Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Many analytical techniques have been used in quality control, such as spectrophotometry, spectrofluorimetry, HPLC, and other hyphenated techniques. Among them, spectrophotometry is considered to be one of the most commonly used simple techniques. Drugs that lack chromogenic groups can be readily determined by using the chromogenic reagents, which react with the functional groups present in the drugs and produce a chromogenic group that can be detected in the visible region using a spectrophotometer. Chromogenic reagents play a vital role in the estimation of such types of drugs. Vanillin is one of the chromogenic reagents that possess a carbonyl group that reacts with the drugs that possess amine moiety and results in the formation of Schiff’s base, which is a yellow-colored compound that can be detected by spectrophotometry. The present review gives insights into the reaction conditions and applications of the drugs that are estimated by using vanillin as a chromogenic label.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129306714240610070448
2024-06-01
2025-01-10
Loading full text...

Full text loading...

References

  1. RedasaniV.K. PatelP.R. MaratheD.Y. ChaudhariS.R. ShirkhedkarA.A. SuranaS.J. A review on derivative UV-spectrophotometry analysis of drugs in pharmaceutical formulations and biological samples review.J. Chil. Chem. Soc.20186334126413410.4067/s0717‑97072018000304126
    [Google Scholar]
  2. PatelD. PanchalD. PatelK. DalwadiM. UpadhyayU. A review on UV visible spectroscopy.Ijcrt.20221010b399b411
    [Google Scholar]
  3. KarunaD.B. ManasaS. NaraparajuS. SoujanyaCh. KumarP.A.D. Spectrophotometric determination of dabigatran etexilate mesylate using 1, 2-napthoquinone-4-sulfonate (NQS) reagent in bulk and capsules.IJPRA20238312751284
    [Google Scholar]
  4. SravaniK. MasthanammaS.K. PrasannaV.L. SowmyaD.K. TanujaA. Analytical reagents used in chemical and spectrophotometric analysis.Res J Pharm Technol20158211011710.5958/0974‑360X.2015.00020.7
    [Google Scholar]
  5. KumarV.V. BalaR. PullabhotlaR. Derivatizing agents for spectrophotometric and spectrofluorimetric determination of pharmaceuticals: A review.J. Taibah Univ. Sci.2023171124
    [Google Scholar]
  6. RavisankarP. SulthanaS. BabuP.S. AfzalB.S. AswiniR. SwathiV. MahamudaS. LakshmiM. NavyasriN. ThanujaI.M. Comprehensive review of important analytical reagents used in spectrophotometry.IAJPR201770587168735
    [Google Scholar]
  7. GummadiS. KommojuM. Colorimetric approaches to drug analysis and applications. A Review. Am.J. PharmTech Res201991143710.46624/ajptr.2019.v9.i1.002
    [Google Scholar]
  8. DeviB.K. MadhaviK. NaraparajuS. DeverakondaR. Use of chemical reagents in non-fluorescent pharmaceutical labels: a comprehensive review.Curr. Pharm. Anal.202319644547510.2174/1573412919666230609120450
    [Google Scholar]
  9. EmmanuelA. CyrilU.O. EdidiongO.N. EkaeteU.D. Novel spectrophotometric determination of artesunate using vanillin/sulphuric acid reagent.JOCPR20157710501058
    [Google Scholar]
  10. BarakaM.M. ElsadekM.E. IbrahimS.M. El-didamoonyM.A. Spectrophotometric determination of irbesartan, losartan, atenolol and hydrochlorothiazide in bulk and dosage forms.AJPAMC20164288106
    [Google Scholar]
  11. Rehman MughalU-U. DayoA. Ali GhotoM. LalM. Iqbal ArainM. ParveenR. Ali GilalR. Quantitative determination of amikacin Sulfate using vanillin from pure and commercial brands available in Pakistan.J. Young Pharm.201581283210.5530/jyp.2016.1.7
    [Google Scholar]
  12. HamdM.A.E. DerayeaS.M. AbdelmageedO.H. AskalH.F. A novel spectrophotometric method for determination of five 1,4-dihydropyridine drugs in their tablets and capsules using vanillin reagent.Am. J. Anal. Chem.20134314815710.4236/ajac.2013.43020
    [Google Scholar]
  13. BarakaM.M. ElsadekM.E. IbrahimA.M. Spectrophotometric determination of albendazole in pure form and tablet form.AJPAMC201424276294
    [Google Scholar]
  14. LettieriM. ScaranoS. PalladinoP. MinunniM. Colorimetric determination of carbidopa in anti-Parkinson drugs based on 4-hydroxy-3-methoxybenzaldazine formation by reaction with vanillin.Anal. Bioanal. Chem.2022414236911691810.1007/s00216‑022‑04256‑4 35927364
    [Google Scholar]
  15. RahmanN. KhalafO.F. Spectrophotometric determination of cefixime through schiff’s base system using vanillin reagents in pharmaceutical preparations (NJC).Irq. Nat. J. Chem.2013493846
    [Google Scholar]
  16. VijayalakshmiR. NagaY. RamyaS. ManiA.D. DhanarajuM.D. Spectrophotometric determination of darunavir ethanolate by condensation technique.Int. J. Pharm. Tech. Res.201696301306
    [Google Scholar]
  17. Al-ObaidiM. Al-SabhaT. Al-GhabshaT. Spectrophotometric determination of nitrazepam and dapsone using vanillin reagent in pharmaceutical preparations.J. Educ. Sci2014271435710.33899/edusj.2014.161562
    [Google Scholar]
  18. AbdullahE.H. RashidQ.N. Spectrophotometric determination of esomepreazol in pure form and in its pharmaceutical preparations.Int. J. Drug Deliv. Technol.20211114246
    [Google Scholar]
  19. KumarA. SinghV. KumarP. Spectrophotometric determination of eflornithine hydrochloride using vanillin as derivative chromogenic reagent.Trop. J. Pharm. Res.201413111917192310.4314/tjpr.v13i11.21
    [Google Scholar]
