Skip to content
2000
image of Mucormycosis: Current Perspectives on Treatment, Diagnosis, and Advancements

Abstract

Objective

This review study examines mucormycosis treatment challenges, gaps in medicines, and COVID-19-related effects. This paper examines diagnostic and drug development advances while addressing safety and specificity.

Methods

This review study searches PubMed, Web Science, and Scopus for relevant material. Keywords associated with mucormycosis, therapy, diagnosis, medication advancement, and COVID-19 are used to identify pertinent articles. Data extraction summarizes therapeutic obstacles, diagnostic advances, and innovative drug options.

Results

This review article covers mucormycosis therapy, diagnostics, and drug development. It reveals limitations in present medicines, such as selectivity, safety, and resistance mechanisms. Diagnostic advances and mucormycosis in COVID-19 have also been explored.

Conclusion

This review emphasizes the need for more secure, specific mucormycosis therapies. It discusses therapy obstacles, diagnostic advances, and new drug techniques. Overall, this research emphasizes improving mucormycosis therapy to enhance patient outcomes.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975333545241011060632
2024-10-21
2024-11-22
Loading full text...

Full text loading...

References

  1. Kubin C.J. McConville T.H. Dietz D. Zucker J. May M. Nelson B. Istorico E. Bartram L. Small-Saunders J. Sobieszczyk M.E. Gomez-Simmonds A. Characterization of bacterial and fungal infections in hospitalized patients with coronavirus disease 2019 and factors associated with health care-associated infections. Open Forum Infect. Dis. 2019 8 6 ofab201 10.1093/ofid/ofab201
    [Google Scholar]
  2. Mittal R.K. Sharma V. Biswas T. Mishra I. Recent advances in nitrogen-containing heterocyclic scaffolds as antiviral agents. Med Chem. 2024 20 5 487 502 10.2174/0115734064280150231212113012
    [Google Scholar]
  3. Purohit P. Mittal R.K. Sharma V. A Synergistic Broad-Spectrum Viral Entry Blocker: In-Silico Approach. Biointerface Res. Appl. Chem. 2022 13 1
    [Google Scholar]
  4. Mittal R.K. Purohit P. Aggarwal M. An eco-friendly synthetic approach through C (sp3)-H functionalization of the viral fusion “Spike Protein” inhibitors. Biointerface Res. Appl. Chem. 2023 13 2 69
    [Google Scholar]
  5. Panigrahi M.K. Manju R. Vinod Kumar S. Toi P.C. Pulmonary mucormycosis presenting as nonresolving pneumonia in a patient with diabetes mellitus. Respir. Care 2014 59 12 e201 e205 10.4187/respcare.03205 25006269
    [Google Scholar]
  6. Petrikkos G. Skiada A. Lortholary O. Roilides E. Walsh T.J. Kontoyiannis D.P. Epidemiology and clinical manifestations of mucormycosis. Clin. Infect. Dis. 2012 54 Suppl. 1 S23 S34 10.1093/cid/cir866 22247442
    [Google Scholar]
  7. Jain T. Shrivastava P. Rai P. Paul S. Sharma R.K. Mucormycosis: A rare fungal infection that emerged as epidemic. AIP Conf. Proc. 2023 2723 020001 10.1063/5.0139135
    [Google Scholar]
  8. Sobel J.D. Vaginal mucormycosis: a case report. Infect. Dis. Obstet. Gynecol. 2001 9 2 117 118 10.1155/S1064744901000205 11495552
    [Google Scholar]
  9. Monika P. Chandraprabha M.N. Risks of mucormycosis in the current Covid-19 pandemic: a clinical challenge in both immunocompromised and immunocompetent patients. Mol. Biol. Rep. 2022 49 6 4977 4988 10.1007/s11033‑022‑07160‑3 35107737
