Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Objectives

Imatinib is a first-line medicine for chronic myeloid leukemia (CML) and gastrointestinal mesenchymal stromal tumors (GIST). Co-administration of nifedipine may lead to drug-drug interactions that affect the clinical efficacy of imatinib. Imatinib and nifedipine are substrates for the cytochrome enzyme CYP3A4. This study aimed to research the pharmacokinetic effect of nifedipine on imatinib and its metabolism N-desmethyl imatinib in rats.

Methods

Twenty healthy SD rats were randomly divided into two groups. The control group was administered imatinib by gavage for 14 days, and the experimental group was co-administered imatinib and nifedipine by gavage for 14 days. The plasma concentrations of imatinib and N-desmethyl imatinib in rats were determined by ultra-performance liquid chromatography-mass spectrometry.

Results

The MRT and T of imatinib in the experimental group differed significantly from the control group after a single dose (P < 0.05, 95% CI). T and tz of imatinib and AUC and T of N-desmethyl imatinib were also obviously different between the two groups after multiple doses (P < 0.05, 95% CI).

Conclusion

The study showed that nifedipine might inhibit the imatinib metabolism after single- dose administration, but nifedipine did not significantly impact imatinib metabolism after multiple-dose administration.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129351390241217051815
2024-12-19
2025-04-14
Loading full text...

Full text loading...

