overexpression of FDX1 was also analyzed by transcriptome sequencing. Finally, we assessed the tumour-forming capacity by the xenograft model.

Results

FDX1 is significantly upregulated in gastric cancer. The inhibition of FDX1 function results in the suppression of malignant phenotypic transformation in gastric cancer cells. Conversely, overexpression of FDX1 function leads to alterations in tumor-related signaling pathways and the tumor microenvironment.

Conclusion

FDX1 plays a significant role in the malignant phenotypic transformation of gastric cancer cells. Further investigation into the regulatory mechanism of FDX1 in the malignant transformation of gastric cancer will enhance our understanding of the involvement of Cuproptosis in gastric cancer.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010301997240527162423
2024-06-24
2024-12-27
Loading full text...

Full text loading...

References

  1. MeyerA.R. GoldenringJ.R. Injury, repair, inflammation and metaplasia in the stomach.J. Physiol.2018596173861386710.1113/JP275512 29427515
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  3. MillerK.D. Fidler-BenaoudiaM. KeeganT.H. HippH.S. JemalA. SiegelR.L. Cancer statistics for adolescents and young adults, 2020.CA Cancer J. Clin.202070644345910.3322/caac.21637 32940362
    [Google Scholar]
  4. KarimiP. IslamiF. AnandasabapathyS. FreedmanN.D. KamangarF. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention.Cancer Epidemiol. Biomarkers Prev.201423570071310.1158/1055‑9965.EPI‑13‑1057 24618998
    [Google Scholar]
  5. GuR. XiaY. LiP. ZouD. LuK. RenL. ZhangH. SunZ. Ferroptosis and its role in gastric cancer.Front. Cell Dev. Biol.20221086034410.3389/fcell.2022.860344 35846356
    [Google Scholar]
  6. LiD. WangY. DongC. ChenT. DongA. RenJ. LiW. ShuG. YangJ. ShenW. QinL. HuL. ZhouJ. CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1.Oncogene2023422839810.1038/s41388‑022‑02537‑x 36369321
    [Google Scholar]
  7. ZhangH. DengT. LiuR. NingT. YangH. LiuD. ZhangQ. LinD. GeS. BaiM. WangX. ZhangL. LiH. YangY. JiZ. WangH. YingG. BaY. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer.Mol. Cancer20201914310.1186/s12943‑020‑01168‑8 32106859
    [Google Scholar]
  8. QuX. LiuB. WangL. LiuL. ZhaoW. LiuC. DingJ. ZhaoS. XuB. YuH. ZhangX. ChaiJ. Loss of cancer-associated fibroblast-derived exosomal DACT3-AS1 promotes malignant transformation and ferroptosis-mediated oxaliplatin resistance in gastric cancer.Drug Resist. Updat.20236810093610.1016/j.drup.2023.100936 36764075
    [Google Scholar]
  9. ShaoW. YangZ. FuY. ZhengL. LiuF. ChaiL. JiaJ. The pyroptosis-related signature predicts prognosis and indicates immune microenvironment infiltration in gastric cancer.Front. Cell Dev. Biol.2021967648510.3389/fcell.2021.676485 34179006
    [Google Scholar]
  10. WangZ. CaoL. ZhouS. LyuJ. GaoY. YangR. Construction and validation of a novel pyroptosis-related four-lncrna prognostic signature related to gastric cancer and immune infiltration.Front. Immunol.20221385478510.3389/fimmu.2022.854785 35392086
    [Google Scholar]
  11. XiaY. JinY. CuiD. WuX. SongC. JinW. HuangH. Antitumor effect of simvastatin in combination with dna methyltransferase inhibitor on gastric cancer via GSDME-mediated pyroptosis.Front. Pharmacol.20221386054610.3389/fphar.2022.860546 35517821
    [Google Scholar]
