Skip to content
2000
image of Integrating Organ-on-Chip Models In Drug Discovery: A Comprehensive Review on Innovations and Implications

Abstract

This review article examines the current developments in applying microfluidic technologies in cancer therapy and personalized medicine. This includes the fabrication of cancer cells onto the microfluidic chips, preclinical cancer model simulation development, biomarker detection, tumor heterogeneity detection, integration of microfluidics in robotic drug delivery systems, Artificial Intelligence (AI), and discuss the use of techniques such as Machine Learning (ML) to predict pharmacokinetics and pharmacodynamics of cancer cells. This review article also highlights how integrating cancer models with microfluidic devices helps to simulate disease progression more accurately, thereby improving treatment options. These devices also enable researchers to identify suitable doses for cancer treatment. Moreover, microfluidics chips facilitate cell transformation in many types of cancer, which is important for patient-specific therapy. Microfluidics technology in robotic drug delivery enables precise delivery of targeted drugs, thus reducing the potential side effects of the drugs. Integrating these fields into the medical and pharmaceutical fields helps researchers to develop the pharmaceutical product faster than the traditional method of drug discovery. Overall, this review article highlights the integration of interdisciplinary technologies in the healthcare field, which may decrease the timeline of drug discovery and provide efficient drugs to patients.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129333473241018114102
2024-10-29
2024-11-26
Loading full text...

Full text loading...

References

  1. Mathur L. Ballinger M. Utharala R. Merten C.A. Microfluidics as an enabling technology for personalized cancer therapy. Small 2020 16 9 1904321 10.1002/smll.201904321 31747127
    [Google Scholar]
  2. Mehdi S. Chauhan A. Dhutty A. Cancer and new perspective to treat cancer. Int. J. Curr. Pharm. Res. 2023 15 6 16 22 10.22159/ijcpr.2023v15i6.3078
    [Google Scholar]
  3. Wong A.H.H. Li H. Jia Y. Mak P.I. Martins R.P.S. Liu Y. Vong C.M. Wong H.C. Wong P.K. Wang H. Sun H. Deng C.X. Drug screening of cancer cell lines and human primary tumors using droplet microfluidics. Sci. Rep. 2017 7 1 9109 10.1038/s41598‑017‑08831‑z 28831060
    [Google Scholar]
  4. Guo Q. Zhang L. Liu J. Li Z. Li J. Zhou W. Wang H. Li J. Liu D. Yu X. Zhang J. Multifunctional microfluidic chip for cancer diagnosis and treatment. Nanotheranostics 2021 5 1 73 89 10.7150/ntno.49614 33391976
    [Google Scholar]
  5. Feng Q. Sun J. Jiang X. Microfluidics-mediated assembly of functional nanoparticles for cancer-related pharmaceutical applications. Nanoscale 2016 8 25 12430 12443 10.1039/C5NR07964K 26864887
    [Google Scholar]
  6. Sarvan V.H. Types and application of pharmaceutical nanotechnology: a review. Int. J. Curr. Pharm. Res. 2023 15 3 14 18 10.22159/ijcpr.2023v15i3.3010
    [Google Scholar]
  7. Venugopal Menon N. Lim S.B. Lim C.T. Microfluidics for personalized drug screening of cancer. Curr. Opin. Pharmacol. 2019 48 155 161 10.1016/j.coph.2019.09.008 31634805
    [Google Scholar]
  8. Silva A.C.Q. Vilela C. Santos H.A. Silvestre A.J.D. Freire C.S.R. Recent trends on the development of systems for cancer diagnosis and treatment by microfluidic technology. Appl. Mater. Today 2020 18 100450 10.1016/j.apmt.2019.100450