    [Google Scholar]
  10. Prakash H. Singh S. Rudramurthy S.M. Singh P. Mehta N. Shaw D. Ghosh A.K. An aero mycological analysis of Mucormycetes in indoor and outdoor environments of northern India. Med. Mycol. 2020 58 1 118 123 10.1093/mmy/myz031 30980083
    [Google Scholar]
  11. Meyer R.D. Rosen P. Armstrong D. Phycomycosis complicating leukemia and lymphoma. Ann. Intern. Med. 1972 77 6 871 879 10.7326/0003‑4819‑77‑6‑871 4644165
    [Google Scholar]
  12. Purohit P. Mittal R.K. Khatana K. Quinoline-3-carboxylic acids “dna minor groove-binding agent. Anti-Cancer Agent. Med. Chem. 2022 22 2 344 348 10.2174/1871520621666210513160714
    [Google Scholar]
  13. Biswas T. Mittal R.K. Sharma V. Mishra I. Nitrogen-fused heterocycles: Empowering anticancer drug discovery. Med Chem. 2024 20 4 369 384 10.2174/0115734064278334231211054053
    [Google Scholar]
  14. Skiada A. Pagano L. Groll A. Zimmerli S. Dupont B. Lagrou K. Lass-Florl C. Bouza E. Klimko N. Gaustad P. Richardson M. Hamal P. Akova M. Meis J.F. Rodriguez-Tudela J.L. Roilides E. Mitrousia-Ziouva A. Petrikkos G. European Confederation of Medical Mycology Working Group on Zygomycosis Zygomycosis in Europe: analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) Working Group on Zygomycosis between 2005 and 2007. Clin. Microbiol. Infect. 2011 17 12 1859 1867 10.1111/j.1469‑0691.2010.03456.x 21199154
    [Google Scholar]
  15. Ibrahim A.S. Spellberg B. Walsh T.J. Kontoyiannis D.P. Pathogenesis of Mucormycosis. Clin. Infect. Dis. 2012 54 Suppl 1 Suppl. 1 S16 S22 10.1093/cid/cir865 22247441
    [Google Scholar]
  16. Mittal R.K. Purohit P. Sankaranarayanan M. Muzaffar-Ur-Rehman M. Taramelli D. Signorini L. Dolci M. Basilico N. In-vitro antiviral activity and in-silico targeted study of quinoline-3-carboxylate derivatives against SARS-Cov-2 isolate. Mol. Divers. 2023 ••• 1 5 10.1007/s11030‑023‑10703‑w 37480422
    [Google Scholar]
  17. Yadav A. COVID-19 and the Challenges in World’s Largest Vaccination Drive in India. J. Pure Appl. Microbiol. 2021 15 4 2431 2438 10.22207/JPAM.15.4.69
    [Google Scholar]
  18. Pattnaik B. Emergence of mucormycosis during COVID-19 pandemic in India. J. Pharmaceut. Res. Int. 2021 33 50B 98 103 10.9734/jpri/2021/v33i50B33432
    [Google Scholar]
  19. Sharma K. Mishra S. Gautam A. Malviya R. Mucormycosis-a Fungal Infection in Patient Recovered from COVID-19. Lette Appl Nanosci. 2021 11 3802 3810
    [Google Scholar]
  20. Athar F. Bhat I. Beg M.A. A contemporary intimidation for COVID-19 patients coinfected with mucormycosis in India. Journal of Bacteriology & Mycology: Open Access 2021 9 2 69 71 10.15406/jbmoa.2021.09.00298
    [Google Scholar]
  21. Arokiasamy P. Salvi S. Selvamani Y. Global burden of diabetes mellitu Handbook of Global Health Springer International Publishing 2021
    [Google Scholar]
  22. Unnikrishnan R. Anjana R.M. Mohan V. Diabetes mellitus and its complications in India. Nat. Rev. Endocrinol. 2016 12 6 357 370 10.1038/nrendo.2016.53 27080137
    [Google Scholar]
  23. Ramachandran A. Snehalatha C. Shetty A.S. Nanditha A. Trends in prevalence of diabetes in Asian countries. World J. Diabetes 2012 3 6 110 117 10.4239/wjd.v3.i6.110 22737281
    [Google Scholar]