  12. PanH. PanJ. LiP. GaoJ. Characterization of PANoptosis patterns predicts survival and immunotherapy response in gastric cancer.Clin. Immunol.202223810901910.1016/j.clim.2022.109019 35470064
    [Google Scholar]
  13. KhanM. LinJ. WangB. ChenC. HuangZ. TianY. YuanY. BuJ. A novel necroptosis-related gene index for predicting prognosis and a cold tumor immune microenvironment in stomach adenocarcinoma.Front. Immunol.20221396816510.3389/fimmu.2022.968165 36389725
    [Google Scholar]
  14. GuoD. ZhangW. YangH. BiJ. XieY. ChengB. WangY. ChenS. Celastrol induces necroptosis and ameliorates inflammation via targeting biglycan in human gastric carcinoma.Int. J. Mol. Sci.20192022571610.3390/ijms20225716 31739592
    [Google Scholar]
  15. ChenG. ZhangJ. TengW. LuoY. JiX. FDX1 inhibits thyroid cancer malignant progression by inducing cuprotosis.Heliyon202398e1865510.1016/j.heliyon.2023.e18655 37554785
    [Google Scholar]
  16. HanC. ZhangK. MoX. Construction of a cuprotosis-related gene-based model to improve the prognostic evaluation of patients with gastric cancer.J. Immunol. Res.2022202213510.1155/2022/8087622 36249422
    [Google Scholar]
  17. TsvetkovP. CoyS. PetrovaB. DreishpoonM. VermaA. AbdusamadM. RossenJ. Joesch-CohenL. HumeidiR. SpanglerR.D. EatonJ.K. FrenkelE. KocakM. CorselloS.M. LutsenkoS. KanarekN. SantagataS. GolubT.R. Copper induces cell death by targeting lipoylated TCA cycle proteins.Science202237565861254126110.1126/science.abf0529 35298263
    [Google Scholar]
  18. DenoyerD. MasaldanS. La FontaineS. CaterM.A. Targeting copper in cancer therapy: ‘Copper That Cancer’.Metallomics20157111459147610.1039/C5MT00149H 26313539
    [Google Scholar]
  19. LiuY. GuanX. WangM. WangN. ChenY. LiB. XuZ. FuF. DuC. ZhengZ. Disulfiram/Copper induces antitumor activity against gastric cancer via the ROS/MAPK and NPL4 pathways.Bioengineered20221336579658910.1080/21655979.2022.2038434 35290151
    [Google Scholar]
  20. ZhangZ. MaY. GuoX. DuY. ZhuQ. WangX. DuanC. FDX1 can impact the prognosis and mediate the metabolism of lung adenocarcinoma.Front. Pharmacol.20211274913410.3389/fphar.2021.749134 34690780
    [Google Scholar]
  21. ZhaoX. ChenJ. YinS. ShiJ. ZhengM. HeC. MengH. HanY. HanJ. GuoJ. YuanZ. WangY. The expression of cuproptosis-related genes in hepatocellular carcinoma and their relationships with prognosis.Front. Oncol.20221299246810.3389/fonc.2022.992468 36313717
    [Google Scholar]
  22. DingL. LiW. TuJ. CaoZ. LiJ. CaoH. LiangJ. LiangY. YuQ. LiG. Identification of cuproptosis-related subtypes, cuproptosis-related gene prognostic index in hepatocellular carcinoma.Front. Immunol.20221398915610.3389/fimmu.2022.989156 36177029
    [Google Scholar]
  23. WangT. LiuY. LiQ. LuoY. LiuD. LiB. Cuproptosis-related gene FDX1 expression correlates with the prognosis and tumor immune microenvironment in clear cell renal cell carcinoma.Front. Immunol.20221399982310.3389/fimmu.2022.999823 36225932
    [Google Scholar]
  24. BianZ. FanR. XieL. A novel cuproptosis-related prognostic gene signature and validation of differential expression in clear cell renal cell carcinoma.Genes202213585110.3390/genes13050851 35627236
    [Google Scholar]
  25. LuJ. LingX. SunY. LiuL. LiuL. WangX. LuC. RenC. HanX. YuZ. FDX1 enhances endometriosis cell cuproptosis via G6PD-mediated redox homeostasis.Apoptosis2023287-81128114010.1007/s10495‑023‑01845‑1 37119432
    [Google Scholar]