    [Google Scholar]
  9. Pillai S. Kwan J.C. Yaziji F. Yu H. Tran S.D. Mapping the Potential of Microfluidics in Early Diagnosis and Personalized Treatment of Head and Neck Cancers. Cancers (Basel) 2023 15 15 3894 10.3390/cancers15153894 37568710
    [Google Scholar]
  10. Mahhengam N. fahem ghetran Khazaali A. Aravindhan S. Olegovna Zekiy A. Melnikova L. Siahmansouri H. Applications of Microfluidic Devices in the Diagnosis and Treatment of Cancer: A Review Study. Crit. Rev. Anal. Chem. 2022 52 8 1863 1877 10.1080/10408347.2021.1922870 34024197
    [Google Scholar]
  11. Zhang Z. Nagrath S. Microfluidics and cancer: are we there yet? Biomed. Microdevices 2013 15 4 595 609 10.1007/s10544‑012‑9734‑8 23358873
    [Google Scholar]
  12. Sontheimer-Phelps A. Hassell B.A. Ingber D.E. Modelling cancer in microfluidic human organs-on-chips. Nat. Rev. Cancer 2019 19 2 65 81 10.1038/s41568‑018‑0104‑6 30647431
    [Google Scholar]
  13. Ayuso J.M. Virumbrales-Muñoz M. Lang J.M. Beebe D.J. A role for microfluidic systems in precision medicine. Nat. Commun. 2022 13 1 3086 10.1038/s41467‑022‑30384‑7 35654785
    [Google Scholar]
  14. Lanz H.L. Saleh A. Kramer B. Cairns J. Ng C.P. Yu J. Trietsch S.J. Hankemeier T. Joore J. Vulto P. Weinshilboum R. Wang L. Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform. BMC Cancer 2017 17 1 709 10.1186/s12885‑017‑3709‑3 29096610
    [Google Scholar]
  15. Lee S.H. Jun B.H. Advances in dynamic microphysiological organ-on-a-chip: Design principle and its biomedical application. J. Ind. Eng. Chem. 2019 71 65 77 10.1016/j.jiec.2018.11.041
    [Google Scholar]
  16. Zhang J. Yan S. Yuan D. Alici G. Nguyen N.T. Ebrahimi Warkiani M. Li W. Fundamentals and applications of inertial microfluidics: a review. Lab Chip 2016 16 1 10 34 10.1039/C5LC01159K 26584257
    [Google Scholar]
  17. Novotný J. Foret F. Fluid manipulation on the micro‐scale: Basics of fluid behavior in microfluidics. J. Sep. Sci. 2017 40 1 383 394 10.1002/jssc.201600905 27700009
    [Google Scholar]
  18. Squires T.M. Quake S.R. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 2005 77 3 977 1026 10.1103/RevModPhys.77.977
    [Google Scholar]
  19. Dietzel A. A Brief Introduction to Microfluidics. Microsystems for Pharmatechnology. Cham Springer International Publishing 2016 1 21 10.1007/978‑3‑319‑26920‑7_1
    [Google Scholar]
  20. Battat S. Weitz D.A. Whitesides G.M. Nonlinear Phenomena in Microfluidics. Chem. Rev. 2022 122 7 6921 6937 10.1021/acs.chemrev.1c00985 35194990
    [Google Scholar]
  21. Franke T.A. Wixforth A. Microfluidics for miniaturized laboratories on a chip. ChemPhysChem 2008 9 15 2140 2156 10.1002/cphc.200800349 18932153
    [Google Scholar]
  22. Cottet J. Renaud P. Introduction to microfluidics. Drug Delivery Devices and Therapeutic Systems. Elsevier 2021 3 17 10.1016/B978‑0‑12‑819838‑4.00014‑6
    [Google Scholar]
  23. Zhu P. Wang L. Passive and active droplet generation with microfluidics: a review. Lab Chip 2017 17 1 34 75 10.1039/C6LC01018K 27841886
    [Google Scholar]
  24. Su R. Wang F. McAlpine M.C. 3D printed microfluidics: advances in strategies, integration, and applications. Lab Chip 2023 23 5 1279 1299 10.1039/D2LC01177H 36779387
    [Google Scholar]