  24. Singh A.K. Singh R. Joshi S.R. Misra A. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India. Diabetes Metab. Syndr. 2021 15 4 102146 10.1016/j.dsx.2021.05.019 34192610
    [Google Scholar]
  25. Kalita D. Bhatia M. Rekha U.S. Singh A. The mystery of mucormycosis in COVID-19: A multifactorial menace or an enigmatic delta variant associated phenomenon? An exploratory study from a tertiary care centre in North India with a brief literature review. J. Pharm. Bioallied Sci. 2022 14 1 46 51 10.4103/jpbs.jpbs_658_21 35784107
    [Google Scholar]
  26. Stone N. Gupta N. Schwartz I. Mucormycosis: time to address this deadly fungal infection. Lancet Microbe 2021 2 8 e343 e344 10.1016/S2666‑5247(21)00148‑8 35544192
    [Google Scholar]
  27. Rodriguez-Morales A.J. Sah R. Millan-Oñate J. Gonzalez A. Montenegro-Idrogo J.J. Scherger S. Franco-Paredes C. Henao-Martínez A.F. COVID-19 associated mucormycosis: the urgent need to reconsider the indiscriminate use of immunosuppressive drugs. Ther. Adv. Infect. Dis. 2021 8 10.1177/20499361211027065 34211710
    [Google Scholar]
  28. Asdaq S.M.B. Rajan A. Damodaran A. Kamath S.R. Nair K.S. Zachariah S.M. Sahu R.K. Fattepur S. Sreeharsha N. Nair A. Jacob S. Albahrani H.A. Alkhaldi E.H. Mohzari Y. Alrashed A.A. Imran M. Identifying mucormycosis severity in Indian COVID-19 patients: a nano-based diagnosis and the necessity for critical therapeutic intervention. Antibiotics (Basel) 2021 10 11 1308 10.3390/antibiotics10111308 34827246
    [Google Scholar]
  29. Köhler J.R. Hube B. Puccia R. Casadevall A. Perfect J.R. Fungi that infect humans. Microbiol. Spectr. 2017 5 3 5.3.08 10.1128/microbiolspec.FUNK‑0014‑2016 28597822
    [Google Scholar]
  30. Spellberg B. Edwards J. Jr Ibrahim A. Novel perspectives on mucormycosis: pathophysiology, presentation, and management. Clin. Microbiol. Rev. 2005 18 3 556 569 10.1128/CMR.18.3.556‑569.2005 16020690
    [Google Scholar]
  31. Ma L.J. Ibrahim A.S. Skory C. Grabherr M.G. Burger G. Butler M. Elias M. Idnurm A. Lang B.F. Sone T. Abe A. Calvo S.E. Corrochano L.M. Engels R. Fu J. Hansberg W. Kim J.M. Kodira C.D. Koehrsen M.J. Liu B. Miranda-Saavedra D. O’Leary S. Ortiz-Castellanos L. Poulter R. Rodriguez-Romero J. Ruiz-Herrera J. Shen Y.Q. Zeng Q. Galagan J. Birren B.W. Cuomo C.A. Wickes B.L. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet. 2009 5 7 e1000549 10.1371/journal.pgen.1000549 19578406
    [Google Scholar]
  32. Liu M. Spellberg B. Phan Q.T. Fu Y. Fu Y. Lee A.S. Edwards J.E. Jr Filler S.G. Ibrahim A.S. The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice. J. Clin. Invest. 2010 120 6 1914 1924 10.1172/JCI42164 20484814
    [Google Scholar]
  33. Ibrahim A.S. Gebremariam T. Lin L. Luo G. Husseiny M.I. Skory C.D. Fu Y. French S.W. Edwards J.E. Jr Spellberg B. The high affinity iron permease is a key virulence factor required for Rhizopus oryzae pathogenesis. Mol. Microbiol. 2010 77 3 587 604 10.1111/j.1365‑2958.2010.07234.x 20545847
    [Google Scholar]
  34. Steinbach W.J. Latest thoughts on treating pediatric mucormycosis. J. Pediatric Infect. Dis. Soc. 2020 9 5 640 644 10.1093/jpids/piaa106 33043976
    [Google Scholar]
  35. Artis W.M. Patrusky E. Rastinejad F. Duncan R.L. Jr Fungistatic mechanism of human transferrin for Rhizopus oryzae and Trichophyton mentagrophytes: alternative to simple iron deprivation. Infect. Immun. 1983 41 3 1269 1278 10.1128/iai.41.3.1269‑1278.1983 6885162
