Skip to content
2000
image of The Effect of Nifedipine on the Pharmacokinetics of Imatinib and its Metabolism N-desmethyl Imatinib in Rats

Abstract

Objective

Imatinib is a first-line medicine for chronic myeloid leukemia (CML) and gastrointestinal mesenchymal stromal tumors (GIST). Co-administration of nifedipine may lead to drug-drug interactions that affect the clinical efficacy of imatinib. Imatinib and nifedipine are substrates for the cytochrome enzyme CYP3A4. This study aimed to research the pharmacokinetic effect of nifedipine on imatinib and its metabolism N-desmethyl imatinib in rats.

Method

Twenty healthy SD rats were randomly divided into two groups. The control group was administered imatinib by gavage for 14 days, and the experimental group was co-administered imatinib and nifedipine by gavage for 14 days. The plasma concentrations of imatinib and N-desmethyl imatinib in rats were determined by ultra-performance liquid chromatography-mass spectrometry.

Results

The MRT and T of imatinib in the experimental group differed significantly from the control group after a single dose (P < 0.05, 95% CI). T and tz of imatinib and AUC and T of N-desmethyl imatinib were also obviously different between the two groups after multiple doses (P < 0.05, 95% CI).

Conclusion

The study showed that nifedipine might inhibit the imatinib metabolism after single-dose administration, but nifedipine did not significantly impact imatinib metabolism after multiple-dose administration.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129351390241217051815
2024-12-19
2025-01-22
Loading full text...

Full text loading...