  25. Guo M. Deng Y. Huang J. Huang Y. Deng J. Wu H. Fabrication and Validation of a 3D Portable PEGDA Microfluidic Chip for Visual Colorimetric Detection of Captured Breast Cancer Cells. Polymers (Basel) 2023 15 15 3183 10.3390/polym15153183 37571077
    [Google Scholar]
  26. An L. Ji F. Zhao E. Liu Y. Liu Y. Measuring cell deformation by microfluidics. Front. Bioeng. Biotechnol. 2023 11 1214544 10.3389/fbioe.2023.1214544 37434754
    [Google Scholar]
  27. Wang J. Meng X. Yu M. Li X. Chen Z. Wang R. Fang J. A novel microfluidic system for enrichment of functional circulating tumor cells in cancer patient blood samples by combining cell size and invasiveness. Biosens. Bioelectron. 2023 227 115159 10.1016/j.bios.2023.115159 36841114
    [Google Scholar]
  28. Guimarães C.F. Cruz-Moreira D. Caballero D. Pirraco R.P. Gasperini L. Kundu S.C. Reis R.L. Shining a Light on Cancer—Photonics in Microfluidic Tumor Modeling and Biosensing. Adv. Healthc. Mater. 2023 12 14 2201442 10.1002/adhm.202201442 35998112
    [Google Scholar]
  29. Gadde M. Mehrabi-Dehdezi M. Debeb B.G. Woodward W.A. Rylander M.N. Influence of Macrophages on Vascular Invasion of Inflammatory Breast Cancer Emboli Measured Using an In Vitro Microfluidic Multi-Cellular Platform. Cancers (Basel) 2023 15 19 4883 10.3390/cancers15194883 37835577
    [Google Scholar]
  30. Kuang J. Sun W. Zhang M. Kang L. Yang S. Zhang H. Wang Y. Hu P. A three-dimensional biomimetic microfluidic chip to study the behavior of hepatic stellate cell under the tumor microenvironment. Chin. Chem. Lett. 2023 34 3 107573 10.1016/j.cclet.2022.05.087
    [Google Scholar]
  31. Azadi S. Torkashvand E. Mohammadi E. Tafazzoli-Shadpour M. Analysis of EMT induction in a non-invasive breast cancer cell line by mesenchymal stem cell supernatant: Study of 2D and 3D microfluidic based aggregate formation and migration ability, and cytoskeleton remodeling. Life Sci. 2023 320 121545 10.1016/j.lfs.2023.121545 36871932
    [Google Scholar]
  32. Zhu L. Tang Q. Mao Z. Chen H. Wu L. Qin Y. Microfluidic-based platforms for cell-to-cell communication studies. Biofabrication 2024 16 1 012005 10.1088/1758‑5090/ad1116 38035370
    [Google Scholar]
  33. Kim H. Ahn Y.H. Moon C.M. Kang J.L. Woo M. Kim M. Lethal effects of mitochondria via microfluidics. Bioeng. Transl. Med. 2023 8 3 e10461 10.1002/btm2.10461 37206227
    [Google Scholar]
  34. Islam M.S. Chen X. Continuous CTC separation through a DEP ‐based contraction–expansion inertial microfluidic channel. Biotechnol. Prog. 2023 39 4 e3341 10.1002/btpr.3341 36970770
    [Google Scholar]
  35. Yin S. Lu R. Li Y. Sun D. Liu C. Liu B. Li J. A microfluidic device inspired by leaky tumor vessels for hematogenous metastasis mechanism research. Analyst (Lond.) 2023 148 7 1570 1578 10.1039/D2AN02081E 36892183
    [Google Scholar]
  36. Ugrinic M. Decanini D. Bidan N. Lazzari G. Harouri A. Hwang G. Haghiri-Gosnet A.M. Mura S. Fabrication of high aspect ratio microfluidic devices for long term in vitro culture of 3D tumor models. Microelectron. Eng. 2023 267-268 111898 10.1016/j.mee.2022.111898
    [Google Scholar]
  37. Li P. Wang C. Qiu J. Song F. Huang Y. Zhang Y. Zhang K. Ji H. Sang Y. Blaker J.J. Zhang Y. Han L. Inhibitory effect of zinc oxide nanorod arrays on breast cancer cells profiled through real‐time cytokines screening by a single‐cell microfluidic platform. BMEMat 2023 1 3 e12040 10.1002/bmm2.12040