  26. NagalakshmiU. WaernK. SnyderM. RNA-Seq: A method for comprehensive transcriptome analysis.Curr Protoc Mol Biol.2010441113
    [Google Scholar]
  27. The gene ontology resource: 20 years and still GOing strong.Nucleic Acids Res.201947D1D330D33810.1093/nar/gky1055 30395331
    [Google Scholar]
  28. AleksanderS.A. BalhoffJ. CarbonS. CherryJ.M. DrabkinH.J. EbertD. FeuermannM. GaudetP. HarrisN.L. HillD.P. LeeR. MiH. MoxonS. MungallC.J. MuruganuganA. MushayahamaT. SternbergP.W. ThomasP.D. Van AukenK. RamseyJ. SiegeleD.A. ChisholmR.L. FeyP. AspromonteM.C. NugnesM.V. QuagliaF. TosattoS. GiglioM. NadendlaS. AntonazzoG. AttrillH. dos SantosG. MarygoldS. StreletsV. TaboneC.J. ThurmondJ. ZhouP. AhmedS.H. AsanitthongP. Luna BuitragoD. ErdolM.N. GageM.C. Ali KadhumM. LiK.Y.C. LongM. MichalakA. PesalaA. PritazahraA. SaverimuttuS.C.C. SuR. ThurlowK.E. LoveringR.C. LogieC. OliferenkoS. BlakeJ. ChristieK. CorbaniL. DolanM.E. DrabkinH.J. HillD.P. NiL. SitnikovD. SmithC. CuzickA. SeagerJ. CooperL. ElserJ. JaiswalP. GuptaP. JaiswalP. NaithaniS. Lera-RamirezM. RutherfordK. WoodV. De PonsJ.L. DwinellM.R. HaymanG.T. KaldunskiM.L. KwitekA.E. LaulederkindS.J.F. TutajM.A. VediM. WangS.J. D’EustachioP. AimoL. AxelsenK. BridgeA. Hyka-NouspikelN. MorgatA. AleksanderS.A. CherryJ.M. EngelS.R. KarraK. MiyasatoS.R. NashR.S. SkrzypekM.S. WengS. WongE.D. BakkerE. BerardiniT.Z. ReiserL. AuchinclossA. AxelsenK. Argoud-PuyG. BlatterM.C. BoutetE. BreuzaL. BridgeA. Casals-CasasC. CoudertE. EstreicherA. Livia FamigliettiM. FeuermannM. GosA. Gruaz-GumowskiN. HuloC. Hyka-NouspikelN. JungoF. Le MercierP. LieberherrD. MassonP. MorgatA. PedruzziI. PourcelL. PouxS. RivoireC. SundaramS. BatemanA. Bowler-BarnettE. Bye-A-JeeH. DennyP. IgnatchenkoA. IshtiaqR. LockA. LussiY. MagraneM. MartinM.J. OrchardS. RaposoP. SperettaE. TyagiN. WarnerK. ZaruR. DiehlA.D. LeeR. ChanJ. DiamantakisS. RacitiD. ZarowieckiM. FisherM. James-ZornC. PonferradaV. ZornA. RamachandranS. RuzickaL. WesterfieldM. AleksanderS.A. BalhoffJ. CarbonS. CherryJ.M. DrabkinH.J. EbertD. FeuermannM. GaudetP. HarrisN.L. HillD.P. LeeR. MiH. MoxonS. MungallC.J. MuruganuganA. MushayahamaT. SternbergP.W. ThomasP.D. Van AukenK. RamseyJ. SiegeleD.A. ChisholmR.L. FeyP. AspromonteM.C. NugnesM.V. QuagliaF. TosattoS. GiglioM. NadendlaS. AntonazzoG. AttrillH. dos SantosG. MarygoldS. StreletsV. TaboneC.J. ThurmondJ. ZhouP. AhmedS.H. AsanitthongP. Luna BuitragoD. ErdolM.N. GageM.C. Ali KadhumM. LiK.Y.C. LongM. MichalakA. PesalaA. PritazahraA. SaverimuttuS.C.C. SuR. ThurlowK.E. LoveringR.C. LogieC. OliferenkoS. BlakeJ. ChristieK. CorbaniL. DolanM.E. DrabkinH.J. HillD.P. NiL. SitnikovD. SmithC. CuzickA. SeagerJ. CooperL. ElserJ. JaiswalP. GuptaP. JaiswalP. NaithaniS. Lera-RamirezM. RutherfordK. WoodV. De PonsJ.L. DwinellM.R. HaymanG.T. KaldunskiM.L. KwitekA.E. LaulederkindS.J.F. TutajM.A. VediM. WangS-J. D’EustachioP. AimoL. AxelsenK. BridgeA. Hyka-NouspikelN. MorgatA. AleksanderS.A. CherryJ.M. EngelS.R. KarraK. MiyasatoS.R. NashR.S. SkrzypekM.S. WengS. WongE.D. BakkerE. BerardiniT.Z. ReiserL. AuchinclossA. AxelsenK. Argoud-PuyG. BlatterM-C. BoutetE. BreuzaL. BridgeA. Casals-CasasC. CoudertE. EstreicherA. Livia FamigliettiM. FeuermannM. GosA. Gruaz-GumowskiN. HuloC. Hyka-NouspikelN. JungoF. Le MercierP. LieberherrD. MassonP. MorgatA. PedruzziI. PourcelL. PouxS. RivoireC. SundaramS. BatemanA. Bowler-BarnettE. Bye-A-JeeH. DennyP. IgnatchenkoA. IshtiaqR. LockA. LussiY. MagraneM. MartinM.J. OrchardS. RaposoP. SperettaE. TyagiN. WarnerK. ZaruR. DiehlA.D. LeeR. ChanJ. DiamantakisS. RacitiD. ZarowieckiM. FisherM. James-ZornC. PonferradaV. ZornA. RamachandranS. RuzickaL. WesterfieldM. The gene ontology knowledgebase in 2023.Genetics20232241iyad03110.1093/genetics/iyad031 36866529
