Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

This review article examines the current developments in applying microfluidic technologies in cancer therapy and personalized medicine. This includes the fabrication of cancer cells onto the microfluidic chips, preclinical cancer model simulation development, biomarker detection, tumor heterogeneity detection, integration of microfluidics in robotic drug delivery systems, Artificial Intelligence (AI), and discuss the use of techniques such as Machine Learning (ML) to predict pharmacokinetics and pharmacodynamics of cancer cells. This review article also highlights how integrating cancer models with microfluidic devices helps to simulate disease progression more accurately, thereby improving treatment options. These devices also enable researchers to identify suitable doses for cancer treatment. Moreover, microfluidics chips facilitate cell transformation in many types of cancer, which is important for patient-specific therapy. Microfluidics technology in robotic drug delivery enables precise delivery of targeted drugs, thus reducing the potential side effects of the drugs. Integrating these fields into the medical and pharmaceutical fields helps researchers to develop the pharmaceutical product faster than the traditional method of drug discovery. Overall, this review article highlights the integration of interdisciplinary technologies in the healthcare field, which may decrease the timeline of drug discovery and provide efficient drugs to patients.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129333473241018114102
2024-10-29
2025-03-07
Loading full text...

Full text loading...

References

  1. MathurL. BallingerM. UtharalaR. MertenC.A. Microfluidics as an enabling technology for personalized cancer therapy.Small2020169190432110.1002/smll.20190432131747127
    [Google Scholar]
  2. MehdiS. ChauhanA. DhuttyA. Cancer and new perspective to treat cancer.Int. J. Curr. Pharm. Res.2023156162210.22159/ijcpr.2023v15i6.3078
    [Google Scholar]
  3. WongA.H.H. LiH. JiaY. MakP.I. MartinsR.P.S. LiuY. VongC.M. WongH.C. WongP.K. WangH. SunH. DengC.X. Drug screening of cancer cell lines and human primary tumors using droplet microfluidics.Sci. Rep.201771910910.1038/s41598‑017‑08831‑z28831060
    [Google Scholar]
  4. GuoQ. ZhangL. LiuJ. LiZ. LiJ. ZhouW. WangH. LiJ. LiuD. YuX. ZhangJ. Multifunctional microfluidic chip for cancer diagnosis and treatment.Nanotheranostics202151738910.7150/ntno.4961433391976
    [Google Scholar]
  5. FengQ. SunJ. JiangX. Microfluidics-mediated assembly of functional nanoparticles for cancer-related pharmaceutical applications.Nanoscale2016825124301244310.1039/C5NR07964K26864887
    [Google Scholar]
  6. SarvanV.H. Types and application of pharmaceutical nanotechnology: a review.Int. J. Curr. Pharm. Res.2023153141810.22159/ijcpr.2023v15i3.3010
    [Google Scholar]
  7. Venugopal MenonN. LimS.B. LimC.T. Microfluidics for personalized drug screening of cancer.Curr. Opin. Pharmacol.20194815516110.1016/j.coph.2019.09.00831634805
    [Google Scholar]
  8. SilvaA.C.Q. VilelaC. SantosH.A. SilvestreA.J.D. FreireC.S.R. Recent trends on the development of systems for cancer diagnosis and treatment by microfluidic technology.Appl. Mater. Today20201810045010.1016/j.apmt.2019.100450
    [Google Scholar]
  9. PillaiS. KwanJ.C. YazijiF. YuH. TranS.D. Mapping the Potential of Microfluidics in Early Diagnosis and Personalized Treatment of Head and Neck Cancers.Cancers (Basel)20231515389410.3390/cancers1515389437568710
    [Google Scholar]
  10. MahhengamN. fahem ghetran KhazaaliA. AravindhanS. Olegovna ZekiyA. MelnikovaL. SiahmansouriH. Applications of Microfluidic Devices in the Diagnosis and Treatment of Cancer: A Review Study.Crit. Rev. Anal. Chem.20225281863187710.1080/10408347.2021.192287034024197
    [Google Scholar]
  11. ZhangZ. NagrathS. Microfluidics and cancer: are we there yet?Biomed. Microdevices201315459560910.1007/s10544‑012‑9734‑823358873
    [Google Scholar]