References

  1. ThanopoulouE. JudsonI. The safety profile of imatinib in CML and GIST: Long-term considerations.Arch. Toxicol.201286111210.1007/s00204‑011‑0729‑721717109
    [Google Scholar]
  2. DrukerB.J. TalpazM. RestaD.J. PengB. BuchdungerE. FordJ.M. LydonN.B. KantarjianH. CapdevilleR. Ohno-JonesS. SawyersC.L. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia.N. Engl. J. Med.2001344141031103710.1056/NEJM20010405344140111287972
    [Google Scholar]
  3. PengB. LloydP. SchranH. Clinical pharmacokinetics of imatinib.Clin. Pharmacokinet.200544987989410.2165/00003088‑200544090‑0000116122278
    [Google Scholar]
  4. GschwindH.P. PfaarU. WaldmeierF. ZollingerM. SayerC. ZbindenP. HayesM. PokornyR. SeiberlingM. Ben-AmM. PengB. GrossG. Metabolism and disposition of imatinib mesylate in healthy volunteers.Drug Metab. Dispos.200533101503151210.1124/dmd.105.00428316006570
    [Google Scholar]
  5. ClarkeW.A. ChatelutE. FotoohiA.K. LarsonR.A. MartinJ.H. MathijssenR.H.J. SalamoneS.J. Therapeutic drug monitoring in oncology: International Association of Therapeutic Drug Monitoring and Clinical Toxicology consensus guidelines for imatinib therapy.Eur. J. Cancer202115742844010.1016/j.ejca.2021.08.03334597977
    [Google Scholar]
  6. WangL. WangZ. XiaM. WangY. WangH. HuG. Inhibitory effect of silybin on pharmacokinetics of imatinib in vivo and in vitro.Can. J. Physiol. Pharmacol.2014921196196410.1139/cjpp‑2014‑026025365188
    [Google Scholar]
  7. PurscheS. SchleyerE. BoninM. EhningerG. SaidS. ProndzinskyR. IllmerT. WangY. HosiusC. NikolovaZ. BornhäuserM. DresemannG. Influence of enzyme-inducing antiepileptic drugs on trough level of imatinib in glioblastoma patients.Curr. Clin. Pharmacol.20083319820310.2174/15748840878574765618781906
    [Google Scholar]
  8. Gambacorti-PasseriniC. ZucchettiM. RussoD. FrapolliR. VergaM. BungaroS. TornaghiL. RossiF. PioltelliP. PoglianiE. AlbertiD. CorneoG. D’IncalciM. Alpha1 acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients.Clin. Cancer Res.20039262563212576428
    [Google Scholar]
  9. HerviouP. ThivatE. RichardD. RocheL. DohouJ. PougetM. EschalierA. DurandoX. AuthierN. Therapeutic drug monitoring and tyrosine kinase inhibitors.Oncol. Lett.20161221223123210.3892/ol.2016.478027446421
    [Google Scholar]
  10. OeffingerK.C. MertensA.C. SklarC.A. KawashimaT. HudsonM.M. MeadowsA.T. FriedmanD.L. MarinaN. HobbieW. Kadan-LottickN.S. SchwartzC.L. LeisenringW. RobisonL.L. Chronic health conditions in adult survivors of childhood cancer.N. Engl. J. Med.2006355151572158210.1056/NEJMsa06018517035650
    [Google Scholar]
  11. LenihanD.J. CardinaleD. CipollaC.M. The compelling need for a cardiology and oncology partnership and the birth of the International CardiOncology Society.Prog. Cardiovasc. Dis.2010532889310.1016/j.pcad.2010.06.00220728695
    [Google Scholar]
  12. SimonA. LevensonJ. Clinical use of nifedipine GITS in the treatment of hypertension: An overview.Expert Opin. Pharmacother.2003419510610.1517/14656566.4.1.9512517246
    [Google Scholar]
  13. ParkJ.W. ChoiJ.S. Role of kaempferol to increase bioavailability and pharmacokinetics of nifedipine in rats.Chin. J. Nat. Med.201917969069710.1016/S1875‑5364(19)30083‑431526504
    [Google Scholar]
  14. SpaggiariD. GeiserL. DaaliY. RudazS. A cocktail approach for assessing the in vitro activity of human cytochrome P450s: An overview of current methodologies.J. Pharm. Biomed. Anal.201410122123710.1016/j.jpba.2014.03.01824746851
    [Google Scholar]
  15. HeJ.X. OhnoK. TangJ. HattoriM. TaniT. AkaoT. Da-Chaihu-Tang alters the pharmacokinetics of nifedipine in rats and a treatment regimen to avoid this.J. Pharm. Pharmacol.201466111623163010.1111/jphp.1228524961584
    [Google Scholar]
  16. ChoiJ.S. ChoiI. ChoiD.H. Effects of nifedipine on the pharmacokinetics of repaglinide in rats: Possible role of CYP3A4 and P-glycoprotein inhibition by nifedipine.Pharmacol. Rep.20136551422143010.1016/S1734‑1140(13)71502‑024399740
    [Google Scholar]
  17. LeeC.K. ChoiJ.S. ChoiD.H. Effects of HMG-CoA reductase inhibitors on the pharmacokinetics of nifedipine in rats: Possible role of P-gp and CYP3A4 inhibition by HMG-CoA reductase inhibitors.Pharmacol. Rep.2015671445110.1016/j.pharep.2014.08.00525560574
    [Google Scholar]
  18. FanN. DuL. GuoT. LiuM. ChenX. Pharmacokinetic interaction between imatinib and metformin in rats.Eur. J. Drug Metab. Pharmacokinet.202449217117910.1007/s13318‑023‑00869‑x38141154
    [Google Scholar]
  19. ChenX. DuL. LiuM. Development, validation, and application of an UPLC-MS/MS method for vancomycin, norvancomycin, methotrexate, paclitaxel, and imatinib analysis in human plasma.Ann. Clin. Biochem.202259425326310.1177/0004563222107718335209719