  20. HassounaM.E. Spectrophotometric determination of furosemide drug in different formulations using schiff ’s bases.Forensic Res. Criminol. Int. J.201616214221
    [Google Scholar]
  21. TaghreedA. MohammedaM.A. Spectrophotometric determination of certain antiepileptic’s in tablets using vanillin reagent.JAC201511235403553
    [Google Scholar]
  22. KazemipourM. FakhariI. AnsariM. Gabapentin determination in human plasma and capsule by coupling of solid phase extraction, derivatization reaction, and uv-vis spectrophotometry.Iran. J. Pharm. Res.2013123247253 24250630
    [Google Scholar]
  23. PaniA. SatyakalaN. SowndaryaR. RajeshwariG. RadhagayathriA. SunithaG. Quantification of linagliptin by chemical derivatization with appliance of chromogenic reagents.J. Appl. Commun. Res.20171123950
    [Google Scholar]
  24. Zenita DeviO. BasavaiahK. VinayK.B. RevanasiddappaH.D. Sensitive spectrophotometric determination of metoclopramide hydrochloride in dosage forms and spiked human urine using vanillin.Arab. J. Chem.20169S64S7210.1016/j.arabjc.2011.02.017
    [Google Scholar]
  25. LumaI.I. QabasN.R. Spectrophotometric determination of nystatin in its pharmaceutical preparations.AIP Conf. Proc.202224501
    [Google Scholar]
  26. MannanA. JamalK.A. KhanM. AbbasG. Validated spectrophotometric method for determination of polymaxin-b sulfate in pharmaceutical formulations.J. Pharm. Pharm. Sci.2017543338
    [Google Scholar]
  27. SalehH.M. HenaweeM.M. RagabG.H. MohamedO.F. Spectrophotometric and spectrofluorimetric determination of pregabalin via condensation reactions in pure form and in capsules.IJPCBS201443738747
    [Google Scholar]
  28. MohammedN.S. SabhaT.N.A. JabarP.A. Development method for spectrophotometric analysis of sulfamethoxazole using vanilline reagent.Asian J. Appl. Chem. Res202062414910.9734/ajacr/2020/v6i230159
    [Google Scholar]
  29. MehdiZ.S. Analytical method development for the spectrophotometric determination of sulfamethoxazole in bulk drug and pharmaceutical preparation.J. Chem. Biochem.201531637410.15640/jcb.v3n1a5
    [Google Scholar]
  30. BarakaM.M. ElsadekM.E. IbrahimA.M. Spectrophotometric determination of secnidazole in pure form and pharmaceutical formulation.Zagazig J. Pharm. Sci.2014232758710.21608/zjps.2014.38187
    [Google Scholar]
  31. Et al, A.; Omar, F.K. Colorimetric assay of thiamine hydrochloride in pharmaceutical preparations.Baghdad Sci. J2019164089810.21123/bsj.2019.16.4.0898
    [Google Scholar]
  32. AlhemiaryN.A.F. SalehM.H.A. Spectrophotometric determination of tinidazole using promethazine and ethyl vanillin reagents in pharmaceutical Preparations.Pharma Chem.20124621522160
    [Google Scholar]
  33. PrashanthK.N. BasavaiahK. RaghuM.S. Spectrophotometric determination of zolmitriptan in bulk drug and pharmaceuticals using vanillin as a reagent.Anal. Chem.201317
    [Google Scholar]
  34. EtimE. UdobreA. JohnsonE. Development and validation of UV spectrophotometric method for the determination of artesunate and dihydroartemisinin by coupling.J. Pharm. Innov.20165847
    [Google Scholar]
  35. AghayereG.E. AdelusiS.A. Development of colorimetric method for the assay of artesunate using 4-nitrobenzaldehyde.J. Sci. Pract. Pharm.20196129830210.47227/jsppharm.v6i1.3
    [Google Scholar]
  36. AdegokeO.A. OsoyeA.O. Derivatization of artesunate and dihydroartemisinin for colorimetric analysis using p-dimethylaminobenzaldehyde.Eurasian J Anal Chem.201162104113
    [Google Scholar]
  37. AttihE.E. UsifohC.O. OladimejiH.O. Sensitive uv-spectrophotometric determination of dihydroartemisinin and artesunate in pharmaceuticals using ferric-hydroxamate complex formation.Bull. Env. Pharmacol. Life Sci.2015489099
    [Google Scholar]
  38. LawalA. AbubakarM.G. WaliU. FTIR and UV-Visible Spectrophotometeric analyses of artemisinin and its derivatives.J. Pharm. Biomed. Sci.20122424614
    [Google Scholar]
  39. AttihE.E. JohnsonE.C. EtimE.I. OladimejiH.O. EseyinO.A. Validated spectrophotometric determination of artesunate and dihydroartemisinin using anisaldehyde/sulphuric acid reagent.Nig. J. Pharm. Appl. Sci. Res.20211014349
    [Google Scholar]
  40. ZhukY.N. VasyukS.O. Quantitative determination of Atenolol in tablets.IJAPBC201653350355
    [Google Scholar]
  41. AgrawalY.K. RamanK. RajputS. MenonS.K. Spectrophotometric determination of atenolol via hydroxamic acid formation.Anal. Lett.19922581503151010.1080/00032719208017132
    [Google Scholar]
  42. MhemeedA.H. Spectrophotometric determination of metoprolol and atenolol by iron (iii) and ferricyanide.Syst. Rev. Pharm.20211213439
    [Google Scholar]
  43. ZakariaS.A. ZakariaR.A. OthmanN.S. Spectrophotometric determination of atenolol via oxidation and bleaching color reaction for methyl red dye.J. Phys. Conf. Ser.20212063101200810.1088/1742‑6596/2063/1/012008
    [Google Scholar]
  44. KudigeN. Simple, sensitive and selective spectrophotometric methods, for the determination of atenolol in pharmaceuticals through charge transfer complex formation reaction. Acta Poloniae Pharmaceutica ñ.Drug Res.2012692213223
    [Google Scholar]
  45. PrashanthK.N. BasavaiahK. Sensitive spectrophotometric determination of atenolol in pharmaceutical formulations using bromate-bromide mixture as an eco-friendly brominating agent.J. Anal. Methods Chem.20122012111210.1155/2012/810156 22567567
    [Google Scholar]