  12. Sontheimer-PhelpsA. HassellB.A. IngberD.E. Modelling cancer in microfluidic human organs-on-chips.Nat. Rev. Cancer2019192658110.1038/s41568‑018‑0104‑630647431
    [Google Scholar]
  13. AyusoJ.M. Virumbrales-MuñozM. LangJ.M. BeebeD.J. A role for microfluidic systems in precision medicine.Nat. Commun.2022131308610.1038/s41467‑022‑30384‑735654785
    [Google Scholar]
  14. LanzH.L. SalehA. KramerB. CairnsJ. NgC.P. YuJ. TrietschS.J. HankemeierT. JooreJ. VultoP. WeinshilboumR. WangL. Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform.BMC Cancer201717170910.1186/s12885‑017‑3709‑329096610
    [Google Scholar]
  15. LeeS.H. JunB.H. Advances in dynamic microphysiological organ-on-a-chip: Design principle and its biomedical application.J. Ind. Eng. Chem.201971657710.1016/j.jiec.2018.11.041
    [Google Scholar]
  16. ZhangJ. YanS. YuanD. AliciG. NguyenN.T. Ebrahimi WarkianiM. LiW. Fundamentals and applications of inertial microfluidics: a review.Lab Chip2016161103410.1039/C5LC01159K26584257
    [Google Scholar]
  17. NovotnýJ. ForetF. Fluid manipulation on the micro-scale: Basics of fluid behavior in microfluidics.J. Sep. Sci.201740138339410.1002/jssc.20160090527700009
    [Google Scholar]
  18. SquiresT.M. QuakeS.R. Microfluidics: Fluid physics at the nanoliter scale.Rev. Mod. Phys.2005773977102610.1103/RevModPhys.77.977
    [Google Scholar]
  19. DietzelA. A Brief Introduction to Microfluidics.Microsystems for Pharmatechnology.ChamSpringer International Publishing201612110.1007/978‑3‑319‑26920‑7_1
    [Google Scholar]
  20. BattatS. WeitzD.A. WhitesidesG.M. Nonlinear Phenomena in Microfluidics.Chem. Rev.202212276921693710.1021/acs.chemrev.1c0098535194990
    [Google Scholar]
  21. FrankeT.A. WixforthA. Microfluidics for miniaturized laboratories on a chip.ChemPhysChem20089152140215610.1002/cphc.20080034918932153
    [Google Scholar]
  22. CottetJ. RenaudP. Introduction to microfluidics.Drug Delivery Devices and Therapeutic Systems.Elsevier202131710.1016/B978‑0‑12‑819838‑4.00014‑6
    [Google Scholar]
  23. ZhuP. WangL. Passive and active droplet generation with microfluidics: a review.Lab Chip2017171347510.1039/C6LC01018K27841886
    [Google Scholar]
  24. SuR. WangF. McAlpineM.C. 3D printed microfluidics: advances in strategies, integration, and applications.Lab Chip20232351279129910.1039/D2LC01177H36779387
    [Google Scholar]
  25. GuoM. DengY. HuangJ. HuangY. DengJ. WuH. Fabrication and Validation of a 3D Portable PEGDA Microfluidic Chip for Visual Colorimetric Detection of Captured Breast Cancer Cells.Polymers (Basel)20231515318310.3390/polym1515318337571077
    [Google Scholar]
  26. AnL. JiF. ZhaoE. LiuY. LiuY. Measuring cell deformation by microfluidics.Front. Bioeng. Biotechnol.202311121454410.3389/fbioe.2023.121454437434754
    [Google Scholar]
  27. WangJ. MengX. YuM. LiX. ChenZ. WangR. FangJ. A novel microfluidic system for enrichment of functional circulating tumor cells in cancer patient blood samples by combining cell size and invasiveness.Biosens. Bioelectron.202322711515910.1016/j.bios.2023.11515936841114
    [Google Scholar]
  28. GuimarãesC.F. Cruz-MoreiraD. CaballeroD. PirracoR.P. GasperiniL. KunduS.C. ReisR.L. Shining a Light on Cancer—Photonics in Microfluidic Tumor Modeling and Biosensing.Adv. Healthc. Mater.20231214220144210.1002/adhm.20220144235998112
    [Google Scholar]
  29. GaddeM. Mehrabi-DehdeziM. DebebB.G. WoodwardW.A. RylanderM.N. Influence of Macrophages on Vascular Invasion of Inflammatory Breast Cancer Emboli Measured Using an In Vitro Microfluidic Multi-Cellular Platform.Cancers (Basel)20231519488310.3390/cancers1519488337835577
    [Google Scholar]
  30. KuangJ. SunW. ZhangM. KangL. YangS. ZhangH. WangY. HuP. A three-dimensional biomimetic microfluidic chip to study the behavior of hepatic stellate cell under the tumor microenvironment.Chin. Chem. Lett.202334310757310.1016/j.cclet.2022.05.087
    [Google Scholar]
