Skip to content
2000
Volume 17, Issue 2
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background: Amidases are ubiquitous enzymes and biological functions of these enzymes vary widely. They are considered to be synergistically involved in the synthesis of a wide variety of carboxylic acids, hydroxamic acids and hydrazides, which find applications in commodity chemicals synthesis, pharmaceuticals agrochemicals and wastewater treatments. Methods: They hydrolyse a wide variety of amides (short-chain aliphatic amides, mid-chain amides, arylamides, α-aminoamides and α-hydroxyamides) and can be grouped on the basis of their catalytic site and preferred substrate. Despite their economic importance, we lack knowledge as to how these amidases withstand elevated pH and temperature whereas others cannot. Results: The present study focuses on the statistical comparison between the acid-tolerant, alkali tolerant and neutrophilic organisms. In silico analysis of amidases of acid-tolerant, alkali tolerant and neutrophilic organisms revealed some striking trends as to how amino acid composition varies significantly. Statistical analysis of primary and secondary structure revealed amino acid trends in amidases of these three groups of bacteria. The abundance of isoleucine (Ile, I) in acid-tolerant and leucine (Leu, L) in alkali tolerant showed the aliphatic amino acid dominance in extreme conditions of pH in acidtolerant and alkali tolerant amidases. Conclusion: The present investigation insights physiochemical properties and dominance of some crucial amino acid residues in the primary and secondary structure of some amidases from acid-tolerant, alkali tolerant and neutrophilic microorganisms.

Loading

Article metrics loading...

/content/journals/cp/10.2174/1570164616666190718150627
2020-04-01
2025-05-28
Loading full text...

Full text loading...

/content/journals/cp/10.2174/1570164616666190718150627
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test