  46. MajeedS.Y. SalihO.A. SaleemB.A.A. A new spectrophotometric method to estimate atenolol, amlodipine, and furosemide in pharmaceutical dosages.Eur. Chem. Commun.202241212851294
    [Google Scholar]
  47. SharmaD.K. RajP. Simple and rapid spectrophotometric determination of atenolol and esmolol β-blockers in pharmaceutical formulations and spiked water samples.Int. J. Pharm. Sci. Res.201781251685177
    [Google Scholar]
  48. SettyN. ChakravarthiI.E. A UV-Visible spectrophotometric determination of atenolol in pharmaceutical formulations.IJSR201323313210.15373/22778179/MAR2013/11
    [Google Scholar]
  49. SaleemB. Spectrophotometric determination of atenolol using indigo carmine dye.Kirkuk Univ. J. Sci. Stud2019142193510.32894/kujss.2019.14.2.2
    [Google Scholar]
  50. El-didamonyA.M. MoustafaM.A. Direct spectrophotometric determination of atenolol and timolol anti-hypertensive drugs.Int. J. Pharm. Pharm. Sci.201793475310.22159/ijpps.2017v9i3.16198
    [Google Scholar]
  51. BashirN. ShahS.W. BangeshM. A novel spectrophotometric determination of atenolol using sodium nitroprusside.JSIR2011705154
    [Google Scholar]
  52. G, S.T.; M, G.B.; K, V.S. Spectrophotometric method for the determination amikacin in pure and pharmaceutical dosage form.Int. J. Curr. Pharm. Res.2018101384210.22159/ijcpr.2018v10i1.24703
    [Google Scholar]
  53. VinnyT.M. PrakashN.K.S. SuprajaS. SaibabuS. VeeraA.S. Novel colorimetric approach for amikacin estimation in pure powder and its pharmaceutical formulations.WJBPHS2023141270279
    [Google Scholar]
  54. AdamM.E. AdamM.E. ShantierS.W. HussienM.A. GaralnabiA.E. GadkariemE.A. Development of spectrophotometric method for the determination of amikacin sulphate in its pure and pharmaceutical formulations using ascorbic acid.EJPMR201742235239
    [Google Scholar]
  55. SabhaN. Spectrophotometric determination of amikacin sulphate via charge transfer complex formation reaction using tetracyanoethy’lene and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone reagents.Arab. J. Sci. Eng.2010352740
    [Google Scholar]
  56. VaikosenE.N. OrigboS.O. EreD. OdaderiaP. Comparative application of biological and ninhydrin- derivatized spectrophotometric assays in the evaluation and validation of amikacin sulfate injection.Braz. J. Pharm. Sci.202258e20118510.1590/s2175‑97902022e201185
    [Google Scholar]
  57. OmarM.A. NagyD.M. HammadM.A. AlyA.A. Validated spectrophotometric methods for determination of certain aminoglycosides in pharmaceutical formulations.J. Appl. Pharm. Sci.201333151161
    [Google Scholar]
  58. AlkhalilR. AttalA. SakurA.A. Spectrophotometric Determination of Amlodipine Besylate in Pure Form and Pharmaceutical Formulation using Amido Black.RJPT20191273389339210.5958/0974‑360X.2019.00572.9
    [Google Scholar]
  59. SolimanM.M. DarwishM.K. Abdel-RazeqS.A-M. SAM. Determination of amlodipine besilate and azilsartan medoxomil by uhplc, hptlc and spectrophotometric techniques.Int. Res. J. Pure Appl. Chem.20192511310.9734/irjpac/2019/v19i330109
    [Google Scholar]
  60. BasavaiahK. ChandrashekarU. NagegowdaP. Sci. Asia200632327127810.2306/scienceasia1513‑1874.2006.32.271
    [Google Scholar]
  61. SridharK. SastryC.S.P. ReddyM.N. SankarD.G. SrinivasK.R. Spectrophotometric determination of amlodipine besylate in pure forms and tablets.Anal. Lett.199730112113310.1080/00032719708002295
    [Google Scholar]
  62. RahmanN. AzmiS.N.H. Spectrophotometric determination of amlodipine besylate by charge-transfer complex formation with p-Chloranilic acid.Anal. Sci.200016121353135610.2116/analsci.16.1353
    [Google Scholar]
  63. AlizadehN. HematiF. Spectrophotometric method for the determination of amlodipine besylate in pure and dosage forms using 7,7,8,8-tetracyanoquinodimethane and tetracyanoethylene.Bull. Fac. Pharm. Cairo Univ.201452110911410.1016/j.bfopcu.2014.01.003
    [Google Scholar]
  64. MohsenK.Z.A. KhaleelA. RashidQ.N. Spectrophotometric methods for estimation of amlodipine besylate in pure form and in it’s pharmaceutical formulations.Int. J. Health Sci.20222777267741
    [Google Scholar]
  65. SinghviI. ChaturvediS.C. Visible spectrophotometric methods for estimation of amlodipine besylate form tablets.Indian J. Pharm. Sci.1998309310
    [Google Scholar]
  66. BadranR. Al-KhateebM.J. A spectrophotometric determination of amlodipine besylate (AMB) in pharmaceutical preparations using gresol red (GR) reagent.Int. J. Chemtech Res.2015811229236
    [Google Scholar]
  67. MahmoudA.M. Abdel-WadoodH.M. MohamedN.A. Kinetic spectrophotometric method for determination of amlodipine besylate in its pharmaceutical tablets.J. Pharm. Anal.20122533434110.1016/j.jpha.2012.03.002 29403763
    [Google Scholar]
  68. SulymaM. VasyukS. ZhukY. KaminskyyD. ChupashkoO. OgurtsovV. New spectrophotometric method of amlodipine besylate determination and its validation.Chemistry & Chemical Technology201812442943310.23939/chcht12.04.429
    [Google Scholar]
  69. RefatM.S. MohamedG.G. FathiA. Spectrophotometric determination of albendazole drug in tablets: spectroscopic characterization of the charge-transfer solid complexes.Chin. J. Chem.201129232433210.1002/cjoc.201190086
    [Google Scholar]
  70. BasavaiahK. RamakrishnaV. SomashekarB.C. AnilU.R. Sensitive titrimetric and spectrophotometric methods for the assay of albendazole in pharmaceuticals using sodium periodate.ACAIJ200625-6159166
    [Google Scholar]