    [Google Scholar]
  29. KanehisaM. FurumichiM. SatoY. KawashimaM. Ishiguro-WatanabeM. KEGG for taxonomy-based analysis of pathways and genomes.Nucleic Acids Res.202351D1D587D59210.1093/nar/gkac963 36300620
    [Google Scholar]
  30. KanehisaM. SatoY. KawashimaM. KEGG mapping tools for uncovering hidden features in biological data.Protein Sci.2022311475310.1002/pro.4172 34423492
    [Google Scholar]
  31. HuckvaleE. MoseleyH.N.B. kegg_pull: A software package for the RESTful access and pulling from the Kyoto Encyclopedia of Gene and Genomes.BMC Bioinformatics20232417810.1186/s12859‑023‑05208‑0 36870946
    [Google Scholar]
  32. HarisU. KagalwalaH.N. KimY.L. LippertA.R. Seeking illumination: The path to chemiluminescent 1,2-dioxetanes for quantitative measurements and in vivo imaging.Acc. Chem. Res.202154132844285710.1021/acs.accounts.1c00185 34110136
    [Google Scholar]
  33. HeoG.S. ZhaoY. SultanD. ZhangX. DeteringL. LuehmannH.P. ZhangX. LiR. ChoksiA. SharpS. LevingstonS. PrimeauT. ReichertD.E. SunG. RazaniB. LiS. WeilbaecherK.N. DehdashtiF. WooleyK.L. LiuY. Assessment of copper nanoclusters for accurate in vivo tumor imaging and potential for translation.ACS Appl. Mater. Interfaces20191122196691967810.1021/acsami.8b22752 31074257
    [Google Scholar]
  34. ChenG. LuoD. QiX. LiD. ZhengJ. LuoY. ZhangC. RenQ. LuY. ChanY.T. ChenB. WuJ. WangN. FengY. Characterization of cuproptosis in gastric cancer and relationship with clinical and drug reactions.Front. Cell Dev. Biol.202311117289510.3389/fcell.2023.1172895 37351275
    [Google Scholar]
  35. NieH. WangH. ZhangM. NingY. ChenX. ZhangZ. HuX. ZhaoQ. ChenP. FangJ. WangF. Comprehensive analysis of cuproptosis-related genes in prognosis, tumor microenvironment infiltration, and immunotherapy response in gastric cancer.J. Cancer Res. Clin. Oncol.202314985453546810.1007/s00432‑022‑04474‑4 36462036
    [Google Scholar]
  36. WangJ. QinD. TaoZ. WangB. XieY. WangY. LiB. CaoJ. QiaoX. ZhongS. HuX. Identification of cuproptosis-related subtypes, construction of a prognosis model, and tumor microenvironment landscape in gastric cancer.Front. Immunol.202213105693210.3389/fimmu.2022.1056932 36479114
    [Google Scholar]
  37. HuangJ. ChenM. PeiW. XuZ. NingJ. ChenC. Distinct tumor microenvironment landscapes in gastric cancer classified by cuproptosis-related lncRNAs.J. Cancer202213153687370010.7150/jca.79640 36606199
    [Google Scholar]
  38. GoughN.R. XiangX. MishraL. TGF-β signaling in liver, pancreas, and gastrointestinal diseases and cancer.Gastroenterology20211612434452.e1510.1053/j.gastro.2021.04.064 33940008
    [Google Scholar]
  39. ColakS. ten DijkeP. Targeting TGF-β signaling in cancer.Trends Cancer201731567110.1016/j.trecan.2016.11.008 28718426
    [Google Scholar]
  40. LeeS. RauchJ. KolchW. Targeting MAPK signaling in cancer: Mechanisms of drug resistance and sensitivity.Int. J. Mol. Sci.2020213110210.3390/ijms21031102 32046099
    [Google Scholar]
  41. PelusoI. YarlaN.S. AmbraR. PastoreG. PerryG. MAPK signalling pathway in cancers: Olive products as cancer preventive and therapeutic agents.Semin. Cancer Biol.20195618519510.1016/j.semcancer.2017.09.002 28912082