  31. AzadiS. TorkashvandE. MohammadiE. Tafazzoli-ShadpourM. Analysis of EMT induction in a non-invasive breast cancer cell line by mesenchymal stem cell supernatant: Study of 2D and 3D microfluidic based aggregate formation and migration ability, and cytoskeleton remodeling.Life Sci.202332012154510.1016/j.lfs.2023.12154536871932
    [Google Scholar]
  32. ZhuL. TangQ. MaoZ. ChenH. WuL. QinY. Microfluidic-based platforms for cell-to-cell communication studies.Biofabrication202416101200510.1088/1758‑5090/ad111638035370
    [Google Scholar]
  33. KimH. AhnY.H. MoonC.M. KangJ.L. WooM. KimM. Lethal effects of mitochondria via microfluidics.Bioeng. Transl. Med.202383e1046110.1002/btm2.1046137206227
    [Google Scholar]
  34. IslamM.S. ChenX. Continuous CTC separation through a DEP- based contraction–expansion inertial microfluidic channel.Biotechnol. Prog.2023394e334110.1002/btpr.334136970770
    [Google Scholar]
  35. YinS. LuR. LiY. SunD. LiuC. LiuB. LiJ. A microfluidic device inspired by leaky tumor vessels for hematogenous metastasis mechanism research.Analyst (Lond.)202314871570157810.1039/D2AN02081E36892183
    [Google Scholar]
  36. UgrinicM. DecaniniD. BidanN. LazzariG. HarouriA. HwangG. Haghiri-GosnetA.M. MuraS. Fabrication of high aspect ratio microfluidic devices for long term in vitro culture of 3D tumor models.Microelectron. Eng.2023267-26811189810.1016/j.mee.2022.111898
    [Google Scholar]
  37. LiP. WangC. QiuJ. SongF. HuangY. ZhangY. ZhangK. JiH. SangY. BlakerJ.J. ZhangY. HanL. Inhibitory effect of zinc oxide nanorod arrays on breast cancer cells profiled through real-time cytokines screening by a single-cell microfluidic platform.BMEMat202313e1204010.1002/bmm2.12040
    [Google Scholar]
  38. GuralN. IrimiaD. Microfluidic devices for precise measurements of cell directionality reveal a role for glutamine during cell migration.Sci Rep.20231312303210.21203/rs.3.rs‑2799430/v1
    [Google Scholar]
  39. WangZ. AhmedS. LabibM. WangH. WuL. Bavaghar-ZaeimiF. ShokriN. BlancoS. KarimS. Czarnecka-KujawaK. SargentE.H. McGrayA.J.R. de PerrotM. KelleyS.O. Isolation of tumour-reactive lymphocytes from peripheral blood via microfluidic immunomagnetic cell sorting.Nat. Biomed. Eng.2023791188120310.1038/s41551‑023‑01023‑337037966
    [Google Scholar]
  40. Ngan NgoT.K. KuoC.H. TuT.Y. Recent advances in microfluidic-based cancer immunotherapy-on-a-chip strategies.Biomicrofluidics202317101150110.1063/5.010879236647540
    [Google Scholar]
  41. CaoX. LiuQ. ShiW. liuK. DengT. WengX. PanS. YuQ. DengW. YuJ. WangQ. XiaoG. XuX. Microfluidic fabricated bisdemethoxycurcumin thermosensitive liposome with enhanced antitumor effect.Int. J. Pharm.202364112303910.1016/j.ijpharm.2023.12303937225026
    [Google Scholar]
  42. PengT. QiangJ. YuanS. Investigation on a cascaded inertial and acoustic microfluidic device for sheathless and label-free separation of circulating tumor cells.Phys. Fluids202335808200910.1063/5.0160391
    [Google Scholar]
  43. GimondiS. FerreiraH. ReisR.L. NevesN.M. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation.ACS Nano20231715142051422810.1021/acsnano.3c0111737498731
    [Google Scholar]
  44. BiW. CaiS. LeiT. WangL. Implementation of blood-brain barrier on microfluidic chip: Recent advance and future prospects.Ageing Res. Rev.20238710192110.1016/j.arr.2023.10192137004842
    [Google Scholar]
  45. IdeH. AoshiT. SaitoM. EspulgarW.V. BrionesJ.C. HosokawaM. MatsunagaH. ArikawaK. TakeyamaH. KoyamaS. TakamatsuH. TamiyaE. Linking antigen specific T-cell dynamics in a microfluidic chip to single cell transcription patterns.Biochem. Biophys. Res. Commun.202365781510.1016/j.bbrc.2023.03.03536963175
    [Google Scholar]
  46. ShaoC. YuY. LeiX. CaoJ. ZhaoY. YeF. Organ-on-a-chip for dynamic tumor drug resistance investigation.Chem. Eng. J.202346014173910.1016/j.cej.2023.141739
    [Google Scholar]
  47. HouC. GuY. YuanW. ZhangW. XiuX. LinJ. GaoY. LiuP. ChenX. SongL. Application of microfluidic chips in the simulation of the urinary system microenvironment.Mater. Today Bio20231910055310.1016/j.mtbio.2023.10055336747584
    [Google Scholar]