  71. OdayT.A. ElgendyK.M. SaadM.Z. HassanW.S. SebaiyM.M. New spectrophotometric methods for determination of albendazole in presence of cerium as oxidant and both indigo carmine and alizarin red dyes in bulk and dosage forms. Vol. 4.Biotechnol. Bioeng.202041202510.22259/2637‑5362.0401003
    [Google Scholar]
  72. SwamyN. BasavaiahK. Simple and rapid spectrophotometric assay of albendazole in pharmaceuticals using iodine and picric acid as CT complexing agents.Braz. J. Pharm. Sci.201450483985010.1590/S1984‑82502014000400019
    [Google Scholar]
  73. BasavaiahK. NagegowdaP. Three new methods for the assay of albendazole using N-chlorosuccinimide.JSIR200463835841
    [Google Scholar]
  74. SwamyN. BasavaiahK. Use of two sulfonphthalein dyes for the sensitive and selective extraction-free spectrophotometric assay of albendazole in bulk drug and in tablets.Anal. Chem.2013111
    [Google Scholar]
  75. IssopoulosP.B. EconomouP.T. Spectrophotometric method for the determination of carbidopa using neotetrazolium chloride.J. Pharm. Pharmacol.201144121020102210.1111/j.2042‑7158.1992.tb07085.x 1361549
    [Google Scholar]
  76. KeskarM.R. JugadeR.M. Spectrophotometric determination of cefixime trihydrate in pharmaceutical formulations based on ion-pair reaction with bromophenol blue.Anal. Chem. Insights2015101ACI.S2846310.4137/ACI.S2846326279621
    [Google Scholar]
  77. RamadanA.A. MandilH. DahhanM. Spectrophotometric determination of cefixime in pure form and in Syrian pharmaceuticals through complexation with Cu(II).Asian J. Chem.20132563457346210.14233/ajchem.2013.13959
    [Google Scholar]
  78. pasha, S.I.; A, S.; Sravanthi, K.; Srinika, G.; Nikhila, V. New visible spectrophotometric method for the determination of cefixime trihydrate in pharmaceutical formulations.Orient. J. Chem.201228157157410.13005/ojc/280174
    [Google Scholar]
  79. Naeem KhanM. QayumA. Ur RehmanU. GulabH. IdreesM. Spectrophotometric method for quantitative determination of cefixime in bulk and pharmaceutical preparation using ferroin complex.J. Appl. Spectrosc.201582470571110.1007/s10812‑015‑0167‑z
    [Google Scholar]
  80. BassamN. SaifI.N. A new kinetic spectrophotometric method for determination of cefixime in pharmaceutical preparations using saffron extract as natural reagent.IJPRBS201325328349
    [Google Scholar]
  81. GodambeR.D. DisouzaJ.I. JamkhandiC.M. KumbharP.S. Development of spectrophotometric and fluorometric methods for estimation of darunavir using qbd approach.Int. J. Curr. Pharm. Res.2018101131810.22159/ijcpr.2018v10i1.24401
    [Google Scholar]
  82. VijayalakshmiR. AnjaniD. DhanarajuM.D. Analytical method development for the estimation of darunavir by ion-pair complex using visible spectrophotometry.IJPPR2018122182192
    [Google Scholar]
  83. ReddyM.P. RamiR.N. Spectrophotometric estimation of darunavir in bulk and pharmaceutical formulations.Int. J. Chem. Sci.2013111614618
    [Google Scholar]
  84. AcharyuluM.L.N. RaoP.V.S.R. RamaK.S. Spectrophotometric determination of Darunavir using NQS and Brucine meta periodate.Pharma Chem.20201273642
    [Google Scholar]
  85. RaoK.P. Validation of visible spectrophotometric methods of darunavir in pure and dosage forms.Pharma Chem.20168175461
    [Google Scholar]
  86. EnizziM.S. SheejA.O.A. SabhaT.N. Spectrophotometric determination of dapsone using charge transfer complex formation reaction.Egypt. J. Chem.202063831673177
    [Google Scholar]
  87. RevanasiddappaH.D. ManjuB. A spectrophotometric method for the determination of metoclopramide HCl and dapsone.J. Pharm. Biomed. Anal.2001253-463163710.1016/S0731‑7085(00)00592‑6 11377044
    [Google Scholar]
  88. NagarajaP. YathirajanH.S. SunithaK.R. VasanthaR.A. Novel methods for the rapid spectrophotometric determination of dapsone.Anal. Lett.20023591531154010.1081/AL‑120006728
    [Google Scholar]
  89. WangH.Y. XuL.X. XiaoY. HanJ. Spectrophotometric determination of dapsone in pharmaceutical products using sodium 1,2-naphthoquinone-4-sulfonic as the chromogenic reagent.Spectrochim. Acta A Mol. Biomol. Spectrosc.200460122933293910.1016/j.saa.2004.02.013 15350932
    [Google Scholar]
  90. SafaaM.A.A. Colorimetric and kinetic method for determination of dapsone in bulk and pharmaceutical preparations.IJRPB2015311521
    [Google Scholar]
  91. AhmadW.S. AbdulazizM.S. Spectrophotometric determination of dapsone in pharmaceutical formulation by schiff҆s base with p-dimethyl amino benzaldehyde.Int. J. Drug Deliv. Technol.2021111141146
    [Google Scholar]
  92. DaoodL.T. Spectrophotometric determination of dapsone using phloroglucinol azo coupling reagent.Raf Jour. Sci.20081932437
    [Google Scholar]
  93. SarsamL.A. Spectrophotometric and high-performance liquid chromatographic methods for the determination of dapsone in a pharmaceutical preparation.Raf Jour. Sci.201324112814510.33899/rjs.2013.67587
    [Google Scholar]
  94. RasheedS. DevS. JacobJ. RaniS. Determination of esomeprazole by complexation method.Pharma Chem.2017922101105
    [Google Scholar]
  95. MandilH. AlhajA. AllabbanA.A. A new sensitive spectrophotometric method for determination of esomeprazole magnesium trihydrate in dosage forms.Int. J. Pharm. Pharm. Sci.201354747751
    [Google Scholar]
  96. Yoganda SwamyM.M.V. New spectrophotometric determination of esomeprazole in bulk and pharmaceutical dosage form using wool fast blue.J. Drug Deliv. Ther.20188432032210.22270/jddt.v8i4.1802
    [Google Scholar]