    [Google Scholar]
  38. Gural N. Irimia D. Microfluidic devices for precise measurements of cell directionality reveal a role for glutamine during cell migration. Sci Rep. 2023 13 1 23032 10.21203/rs.3.rs‑2799430/v1
    [Google Scholar]
  39. Wang Z. Ahmed S. Labib M. Wang H. Wu L. Bavaghar-Zaeimi F. Shokri N. Blanco S. Karim S. Czarnecka-Kujawa K. Sargent E.H. McGray A.J.R. de Perrot M. Kelley S.O. Isolation of tumour-reactive lymphocytes from peripheral blood via microfluidic immunomagnetic cell sorting. Nat. Biomed. Eng. 2023 7 9 1188 1203 10.1038/s41551‑023‑01023‑3 37037966
    [Google Scholar]
  40. Ngan Ngo T.K. Kuo C.H. Tu T.Y. Recent advances in microfluidic-based cancer immunotherapy-on-a-chip strategies. Biomicrofluidics 2023 17 1 011501 10.1063/5.0108792 36647540
    [Google Scholar]
  41. Cao X. Liu Q. Shi W. liu K. Deng T. Weng X. Pan S. Yu Q. Deng W. Yu J. Wang Q. Xiao G. Xu X. Microfluidic fabricated bisdemethoxycurcumin thermosensitive liposome with enhanced antitumor effect. Int. J. Pharm. 2023 641 123039 10.1016/j.ijpharm.2023.123039 37225026
    [Google Scholar]
  42. Peng T. Qiang J. Yuan S. Investigation on a cascaded inertial and acoustic microfluidic device for sheathless and label-free separation of circulating tumor cells. Phys. Fluids 2023 35 8 082009 10.1063/5.0160391
    [Google Scholar]
  43. Gimondi S. Ferreira H. Reis R.L. Neves N.M. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation. ACS Nano 2023 17 15 14205 14228 10.1021/acsnano.3c01117 37498731
    [Google Scholar]
  44. Bi W. Cai S. Lei T. Wang L. Implementation of blood-brain barrier on microfluidic chip: Recent advance and future prospects. Ageing Res. Rev. 2023 87 101921 10.1016/j.arr.2023.101921 37004842
    [Google Scholar]
  45. Ide H. Aoshi T. Saito M. Espulgar W.V. Briones J.C. Hosokawa M. Matsunaga H. Arikawa K. Takeyama H. Koyama S. Takamatsu H. Tamiya E. Linking antigen specific T-cell dynamics in a microfluidic chip to single cell transcription patterns. Biochem. Biophys. Res. Commun. 2023 657 8 15 10.1016/j.bbrc.2023.03.035 36963175
    [Google Scholar]
  46. Shao C. Yu Y. Lei X. Cao J. Zhao Y. Ye F. Organ-on-a-chip for dynamic tumor drug resistance investigation. Chem. Eng. J. 2023 460 141739 10.1016/j.cej.2023.141739
    [Google Scholar]
  47. Hou C. Gu Y. Yuan W. Zhang W. Xiu X. Lin J. Gao Y. Liu P. Chen X. Song L. Application of microfluidic chips in the simulation of the urinary system microenvironment. Mater. Today Bio 2023 19 100553 10.1016/j.mtbio.2023.100553 36747584
    [Google Scholar]
  48. Banik S. Uchil A. Kalsang T. Chakrabarty S. Ali M.A. Srisungsitthisunti P. Mahato K.K. Surdo S. Mazumder N. The revolution of PDMS microfluidics in cellular biology. Crit. Rev. Biotechnol. 2023 43 3 465 483 10.1080/07388551.2022.2034733 35410564
    [Google Scholar]
  49. Parihar A. Choudhary N.K. Parihar D.S. Khan R. Tumor-on-a-Chip: Microfluidic Models of Hypoxic Tumor Microenvironment. Hypoxia in Cancer: Significance and Impact on Cancer Therapy. Singapore: Springer. Nat. Singap. 2023 ••• 297 328 10.1007/978‑981‑99‑0313‑9_14
    [Google Scholar]
  50. Chen Y.S. Huang C.H. Pai P.C. Seo J. Lei K.F. A Review on Microfluidics-Based Impedance Biosensors. Biosensors (Basel) 2023 13 1 83 10.3390/bios13010083 36671918
    [Google Scholar]