    [Google Scholar]
  20. ZhouS.F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4.Curr. Drug Metab.20089431032210.2174/13892000878422066418473749
    [Google Scholar]
  21. WangX. CheungC.M. LeeW.Y.W. OrP.M.Y. YeungJ.H.K. Major tanshinones of Danshen (Salvia miltiorrhiza) exhibit different modes of inhibition on human CYP1A2, CYP2C9, CYP2E1 and CYP3A4 activities in vitro.Phytomedicine2010171186887510.1016/j.phymed.2010.05.00320638257
    [Google Scholar]
  22. GuengerichF.P. ChengQ. Orphans in the human cytochrome P450 superfamily: Approaches to discovering functions and relevance in pharmacology.Pharmacol. Rev.201163368469910.1124/pr.110.00352521737533
    [Google Scholar]
  23. LiJ. KarlssonM.O. BrahmerJ. SpitzA. ZhaoM. HidalgoM. BakerS.D. CYP3A phenotyping approach to predict systemic exposure to EGFR tyrosine kinase inhibitors.J. Natl. Cancer Inst.200698231714172310.1093/jnci/djj46617148773
    [Google Scholar]
  24. van ErpN.P. GelderblomH. KarlssonM.O. LiJ. ZhaoM. OuwerkerkJ. NortierJ.W. GuchelaarH.J. BakerS.D. SparreboomA. Influence of CYP3A4 inhibition on the steady-state pharmacokinetics of imatinib.Clin. Cancer Res.200713247394740010.1158/1078‑0432.CCR‑07‑034618094422
    [Google Scholar]
  25. DarweeshR.S. El-ElimatT. ZayedA. KhamisT.N. BabareshW.M. ArafatT. Al SharieA.H. The effect of grape seed and green tea extracts on the pharmacokinetics of imatinib and its main metabolite, N-desmethyl imatinib, in rats.BMC Pharmacol. Toxicol.20202117710.1186/s40360‑020‑00456‑933198812
    [Google Scholar]
  26. LiuX. XuT. LiW. LuoJ. GengP. WangL. XiaM. ChenM. YuL. HuG. The effect of apigenin on pharmacokinetics of imatinib and its metabolite N-desmethyl imatinib in rats.BioMed Res. Int.201320131610.1155/2013/78918424369535
    [Google Scholar]
  27. O’BrienS.G. MeinhardtP. BondE. BeckJ. PengB. DutreixC. MehringG. MilosavljevS. HuberC. CapdevilleR. FischerT. Effects of imatinib mesylate (STI571, Glivec) on the pharmacokinetics of simvastatin, a cytochrome P450 3A4 substrate, in patients with chronic myeloid leukaemia.Br. J. Cancer200389101855185910.1038/sj.bjc.660115214612892
    [Google Scholar]
  28. BackmanJ.T. FilppulaA.M. NiemiM. NeuvonenP.J. Role of cytochrome P450 2C8 in drug metabolism and interactions.Pharmacol. Rev.201668116824110.1124/pr.115.01141126721703
    [Google Scholar]
  29. WangY. ZhouL. DutreixC. LeroyE. YinQ. SethuramanV. RiviereG.J. YinO.Q.P. SchranH. ShenZ.X. Effects of imatinib (Glivec) on the pharmacokinetics of metoprolol, a CYP2D6 substrate, in Chinese patients with chronic myelogenous leukaemia.Br. J. Clin. Pharmacol.200865688589210.1111/j.1365‑2125.2008.03150.x18384443
    [Google Scholar]
  30. FilppulaA.M. NeuvonenM. LaitilaJ. NeuvonenP.J. BackmanJ.T. Autoinhibition of CYP3A4 leads to important role of CYP2C8 in imatinib metabolism: Variability in CYP2C8 activity may alter plasma concentrations and response.Drug Metab. Dispos.2013411505910.1124/dmd.112.04801723028140
    [Google Scholar]
  31. HamadaA. MiyanoH. WatanabeH. SaitoH. Interaction of imatinib mesilate with human P-glycoprotein.J. Pharmacol. Exp. Ther.2003307282482810.1124/jpet.103.05557412975485
    [Google Scholar]
  32. HuS. FrankeR.M. FilipskiK.K. HuC. OrwickS.J. de BruijnE.A. BurgerH. BakerS.D. SparreboomA. Interaction of imatinib with human organic ion carriers.Clin. Cancer Res.200814103141314810.1158/1078‑0432.CCR‑07‑491318483382
    [Google Scholar]
  33. FryeR. FitzgeraldS. LagattutaT. HruskaM. EgorinM. Effect of St John’s wort on imatinib mesylate pharmacokinetics.Clin. Pharmacol. Ther.200476432332910.1016/j.clpt.2004.06.00715470331
    [Google Scholar]
  34. WhiteD.L. SaundersV.A. DangP. EnglerJ. ZannettinoA.C.W. CambareriA.C. QuinnS.R. ManleyP.W. HughesT.P. OCT-1–mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): Reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib.Blood2006108269770410.1182/blood‑2005‑11‑468716597591
    [Google Scholar]
  35. StreitF. BinderL. HafkeA. BrandhorstG. BraulkeF. HaaseD. ArmbrustT. CameronS. RamadoriG. OellerichM. WalsonP. Use of total and unbound imatinib and metabolite LC-MS/MS assay to understand individual responses in CML and GIST patients.Ther. Drug Monit.201133563264310.1097/FTD.0b013e3182263ac421912334
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129351390241217051815
Loading
/content/journals/cpa/10.2174/0115734129351390241217051815
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CYP3A4; drug-drug interaction; imatinib; n-desmethyl imatinib; Nifedipine; pharmacokinetics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test