  97. RahmanN. BanoZ. AzmiS.N.H. Spectrophotometric determination of esomeprazole magnesium in commercial tablets using 5-sulfosalicylic acid and N-bromosuccinimide.J. Chin. Chem. Soc.200855355756610.1002/jccs.200800082
    [Google Scholar]
  98. PurushothamR. Simple Spectrophotometric Determination of Esomeprazole Magnesium in Pharmaceutical Formulations.Asian J Pharm Health Sci.201113135136
    [Google Scholar]
  99. SharmaM.C. SharmaS. Spectrophotometric methods for the estimation of esomeprazole magnesium trihydrate in pharmaceutical formulations using indigo carmine reagent.Int. J. Pharm. Tech. Res.20113211861190
    [Google Scholar]
  100. YoganandaswamyM.M. ReddyA.J.P. New spectrophotometric determination of esomeprazole in bulk and pharmaceutical dosage form using tropaeoline-oo.J. Appl. Chem.20181165962
    [Google Scholar]
  101. KumarA. SinghV. KumarP. Spectrophotometric estimation of eflornithine hydrochloride by using ion-pair reagents.Pak. J. Pharm. Sci.2015282623629 25730793
    [Google Scholar]
  102. MohsenM.Z. MonirZ.S. WafaaS.H. MostafaE.E. MahmoudM.S. Validation of spectrophotometric method for determination of esomeprazole and ciprofloxacin in their pure and dosage forms.IJPSDR2020611510.17352/ijpsdr.000024
    [Google Scholar]
  103. MohammedG.F. OmarF.K. Spectrophotometric estimation of esomeprazole using diazotization reaction with meta- amino phenol reagent and application in pharmaceutical preparations.Int. J. Health Sci.20226S51035410366
    [Google Scholar]
  104. AlhfidhH.A. OthmanN.S. Application of the Cloud Point Extraction Method in Spectrophotometric Estimation of Esomeprazole using Diazotised p-Nitroanline and Triton X -114.Egypt. J. Chem.2021641162426249
    [Google Scholar]
  105. KumarP. Spectrophotometric determination of eflornithine hydrochloride as active pharmaceutical ingredient using sodium 1,2-naphthoquinone-4-sulfonate as the derivative chromogenic reagent.Anal. Chem.: Indian J.2008711812817
    [Google Scholar]
  106. KumarA. SinghV. KumarP. Spectrophotometric determination of Eflornithine hydrochloride through schiff’s base system using pdab reagent in pharmaceutical preparation.IJPS20151115
    [Google Scholar]
  107. BasavaiahK. ChandrashekarU. GowdaN. Titrimetric and spectrophotometric assay of felodipine in tablets using bromate–bromide, Methyl Orange and Indigo Carmine reagents.J. Serb. Chem. Soc.200570796997810.2298/JSC0507969B
    [Google Scholar]
  108. GölcüA. Spectrophotometric determination of furosemide in pharmaceutical dosage forms using complex formation with Cu(II).J. Anal. Chem.200661874875410.1134/S1061934806080053
    [Google Scholar]
  109. ShahJ. JanM.R. KhanM.A. Determination of furosemide by simple diazotization method in pharmaceutical preparations.J. Chin. Chem. Soc.200552234735210.1002/jccs.200500052
    [Google Scholar]
  110. MahmoudH.A. Spectrophotometric determination of furosemide using pyrogallol reagent in pharmaceutical preparations.J. Med. Chem.20236612541264
    [Google Scholar]
  111. SaleemB.A.A. HamdonE.A. MajeedS.Y. Visible quantitative methods for the estimation of furosemide in pure form and pharmaceutical formulations.J. Pharm. Res. Int.20213347B20020910.9734/jpri/2021/v33i47B33113
    [Google Scholar]
  112. AbdulM.K.A. ZahraaT.W.A. Estimation of furosemide spectrophotometrically in pharmaceutical preparations by oxidative coupling reaction.Tikrit J. Pure Sci.20222743946
    [Google Scholar]
  113. TharpaK. BasavaiahK. VinayK.B. Spectrophotometric determination of furosemide in pharmaceuticals using permanganate.Jordan J Chem.200944387397
    [Google Scholar]
  114. Al-RufaieM.M. Modern kinetic spectrophotometric procedure for estimation of furosemide drug as bulk form and in pharmaceuticals preparations.Curr. Issues Pharm. Med. Sci.201629418418910.1515/cipms‑2016‑0039
    [Google Scholar]
  115. AhmedS.F. SherN. ShafiN. ShamshadH. ZubairA. Kinetic and thermodynamic spectrophotometric technique to estimate gabapentin in pharmaceutical formulations using ninhydrin.J. Anal. Sci. Technol.201341718
    [Google Scholar]
  116. AbdulrahmanS.A.M. BasavaiahK. Sensitive and selective spectrophotometric determination of gabapentin in capsules using two nitrophenols as chromogenic agents.Int. J. Anal. Chem.201120111910.1155/2011/619310 21760787
    [Google Scholar]
  117. SampadaD.D. PramodH.S. PramodL.I. Development and validation of UV-spectrophotometric method for gabapentin in bulk drug and formulation.Asian J. Res. Chem201141015261528
    [Google Scholar]
  118. AdegbolagunO.M. ThomasO.E. AiyenaleE.O. AdegokeO.A. A new spectrophotometric method for the determination of gabapentin using chromotropic acid.ACTA Pharmaceutica Sciencia20185639311010.23893/1307‑2080.APS.05621
    [Google Scholar]
  119. SalehM.S. YoussefA.K. HashemE.Y. Abdel-KaderD.A. A novel spectrophotometric method for determination of gabapentin in pharmaceutical formulations using 2,5-dihydroxybenzaldehyde.Comput. Chem.201422223010.4236/cc.2014.22004
    [Google Scholar]
  120. AdegokeO.A. AdegbolagunO.M. AiyenaleE.O. ThomasO.E. New spectrophotometric method for the determination of gabapentin in bulk and dosage forms using p -dimethylaminobenzaldehyde.J. Taibah Univ. Sci.201812675476410.1080/16583655.2018.1495418
    [Google Scholar]
  121. SatishP. NatavarlalP. Visible spectrophotometric methods for determination of gabapentin in pharmaceutical tablet and capsule dosage forms.Asian J Pharm Life Sci20113