References

  1. Thanopoulou E. Judson I. The safety profile of imatinib in CML and GIST: Long-term considerations. Arch. Toxicol. 2012 86 1 1 12 10.1007/s00204‑011‑0729‑7 21717109
    [Google Scholar]
  2. Druker B.J. Talpaz M. Resta D.J. Peng B. Buchdunger E. Ford J.M. Lydon N.B. Kantarjian H. Capdeville R. Ohno-Jones S. Sawyers C.L. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 2001 344 14 1031 1037 10.1056/NEJM200104053441401 11287972
    [Google Scholar]
  3. Peng B. Lloyd P. Schran H. Clinical pharmacokinetics of imatinib. Clin. Pharmacokinet. 2005 44 9 879 894 10.2165/00003088‑200544090‑00001 16122278
    [Google Scholar]
  4. Gschwind H.P. Pfaar U. Waldmeier F. Zollinger M. Sayer C. Zbinden P. Hayes M. Pokorny R. Seiberling M. Ben-Am M. Peng B. Gross G. Metabolism and disposition of imatinib mesylate in healthy volunteers. Drug Metab. Dispos. 2005 33 10 1503 1512 10.1124/dmd.105.004283 16006570
    [Google Scholar]
  5. Clarke W.A. Chatelut E. Fotoohi A.K. Larson R.A. Martin J.H. Mathijssen R.H.J. Salamone S.J. Therapeutic drug monitoring in oncology: International Association of Therapeutic Drug Monitoring and Clinical Toxicology consensus guidelines for imatinib therapy. Eur. J. Cancer 2021 157 428 440 10.1016/j.ejca.2021.08.033 34597977
    [Google Scholar]
  6. Wang L. Wang Z. Xia M. Wang Y. Wang H. Hu G. Inhibitory effect of silybin on pharmacokinetics of imatinib in vivo and in vitro. Can. J. Physiol. Pharmacol. 2014 92 11 961 964 10.1139/cjpp‑2014‑0260 25365188
    [Google Scholar]
  7. Pursche S. Schleyer E. Bonin M. Ehninger G. Said S. Prondzinsky R. Illmer T. Wang Y. Hosius C. Nikolova Z. Bornhäuser M. Dresemann G. Influence of enzyme-inducing antiepileptic drugs on trough level of imatinib in glioblastoma patients. Curr. Clin. Pharmacol. 2008 3 3 198 203 10.2174/157488408785747656 18781906
    [Google Scholar]
  8. Gambacorti-Passerini C. Zucchetti M. Russo D. Frapolli R. Verga M. Bungaro S. Tornaghi L. Rossi F. Pioltelli P. Pogliani E. Alberti D. Corneo G. D’Incalci M. Alpha1 acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients. Clin. Cancer Res. 2003 9 2 625 632 12576428
    [Google Scholar]
  9. Herviou P. Thivat E. Richard D. Roche L. Dohou J. Pouget M. Eschalier A. Durando X. Authier N. Therapeutic drug monitoring and tyrosine kinase inhibitors. Oncol. Lett. 2016 12 2 1223 1232 10.3892/ol.2016.4780 27446421
    [Google Scholar]
  10. Oeffinger K.C. Mertens A.C. Sklar C.A. Kawashima T. Hudson M.M. Meadows A.T. Friedman D.L. Marina N. Hobbie W. Kadan-Lottick N.S. Schwartz C.L. Leisenring W. Robison L.L. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. Med. 2006 355 15 1572 1582 10.1056/NEJMsa060185 17035650
    [Google Scholar]
  11. Lenihan D.J. Cardinale D. Cipolla C.M. The compelling need for a cardiology and oncology partnership and the birth of the International CardiOncology Society. Prog. Cardiovasc. Dis. 2010 53 2 88 93 10.1016/j.pcad.2010.06.002 20728695
    [Google Scholar]
  12. Simon A. Levenson J. Clinical use of nifedipine GITS in the treatment of hypertension: An overview. Expert Opin. Pharmacother. 2003 4 1 95 106 10.1517/14656566.4.1.95 12517246
    [Google Scholar]
  13. Park J.W. Choi J.S. Role of kaempferol to increase bioavailability and pharmacokinetics of nifedipine in rats. Chin. J. Nat. Med. 2019 17 9 690 697 10.1016/S1875‑5364(19)30083‑4 31526504
    [Google Scholar]
  14. Spaggiari D. Geiser L. Daali Y. Rudaz S. A cocktail approach for assessing the in vitro activity of human cytochrome P450s: An overview of current methodologies. J. Pharm. Biomed. Anal. 2014 101 221 237 10.1016/j.jpba.2014.03.018 24746851
    [Google Scholar]
  15. He J.X. Ohno K. Tang J. Hattori M. Tani T. Akao T. Da-Chaihu-Tang alters the pharmacokinetics of nifedipine in rats and a treatment regimen to avoid this. J. Pharm. Pharmacol. 2014 66 11 1623 1630 10.1111/jphp.12285 24961584
    [Google Scholar]
  16. Choi J.S. Choi I. Choi D.H. Effects of nifedipine on the pharmacokinetics of repaglinide in rats: Possible role of CYP3A4 and P-glycoprotein inhibition by nifedipine. Pharmacol. Rep. 2013 65 5 1422 1430 10.1016/S1734‑1140(13)71502‑0 24399740
    [Google Scholar]
  17. Lee C.K. Choi J.S. Choi D.H. Effects of HMG-CoA reductase inhibitors on the pharmacokinetics of nifedipine in rats: Possible role of P-gp and CYP3A4 inhibition by HMG-CoA reductase inhibitors. Pharmacol. Rep. 2015 67 1 44 51 10.1016/j.pharep.2014.08.005 25560574
    [Google Scholar]
  18. Fan N. Du L. Guo T. Liu M. Chen X. Pharmacokinetic interaction between imatinib and metformin in rats. Eur. J. Drug Metab. Pharmacokinet. 2024 49 2 171 179 10.1007/s13318‑023‑00869‑x 38141154
    [Google Scholar]
  19. Chen X. Du L. Liu M. Development, validation, and application of an UPLC-MS/MS method for vancomycin, norvancomycin, methotrexate, paclitaxel, and imatinib analysis in human plasma. Ann. Clin. Biochem. 2022 59 4 253 263 10.1177/00045632221077183 35209719