  48. BanikS. UchilA. KalsangT. ChakrabartyS. AliM.A. SrisungsitthisuntiP. MahatoK.K. SurdoS. MazumderN. The revolution of PDMS microfluidics in cellular biology.Crit. Rev. Biotechnol.202343346548310.1080/07388551.2022.203473335410564
    [Google Scholar]
  49. PariharA. ChoudharyN.K. PariharD.S. KhanR. Tumor-on-a-Chip: Microfluidic Models of Hypoxic Tumor Microenvironment. Hypoxia in Cancer: Significance and Impact on Cancer Therapy. Singapore: Springer.Nat. Singap.202329732810.1007/978‑981‑99‑0313‑9_14
    [Google Scholar]
  50. ChenY.S. HuangC.H. PaiP.C. SeoJ. LeiK.F. A Review on Microfluidics-Based Impedance Biosensors.Biosensors (Basel)20231318310.3390/bios1301008336671918
    [Google Scholar]
  51. WanZ. FloryanM.A. CoughlinM.F. ZhangS. ZhongA.X. SheltonS.E. WangX. XuC. BarbieD.A. KammR.D. New Strategy for Promoting Vascularization in Tumor Spheroids in a Microfluidic Assay.Adv. Healthc. Mater.20231214220178410.1002/adhm.20220178436333913
    [Google Scholar]
  52. YeS. CaoQ. NiP. XiongS. ZhongM. YuanT. ShanJ. LiangJ. FanY. ZhangX. Construction of Microfluidic Chip Structure for Cell Migration Studies in Bioactive Ceramics.Small20231940230215210.1002/smll.20230215237282789
    [Google Scholar]
  53. PhillipsC.M. LimaE.A.B.F. GaddeM. JarrettA.M. RylanderM.N. YankeelovT.E. Towards integration of time-resolved confocal microscopy of a 3D in vitro microfluidic platform with a hybrid multiscale model of tumor angiogenesis.PLOS Comput. Biol.2023191e100949910.1371/journal.pcbi.100949936652468
    [Google Scholar]
  54. FarahiniaA. ZhangW. BadeaI. Recent Developments in Inertial and Centrifugal Microfluidic Systems along with the Involved Forces for Cancer Cell Separation: A Review.Sensors (Basel)20232311530010.3390/s2311530037300027
    [Google Scholar]
  55. Villalba-VillalbaA.G. MuñozC. MaldonadoA. Evaluation of the deformation index of sea urchin Echinometra vanbrunti ovules by microfluidics.Biophys. J.20231223533a10.1016/j.bpj.2022.11.2825
    [Google Scholar]
  56. AbrahamA. VirdiS. HerreroN. BryantI. NwakamaC. JacobM. KhapardeG. JordanD. McCuddinM. McKinleyS. TaylorA. PeeplesC. EkpenyongA. Microfluidic Microcirculation Mimetic for Exploring Biophysical Mechanisms of Chemotherapy-Induced Metastasis.Micromachines (Basel)2023149165310.3390/mi1409165337763816
    [Google Scholar]
  57. LuY. YueS. LiangM. WangT. WangR. ChenZ. FangJ. Establishment of a cascaded microfluidic single cell analysis system for molecular and functional heterogeneity analysis of circulating tumor cells.Sens. Actuators B Chem.202339313417410.1016/j.snb.2023.134174
    [Google Scholar]
  58. JohnsonA. ReimerS. ChildresR. CuppG. KohsT.C.L. McCartyO.J.T. KangY. The Applications and Challenges of the Development of In Vitro Tumor Microenvironment Chips.Cell. Mol. Bioeng.202316132110.1007/s12195‑022‑00755‑736660587
    [Google Scholar]
  59. MendanhaD. GimondiS. CostaB.M. FerreiraH. NevesN.M. Microfluidic-derived docosahexaenoic acid liposomes for glioblastoma therapy.Nanomedicine20235310270410.1016/j.nano.2023.10270437582426
    [Google Scholar]
  60. ChengY. ZhangS. QinL. ZhaoJ. SongH. YuanY. SunJ. TianF. LiuC. Poly(ethylene oxide) concentration gradient-based microfluidic isolation of circulating tumor cells.Anal. Chem.20239563468347510.1021/acs.analchem.2c0525736725367
    [Google Scholar]
  61. SharmaI. ThakurM. SinghS. TripathiA. Microfluidic devices as a tool for drug delivery and diagnosis: A review.Int. J. Appl. Pharmaceut.20211319510210.22159/ijap.2021v13i1.39032
    [Google Scholar]
  62. KurilA. AmbekarA. NimaseB. GiriP. NikamP. DesaiH. AherS. Exploring the potential of 3D printing in pharmaceutical development.Int. J. Curr. Pharm. Sci.20231563142
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129333473241018114102
Loading
/content/journals/cpa/10.2174/0115734129333473241018114102
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cancer; drug delivery; fabrication; microfluidics; organ on chip; tumor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test