    [Google Scholar]
  122. Mohammed. Spectrophotometric method for determination of gabapentin in pharmaceutical formulation by derivatization with 4-chloro-7-nitrobenzo- 2-oxa-1,3-diazole (nbd-cl).Int J Drug Dev & Res.20157414
    [Google Scholar]
  123. AndayaniR. ElitaD. ArminF. The development and validation of spectrophotometric assay for determination of gabapentin in capsules using ninhydrin and ascorbic acid.J Pharm Biol Sci.202318231420
    [Google Scholar]
  124. AbdulrahmanS.A.M. BasavaiahK. Sensitive and selective spectrophotometric assay of gabapentin in capsules using sodium 1, 2‐naphthoquinone‐4‐sulfonate.Drug Test. Anal.201131074875410.1002/dta.242 21337720
    [Google Scholar]
  125. AlmasriI.M. RamadanM. AlgharablyE. Development and validation of spectrophotometric method for determination of gabapentin in bulk and pharmaceutical dosage forms based on Schiff base formation with salicylaldehyde.J. Appl. Pharm. Sci.201993212610.7324/JAPS.2019.90304
    [Google Scholar]
  126. TuljaR. GowriS. SatyanarayanaB. Extractive visible spectrophotometric method for determination of telmisatan and irbesartan in bulk and pharmaceutical formulations.Asian J. Pharm. Clin. Res.2012514145
    [Google Scholar]
  127. ThamirZ.M. OmaF.K. Development of spectrophotometric method to assay irbesartan in pure and in pharmaceutical dosage form using diazotization reaction.Int. J. Health Sci.20226S456225634
    [Google Scholar]
  128. AshourS. FawazC.M. BayramR. A new spectrophotometric method applied to the simple determination of irbesartan in tablets.R. J. Aleppo Univ. Basic Sciences Series200649
    [Google Scholar]
  129. AfafA. Spectrofluorimetric and Spectrophotometric Determination of Irbesartan and Bisoprolol hemifumarate independently in their Tablets.Pharm. Biosci. J.201642435210.20510/ukjpb/4/i2/97093
    [Google Scholar]
  130. RamakrishnaV. AnupamaB. Assay of irbesartan by extractive spectrophotometry.IJPCBS201224529531
    [Google Scholar]
  131. SafwanA. RoulaB. Novel extractive visible spectrophotometric method for determination of antihypertensive drug irbesartan with sulfonaphthalein acid dyes in tablets.Arch Pharm Pharma Sci202261612
    [Google Scholar]
  132. MohammedT.Z. KhalafO.F. Indirect spectrophotometric method for estimation of irbesartan in pure and in pharmaceutical dosage form using oxidation and reduction reaction.J. Glob. Sci. Res.202271027132722
    [Google Scholar]
  133. AshourS. BayramR. Selective and validated kinetic spectrophotometric method for the determination of irbesartan in pure and pharmaceutical formulations.Ann. Pharm. Fr.201977210111110.1016/j.pharma.2018.09.002 30471775
    [Google Scholar]
  134. NagaN.V.V.M. PullaR.S. VardhanS.V.M. RambabuC. Extractive visible spectrophotometric determination of lamotrigine in pure and pharmaceutical formulations.Chem. Sci. Trans.20132310161020
    [Google Scholar]
  135. VinayK.B. RevanasiddappaH.D. RajendraprasadN. Development and validation of spectrophotometric methods for the sensitive and selective determination of lamotrigine in pharmaceuticals using bromocresol purple.Yao Wu Shi Pin Fen Xi2009176424433
    [Google Scholar]
  136. RajendraprasadN. BasavaiahK. VinayK.B. Sensitive spectrophotometric determination of lamotrigine in bulk drug and pharmaceutical formulations using bromocresol green.Ecl. Quím., São Paulo.20103515566
    [Google Scholar]
  137. JhaC.P. ImamS.W. ThakurB.G. Spectrophotometrical determination of lamotrigine drug in its branded tablets.Acta Cienc. Indica2015493119127
    [Google Scholar]
  138. SharafeldinM AboulK. A SalehH HenaweeM. M SharfM. N. Spectrophotometric estimation of lamotrigine and minoxidil in bulk and dosage forms.R. J Pharm Tech201255697708
    [Google Scholar]
  139. AbuS.H.H.M. AttiaK.A.M. SalamaF. AminM.A.A. SaidR.A.M. Stability-indicating spectrophotometric methods for determination of lamotrigine in pure form and pharmaceutical preparations.J. Pharm. Sci.2014506783
    [Google Scholar]
  140. AlizadehN. KhakinahadR. JabbariA. Spectrophotometric determination of lamotrigine in pharmaceutical preparations and urine by charge-transfer complexation.Pharmazie20086311791795 19069238
    [Google Scholar]
  141. JayannaB.K. DevarajT.D. RoopaK.P. NagendrappaG. GowdaN. Spectrophotometric estimation of lamotrigine in tablets.Indian J. Pharm. Sci.2016785657662
    [Google Scholar]
  142. GurupadayyaB.M. ChandanR.S. Spectrophotometric determination of lamotrigine using Gibb’s and MBTH reagent in pharmaceutical dosage form.J. Pharm. Res.20114618131815
    [Google Scholar]
  143. VinayK.B. RajendraprasadH.O.N. BasavaiahK. Sensitive, selective and extraction-free spectrophotometric Sensitive, selective and extraction-free spectrophotometric determination of lamotrigine in pharmaceuticals using two determination of lamotrigine in pharmaceuticals using two sulphonthalein dyes sulphonthalein dyes.TJPS2011356576
    [Google Scholar]
  144. Parastekar Makhijani RitikaV. Unique & Novel Spectrophotometric Determination of Linagliptin Drug in Bulk and Pharmaceutical Formulations by using Iron & 1, 10 Phenthroline.Int. J. Sci. Res. (Raipur)20231271647165110.21275/MR23721221014
    [Google Scholar]
  145. SahloulL. SalamiM. Development and validation of a new analytical method for determination of linagliptin in bulk by visible spectrophotometer.Sci. Rep.2023131408310.1038/s41598‑023‑31202‑w 36906687
