Full text loading...
-
Systemic Optimization and Validation of RP-HPLC Method for the Estimation of Ritonavir from Hybrid Polymeric Nanoparticles in Rat Plasma
- Source: Current Pharmaceutical Analysis, Volume 18, Issue 6, Jul 2022, p. 650 - 662
-
- 01 Jul 2022
- Previous Article
- Table of Contents
- Next Article
Abstract
Background: Hybrid polymeric materials have been in research focus owing to their outstanding progression in drug targeting. A new Quality by Design approach by RP-HPLC was developed and validated for the estimation of hybrid polymeric nanoparticles of Ritonavir in rat plasma. Objective: The main objective of the present study was to develop and validate a simple, robust, and accurate method by QbD approach for the detection of hybrid polymeric nanoparticles of Ritonavir (RTV) in plasma. Methods: The mobile phase consisting of a mixture of Acetonitrile: HPLC grade water (60:40 v/v), 1.0 ml/min flow rate and UV detection at 240 nm. Critical Analytical Attributes (CAAs) were screened and selected by Taguchi orthogonal array model. Box-Behnken's three-level, the 3- factorial design, was employed to create and analyze a "Design Space" (DoE). This design was statistically analyzed by ANOVA, contour-plot, and 3D response surfaces plots, which demonstrated that the model was statistically significant. The developed method was validated as per the ICH guidelines Q2 (R1). Results: The developed method showed excellent linearity between 100 and 600 ng/mL with good regression (R2>0.998), LOD (10 ng/mL) and LOQ (30 ng/mL). The validation results of the tested parameters were found within the acceptable limit. Conclusion: From the study, it was concluded that QbD driven bioanalytical method is suitable for the in-vitro and in-vivo estimation of RTV from bulk as well as from hybrid polymeric nanoparticles formulation.