    [Google Scholar]
  42. MerkleD. HoffmannR. Roles of cAMP and cAMP-dependent protein kinase in the progression of prostate cancer: Cross-talk with the androgen receptor.Cell. Signal.201123350751510.1016/j.cellsig.2010.08.017 20813184
    [Google Scholar]
  43. BolgerG.B. The cAMP-signaling cancers: Clinically-divergent disorders with a common central pathway.Front. Endocrinol.202213102442310.3389/fendo.2022.1024423 36313756
    [Google Scholar]
  44. MirzaA.Z. AlthagafiI.I. ShamshadH. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications.Eur. J. Med. Chem.201916650251310.1016/j.ejmech.2019.01.067 30739829
    [Google Scholar]
  45. McGeachyM.J. CuaD.J. GaffenS.L. The IL-17 family of cytokines in health and disease.Immunity201950489290610.1016/j.immuni.2019.03.021 30995505
    [Google Scholar]
  46. LiX. BecharaR. ZhaoJ. McGeachyM.J. GaffenS.L. IL-17 receptor–based signaling and implications for disease.Nat. Immunol.201920121594160210.1038/s41590‑019‑0514‑y 31745337
    [Google Scholar]
  47. KaurA. BaldwinJ. BrarD. SalunkeD.B. PetrovskyN. Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics.Curr. Opin. Chem. Biol.20227010217210.1016/j.cbpa.2022.102172 35785601
    [Google Scholar]
  48. PahlavanneshanS. SayadmaneshA. EbrahimiyanH. BasiriM. Toll-like receptor-based strategies for cancer immunotherapy.J. Immunol. Res.2021202111410.1155/2021/9912188 34124272
    [Google Scholar]
  49. RiceM. TiliE. LoghmaniH. NuovoG.J. The differential expression of toll like receptors and RIG-1 correlates to the severity of infectious diseases.Ann. Diagn. Pathol.20236315210210.1016/j.anndiagpath.2022.152102 36634551
    [Google Scholar]
  50. ZhangC. ZengY. GuoX. ShenH. ZhangJ. WangK. JiM. HuangS. Pan-cancer analyses confirmed the cuproptosis-related gene FDX1 as an immunotherapy predictor and prognostic biomarker.Front. Genet.20221392373710.3389/fgene.2022.923737 35991547
    [Google Scholar]
  51. WangL. CaoY. GuoW. XuJ. High expression of cuproptosis-related gene FDX1 in relation to good prognosis and immune cells infiltration in colon adenocarcinoma (COAD).J. Cancer Res. Clin. Oncol.20231491152410.1007/s00432‑022‑04382‑7 36173462
    [Google Scholar]
  52. XuJ. HuZ. CaoH. ZhangH. LuoP. ZhangJ. WangX. ChengQ. LiJ. Multi-omics pan-cancer study of cuproptosis core gene FDX1 and its role in kidney renal clear cell carcinoma.Front. Immunol.20221398176410.3389/fimmu.2022.981764 36605188
    [Google Scholar]
  53. LiuZ. MiaoJ. Prognostic and immunological role of FDX1 in pan-cancer: An in-silico analysis.Sci. Rep.2023131792610.1038/s41598‑023‑34752‑1 37193786
    [Google Scholar]
  54. HuangX. WangT. YeJ. FengH. ZhangX. MaX. WangB. HuangY. ZhangX. FDX1 expression predicts favourable prognosis in clear cell renal cell carcinoma identified by bioinformatics and tissue microarray analysis.Front. Genet.20221399474110.3389/fgene.2022.994741 36186457
    [Google Scholar]
  55. XiaoC. YangL. JinL. LinW. ZhangF. HuangS. HuangZ. Prognostic and immunological role of cuproptosis-related protein FDX1 in pan-cancer.Front. Genet.20221396202810.3389/fgene.2022.962028 36061184
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010301997240527162423
Loading
/content/journals/cpb/10.2174/0113892010301997240527162423
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test