    [Google Scholar]
  146. GurralaS. AnumoluP.D. MenkanaS. GandlaN. ToddiK. Spectrophotometric estimation of linagliptin using ion-pair complexation and oxidative coupling reactions – A green approach.Thaiphesatchasan202044424525010.56808/3027‑7922.2460
    [Google Scholar]
  147. RambabuC. KishoreM.S. Spectrophotometric determination of losartan potassium through ion association reaction.Pharma Chem.201465171177
    [Google Scholar]
  148. DawoodA.G. OmerL.S. Spectrophotometric estimation of losartan potassium with methylene blue by ion-pair extraction method.Iraqi J. of Sci.202061123141315310.24996/ijs.2020.61.12.1
    [Google Scholar]
  149. ShakeelA.S. KarajgiS.R. SonawaneS. Visible spectrophotometric methods for the estimation of losartan potassium and omeprazole in single component pharmaceutical formulations.Int. J. Pharm. Tech. Res.20091412471250
    [Google Scholar]
  150. SivaK. KiranM. RamuK. RambabuC. Visible spectrophotometric determination of losartan potassium in pure and dosage forms by ion-ion association reactions using bcp and bpb reagents.Pharm. Lett.2015717580
    [Google Scholar]
  151. BegumM. KokiI.B. RizwanM. SyedA.A. Sensitive and selective spectrophotometric methods for the determination of cisaprid, metoclopramide hydrochloride, sulphadoxine and sulphamethoxazole.IJCMER2016348490
    [Google Scholar]
  152. TahaH.K.A. Al-RufaieM.M. MotaweqZ.Y. Spectrophotometric determination of metoclopramide medicine in bulk form and in pharmaceuticals using orcinol as reagent.An. Univ. Ovidius Constanta Ser. Chim.2016292859110.2478/auoc‑2018‑0012
    [Google Scholar]
  153. DeepakumariH.N. RevanasiddappaH.D. Spectrophotometric estimation of nitrazepam in pure and in pharmaceutical preparations.J. Spectrosc.2013201311810.1155/2013/671689
    [Google Scholar]
  154. OmranA.A. AhmedH. MohammedK. KhalafM. AlsarafM. OudahK. Highly development and validation of a spectrophotometric method for mogadon drug in pharmaceutical tablets by diazotization reaction.Eurasian Chem Commun.2023510131022
    [Google Scholar]
  155. WalashM.I. RizkM. El-BrashyA. Spectrophotometric determination of chlordiazepoxide and nitrazepam.Talanta1988351189589810.1016/0039‑9140(88)80209‑1 18964639
    [Google Scholar]
  156. El HamdM.A. DerayeaS.M. AbdelmageedO.H. AskalH.F. spectrophotometric method for determination of five 1,4-dihydropyridine drugs using n -bromosuccinimide and indigo carmine dye.Int. J. Spectrosc.201320131710.1155/2013/243059
    [Google Scholar]
  157. RahmanN. Ahmad KhanN. Hejaz AzmiS.N. Extractive spectrophotometric methods for the determination of nifedipine in pharmaceutical formulations using bromocresol green, bromophenol blue, bromothymol blue and eriochrome black T.Farmaco2004591475410.1016/j.farmac.2003.10.001 14751316
    [Google Scholar]
  158. NguyenT.D. Extractive spectrophotometric determination of nimodipine through ion-pair complex formation with bromothymol blue.J. Sci. Technol.20221711510.56651/lqdtu.jst.v17.n01.297
    [Google Scholar]
  159. DeepaK.H.N. RevanaH.D. A Sensitive spectrophotometric estimation of nimodipine in tablets and injection using phloroglucinol.Spectroscopy201317
    [Google Scholar]
  160. AhmedH.H. MohammedS.A. Spectrophotometric approach for estimating nimodipine by oxidative-coupling reaction with 4-aminoantipyrine in its tablet and biological fluids.Med Clin Res.202389110
    [Google Scholar]
  161. RavichandranV. SulthanaM.T. ShameemA. BalakumarM. RaghuramS. SankarV. Spectrophotometric method for determination of nimodipine in pharmaceutical dosage forms.IJPS20016425427
    [Google Scholar]
  162. AzarM.H.W. HamsaM.Y. Developing and validating a spectrophotometric method for estimating anti-fungal (Nystatin) in its pure form pharmaceutical formulation using tetrachloro-1,4-benzoquinone.Hist. Med.202392372381
    [Google Scholar]
  163. ShihabI. Al-SabhaT. Spectrophotometric determination of ibuprofen and nystatin spectrophotometric determination of ibuprofen and nystatin via ion pair complex formation using chromotrope 2R.J. Educ. Sci.197028228929910.33899/edusj.1970.161532
    [Google Scholar]
  164. MuralikrishnaC.R. Spectrophotometric determination of oxcarbazepine in bulk and pharmaceutical formulations.Asian J. Res. Chem201369808810
    [Google Scholar]
  165. VenkateswarluD. SreedeviG. ChakravarthyI.E. RamiR.N. PrabhavathiK. A Simple spectrophotometric method for the estimation of oxcarbazipine in pharmaceutical formulation.IJPPR202017319
    [Google Scholar]
  166. RajendraprasadN. BasavaiahK. VinayK.B. Application of 3-methylbenzothiazolin-2-one hydrazone for the quantitative spectrophotometric determination of oxcarbazepine in pharmaceuticals with cerium(IV) and periodate.J. Appl. Spectrosc.201279461662510.1007/s10812‑012‑9648‑5
    [Google Scholar]
  167. ReddyA.J.P. New spectrophotometric determination of pregabalin bulk and pharmaceutical dosage.JDDT2013165658
    [Google Scholar]
  168. NajamR. ShahG.M. AndrabiS.M.A. Kinetic spectrophotometric determination of an important pharmaceutical compound, pregabalin.J. Anal. Sci. Technol.2013412210.1186/2093‑3371‑4‑22
    [Google Scholar]
  169. WalashM.I. El-EnanyN. AskarH. Validated spectrophotometric and spectrofluorimetric methods for the determination of pregabalin in its pure and dosage forms using eosin.Int. J. Pharm.2016612840