    [Google Scholar]
  20. Zhou S.F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr. Drug Metab. 2008 9 4 310 322 10.2174/138920008784220664 18473749
    [Google Scholar]
  21. Wang X. Cheung C.M. Lee W.Y.W. Or P.M.Y. Yeung J.H.K. Major tanshinones of Danshen (Salvia miltiorrhiza) exhibit different modes of inhibition on human CYP1A2, CYP2C9, CYP2E1 and CYP3A4 activities in vitro. Phytomedicine 2010 17 11 868 875 10.1016/j.phymed.2010.05.003 20638257
    [Google Scholar]
  22. Guengerich F.P. Cheng Q. Orphans in the human cytochrome P450 superfamily: Approaches to discovering functions and relevance in pharmacology. Pharmacol. Rev. 2011 63 3 684 699 10.1124/pr.110.003525 21737533
    [Google Scholar]
  23. Li J. Karlsson M.O. Brahmer J. Spitz A. Zhao M. Hidalgo M. Baker S.D. CYP3A phenotyping approach to predict systemic exposure to EGFR tyrosine kinase inhibitors. J. Natl. Cancer Inst. 2006 98 23 1714 1723 10.1093/jnci/djj466 17148773
    [Google Scholar]
  24. van Erp N.P. Gelderblom H. Karlsson M.O. Li J. Zhao M. Ouwerkerk J. Nortier J.W. Guchelaar H.J. Baker S.D. Sparreboom A. Influence of CYP3A4 inhibition on the steady-state pharmacokinetics of imatinib. Clin. Cancer Res. 2007 13 24 7394 7400 10.1158/1078‑0432.CCR‑07‑0346 18094422
    [Google Scholar]
  25. Darweesh R.S. El-Elimat T. Zayed A. Khamis T.N. Babaresh W.M. Arafat T. Al Sharie A.H. The effect of grape seed and green tea extracts on the pharmacokinetics of imatinib and its main metabolite, N-desmethyl imatinib, in rats. BMC Pharmacol. Toxicol. 2020 21 1 77 10.1186/s40360‑020‑00456‑9 33198812
    [Google Scholar]
  26. Liu X. Xu T. Li W. Luo J. Geng P. Wang L. Xia M. Chen M. Yu L. Hu G. The effect of apigenin on pharmacokinetics of imatinib and its metabolite N-desmethyl imatinib in rats. BioMed Res. Int. 2013 2013 1 6 10.1155/2013/789184 24369535
    [Google Scholar]
  27. O’Brien S.G. Meinhardt P. Bond E. Beck J. Peng B. Dutreix C. Mehring G. Milosavljev S. Huber C. Capdeville R. Fischer T. Effects of imatinib mesylate (STI571, Glivec) on the pharmacokinetics of simvastatin, a cytochrome P450 3A4 substrate, in patients with chronic myeloid leukaemia. Br. J. Cancer 2003 89 10 1855 1859 10.1038/sj.bjc.6601152 14612892
    [Google Scholar]
  28. Backman J.T. Filppula A.M. Niemi M. Neuvonen P.J. Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol. Rev. 2016 68 1 168 241 10.1124/pr.115.011411 26721703
    [Google Scholar]
  29. Wang Y. Zhou L. Dutreix C. Leroy E. Yin Q. Sethuraman V. Riviere G.J. Yin O.Q.P. Schran H. Shen Z.X. Effects of imatinib (Glivec) on the pharmacokinetics of metoprolol, a CYP2D6 substrate, in Chinese patients with chronic myelogenous leukaemia. Br. J. Clin. Pharmacol. 2008 65 6 885 892 10.1111/j.1365‑2125.2008.03150.x 18384443
    [Google Scholar]
  30. Filppula A.M. Neuvonen M. Laitila J. Neuvonen P.J. Backman J.T. Autoinhibition of CYP3A4 leads to important role of CYP2C8 in imatinib metabolism: Variability in CYP2C8 activity may alter plasma concentrations and response. Drug Metab. Dispos. 2013 41 1 50 59 10.1124/dmd.112.048017 23028140
    [Google Scholar]
  31. Hamada A. Miyano H. Watanabe H. Saito H. Interaction of imatinib mesilate with human P-glycoprotein. J. Pharmacol. Exp. Ther. 2003 307 2 824 828 10.1124/jpet.103.055574 12975485
    [Google Scholar]
  32. Hu S. Franke R.M. Filipski K.K. Hu C. Orwick S.J. de Bruijn E.A. Burger H. Baker S.D. Sparreboom A. Interaction of imatinib with human organic ion carriers. Clin. Cancer Res. 2008 14 10 3141 3148 10.1158/1078‑0432.CCR‑07‑4913 18483382
    [Google Scholar]
  33. Frye R. Fitzgerald S. Lagattuta T. Hruska M. Egorin M. Effect of St John’s wort on imatinib mesylate pharmacokinetics. Clin. Pharmacol. Ther. 2004 76 4 323 329 10.1016/j.clpt.2004.06.007 15470331
    [Google Scholar]
  34. White D.L. Saunders V.A. Dang P. Engler J. Zannettino A.C.W. Cambareri A.C. Quinn S.R. Manley P.W. Hughes T.P. OCT-1–mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): Reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 2006 108 2 697 704 10.1182/blood‑2005‑11‑4687 16597591
    [Google Scholar]
  35. Streit F. Binder L. Hafke A. Brandhorst G. Braulke F. Haase D. Armbrust T. Cameron S. Ramadori G. Oellerich M. Walson P. Use of total and unbound imatinib and metabolite LC-MS/MS assay to understand individual responses in CML and GIST patients. Ther. Drug Monit. 2011 33 5 632 643 10.1097/FTD.0b013e3182263ac4 21912334
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129351390241217051815
Loading
/content/journals/cpa/10.2174/0115734129351390241217051815
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: drug-drug interaction ; pharmacokinetics ; Nifedipine ; n-desmethyl imatinib ; imatinib ; CYP3A4
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test