  51. Wan Z. Floryan M.A. Coughlin M.F. Zhang S. Zhong A.X. Shelton S.E. Wang X. Xu C. Barbie D.A. Kamm R.D. New Strategy for Promoting Vascularization in Tumor Spheroids in a Microfluidic Assay. Adv. Healthc. Mater. 2023 12 14 2201784 10.1002/adhm.202201784 36333913
    [Google Scholar]
  52. Ye S. Cao Q. Ni P. Xiong S. Zhong M. Yuan T. Shan J. Liang J. Fan Y. Zhang X. Construction of Microfluidic Chip Structure for Cell Migration Studies in Bioactive Ceramics. Small 2023 19 40 2302152 10.1002/smll.202302152 37282789
    [Google Scholar]
  53. Phillips C.M. Lima E.A.B.F. Gadde M. Jarrett A.M. Rylander M.N. Yankeelov T.E. Towards integration of time-resolved confocal microscopy of a 3D in vitro microfluidic platform with a hybrid multiscale model of tumor angiogenesis. PLOS Comput. Biol. 2023 19 1 e1009499 10.1371/journal.pcbi.1009499 36652468
    [Google Scholar]
  54. Farahinia A. Zhang W. Badea I. Recent Developments in Inertial and Centrifugal Microfluidic Systems along with the Involved Forces for Cancer Cell Separation: A Review. Sensors (Basel) 2023 23 11 5300 10.3390/s23115300 37300027
    [Google Scholar]
  55. Villalba-Villalba A.G. Muñoz C. Maldonado A. Evaluation of the deformation index of sea urchin Echinometra vanbrunti ovules by microfluidics. Biophys. J. 2023 122 3 533a 10.1016/j.bpj.2022.11.2825
    [Google Scholar]
  56. Abraham A. Virdi S. Herrero N. Bryant I. Nwakama C. Jacob M. Khaparde G. Jordan D. McCuddin M. McKinley S. Taylor A. Peeples C. Ekpenyong A. Microfluidic Microcirculation Mimetic for Exploring Biophysical Mechanisms of Chemotherapy-Induced Metastasis. Micromachines (Basel) 2023 14 9 1653 10.3390/mi14091653 37763816
    [Google Scholar]
  57. Lu Y. Yue S. Liang M. Wang T. Wang R. Chen Z. Fang J. Establishment of a cascaded microfluidic single cell analysis system for molecular and functional heterogeneity analysis of circulating tumor cells. Sens. Actuators B Chem. 2023 393 134174 10.1016/j.snb.2023.134174
    [Google Scholar]
  58. Johnson A. Reimer S. Childres R. Cupp G. Kohs T.C.L. McCarty O.J.T. Kang Y. The Applications and Challenges of the Development of In Vitro Tumor Microenvironment Chips. Cell. Mol. Bioeng. 2023 16 1 3 21 10.1007/s12195‑022‑00755‑7 36660587
    [Google Scholar]
  59. Mendanha D. Gimondi S. Costa B.M. Ferreira H. Neves N.M. Microfluidic-derived docosahexaenoic acid liposomes for glioblastoma therapy. Nanomedicine 2023 53 102704 10.1016/j.nano.2023.102704 37582426
    [Google Scholar]
  60. Cheng Y. Zhang S. Qin L. Zhao J. Song H. Yuan Y. Sun J. Tian F. Liu C. Poly(ethylene oxide) concentration gradient-based microfluidic isolation of circulating tumor cells. Anal. Chem. 2023 95 6 3468 3475 10.1021/acs.analchem.2c05257 36725367
    [Google Scholar]
  61. Sharma I. Thakur M. Singh S. Tripathi A. Microfluidic devices as a tool for drug delivery and diagnosis: A review. Int. J. Appl. Pharmaceut. 2021 13 1 95 102 10.22159/ijap.2021v13i1.39032
    [Google Scholar]
  62. Kuril A. Ambekar A. Nimase B. Giri P. Nikam P. Desai H. Aher S. Exploring the potential of 3D printing in pharmaceutical development. Int. J. Curr. Pharm. Sci. 2023 15 6 31 42
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129333473241018114102
Loading
/content/journals/cpa/10.2174/0115734129333473241018114102
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Cancer ; organ on chip ; fabrication ; tumor ; microfluidics ; drug delivery
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test