    [Google Scholar]
  170. SowjanyaK. ThejaswiniJ.C. GurupadayyaB.M. IndupriyaM. Spectrophotometric determination of pregabalin using gibb’s and mbth reagent in pharmaceutical dosage form.Pharma Chem.201131112122
    [Google Scholar]
  171. RavichandranV. ShankarV. SivaanadV. VelraajanG. RaghuramanS. Spectrophotometric determination of secnidazole in tablets.IJPS2002645396398
    [Google Scholar]
  172. KhierA.A. ElhenaweeM.M. ElmasryM.S. Spectrophotometric method for the determination of some drugs using fast red b salt.J. Chem.20085S210871097
    [Google Scholar]
  173. KumarS. SenthilK.K. ManasaB. NagamaniE. ManojV.G. MaheshE. Spectrophotometric determination of secnidazole using folin ciocalteu’s & sodium carbonate.IJRPC201223809815
    [Google Scholar]
  174. SaffajT. CharroufM. AbourricheA. AboudY. BennamaraA. BerradaM. Spectrophotometric determination of Metronidazole and Secnidazole in pharmaceutical preparations based on the formation of dyes.Dyes Pigments200670325926210.1016/j.dyepig.2005.01.009
    [Google Scholar]
  175. YoussefA.K. SalehM.M.S. AbdelK.D.A. HashemE.Y. Facile spectrophotometric determination of metronidazole and secnidazole in pharmaceutical preparations based on the formation of dyes.Int. J. Pharm. Sci. Res.201561103108
    [Google Scholar]
  176. NassemM. HamdanyA. AbdulkaderN. Spectrophotometric determination of sulfamethoxazole in pure and in pharmaceutical preparations by diazotization and coupling reaction.Raf. J. Sci.20192831562
    [Google Scholar]
  177. IssaY.M. AminA.S. Spectrophotometric microdetermination of sulfamethoxazole and trimethoprim using alizarin and quinalizarin.Anal. Lett.19942761147115810.1080/00032719408000285
    [Google Scholar]
  178. Okab RAA. MsaG. anA.H. Development green spectrophotometric method for determination of sulfamethoxazole in pure and pharmaceutical formulations.Pharm. Anal. Acta20189510.4172/2153‑2435.1000584
    [Google Scholar]
  179. SalmanA. AlrassolK. Spectrophotometric method for the determination of sulfa drug in pharmaceuticals based on charge transfer reaction.J. Chem. Pharm. Res.20172244251
    [Google Scholar]
  180. AlaaA. A novel spectrophotometric determination and kinetic study of sulfamethoxazole in pure and tablet formulation using 9-chloroacridine reagent.Int. Res. J. Pure Appl. Chem.20212210113
    [Google Scholar]
  181. BoraG. Vanillin-more than a flavouring agent: A review on its bioactive properties.J. Pharm. Negat. Results2023141616622
    [Google Scholar]
  182. BezerraD.P. SoaresA.K.N. de SousaD.P. Overview of the role of vanillin on redox status and cancer development.Oxid. Med. Cell. Longev.201620161910.1155/2016/9734816 28077989
    [Google Scholar]
  183. FayeulleA. TrudelE. DamiensA. JosseA. Ben Hadj YoussefN. VigneronP. VayssadeM. RossiC. CeballosC. Antimicrobial and antioxidant activities of amines derived from vanillin as potential preservatives: Impact of the substituent chain length and polarity.Sustain. Chem. Pharm.20212210047110.1016/j.scp.2021.100471
    [Google Scholar]
  184. IllicachiL. Montalvo-AcostaJ. InsuastyA. QuirogaJ. AboniaR. SortinoM. ZacchinoS. InsuastyB. synthesis and dft calculations of novel vanillin-chalcones and their 3-aryl-5-(4-(2-(dimethylamino)-ethoxy)-3-methoxyphenyl)-4,5-dihydro-1h-pyrazole-1-carbaldehyde derivatives as antifungal agents.Molecules2017229147610.3390/molecules22091476 29240047
    [Google Scholar]
  185. JavedH.U. LiuR. LiC. ZhongS. LaiJ. HasanM. ShuX. ZengL.Y. Preparation of vanillin-taurine antioxidant compound, characterization, and evaluation for improving the post-harvest quality of litchi.Antioxidants202312361810.3390/antiox12030618 36978866
    [Google Scholar]
  186. AbdulmalikO. PagareP.P. HuangB. XuG.G. GhatgeM.S. XuX. ChenQ. AnabaraonyeN. MusayevF.N. OmarA.M. VenitzJ. ZhangY. SafoM.K. VZHE-039, a novel antisickling agent that prevents erythrocyte sickling under both hypoxic and anoxic conditions.Sci. Rep.20201012027710.1038/s41598‑020‑77171‑2 33219275
    [Google Scholar]
  187. ImagaN.A. Phytomedicines and nutraceuticals: alternative therapeutics for sickle cell anemia.ScientificWorldJournal2013201311210.1155/2013/269659 23476125
    [Google Scholar]
  188. SyahriJ. HasmalinaN. AchromiN. BambangP. EmmyY. Novel aminoalkylated chalcone: Synthesis, biological evaluation, and docking simulation as potent antimalarial agents.J. Appl. Pharm. Sci.20201061510.7324/JAPS.2020.10601
    [Google Scholar]
  189. KumarR. NirenE.K. Synthesis, characterization and anti-inflammatory activity of hydrazones bearing 5-nitro-furan moiety and 5-iodo-vanillin hybrid.World J. Pharm. Res.2017611982993
    [Google Scholar]
  190. KadiumR.T. HananA. BasimJ.H. Design, synthesis and characterization of some novel thiazolidine-2,4-dione derivatives as antidiabetic agents.Acta Pol Pharm Drug Res.202278773779
    [Google Scholar]
  191. OlatundeA. MohammedA. IbrahimM.A. TajuddeenN. ShuaibuM.N. Vanillin: A food additive with multiple biological activities.EJMCR20225100055
    [Google Scholar]
  192. AryaS.S. RookesJ.E. CahillD.M. LenkaS.K. Vanillin: A review on the therapeutic prospects of a popular flavouring molecule.Adv. Tradit. Med.202121311710.1007/s13596‑020‑00531‑w
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129306714240610070448
Loading
/content/journals/cpa/10.2174/0115734129306714240610070448
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test