    [Google Scholar]
  36. Artis W.M. Fountain J.A. Delcher H.K. Jones H.E. A mechanism of susceptibility to mucormycosis in diabetic ketoacidosis: transferrin and iron availability. Diabetes 1982 31 12 1109 1114 10.2337/diacare.31.12.1109 6816646
    [Google Scholar]
  37. Boelaert J.R. Van Cutsem J. de Locht M. Schneider Y.J. Crichton R.R. Deferoxamine augments growth and pathogenicity of Rhizopus, while hydroxypyridinone chelators have no effect. Kidney Int. 1994 45 3 667 671 10.1038/ki.1994.89 8196268
    [Google Scholar]
  38. Ibrahim A.S. Gebermariam T. Fu Y. Lin L. Husseiny M.I. French S.W. Schwartz J. Skory C.D. Edwards J.E. Jr Spellberg B.J. The iron chelator deferasirox protects mice from mucormycosis through iron starvation. J. Clin. Invest. 2007 117 9 2649 2657 10.1172/JCI32338 17786247
    [Google Scholar]
  39. Chamilos G. Lewis R.E. Hu J. Xiao L. Zal T. Gilliet M. Halder G. Kontoyiannis D.P. Drosophila melanogaster as a model host to dissect the immunopathogenesis of zygomycosis. Proc. Natl. Acad. Sci. USA 2008 105 27 9367 9372 10.1073/pnas.0709578105 18583479
    [Google Scholar]
  40. Soummer A. Mathonnet A. Scatton O. Massault P.P. Paugam A. Lemiale V. Mira J.P. Dannaoui E. Cariou A. Lortholary O. Failure of deferasirox, an iron chelator agent, combined with antifungals in a case of severe zygomycosis. Antimicrob. Agents Chemother. 2008 52 4 1585 1586 10.1128/AAC.01611‑07 18212106
    [Google Scholar]
  41. Reed C. Ibrahim A. Edwards J.E. Jr Walot I. Spellberg B. Deferasirox, an iron-chelating agent, as salvage therapy for rhinocerebral mucormycosis. Antimicrob. Agents Chemother. 2006 50 11 3968 3969 10.1128/AAC.01065‑06 17000743
    [Google Scholar]
  42. Spellberg B. Ibrahim A.S. Chin-Hong P.V. Kontoyiannis D.P. Morris M.I. Perfect J.R. Fredricks D. Brass E.P. The Deferasirox–AmBisome Therapy for Mucormycosis (DEFEAT Mucor) study: a randomized, double-blinded, placebo-controlled trial. J. Antimicrob. Chemother. 2012 67 3 715 722 10.1093/jac/dkr375 21937481
    [Google Scholar]
  43. Donnelly J.P. Lahav M. Deferasirox as adjunctive therapy for mucormycosis. J. Antimicrob. Chemother. 2012 67 3 519 520 10.1093/jac/dkr540 22186877
    [Google Scholar]
  44. Aggarwal D. Chander J. Janmeja A. Katyal R. Pulmonary tuberculosis and mucormycosis co-infection in a diabetic patient. Lung India 2015 32 1 53 55 10.4103/0970‑2113.148452 25624598
    [Google Scholar]
  45. Corzo-León D.E. Chora-Hernández L.D. Rodríguez-Zulueta A.P. Walsh T.J. Diabetes mellitus as the major risk factor for mucormycosis in Mexico: Epidemiology, diagnosis, and outcomes of reported cases. Med. Mycol. 2018 56 1 29 43 10.1093/mmy/myx017 28431008
    [Google Scholar]
  46. Jung J. Kim M.Y. Lee H.J. Park Y.S. Lee S.O. Choi S.H. Kim Y.S. Woo J.H. Kim S.H. Comparison of computed tomographic findings in pulmonary mucormycosis and invasive pulmonary aspergillosis. Clin. Microbiol. Infect. 2015 21 7 684.e11 684.e18 10.1016/j.cmi.2015.03.019 25882362
    [Google Scholar]
  47. Haas B.M. Clayton J.D. Elicker B.M. Ordovas K.G. Naeger D.M. CT-guided percutaneous lung biopsies in patients with suspicion for infection may yield clinically useful information. AJR Am. J. Roentgenol. 2017 208 2 459 463 10.2214/AJR.16.16255 27845850
    [Google Scholar]
  48. Millon L. Caillot D. Berceanu A. Bretagne S. Lanternier F. Morio F. Letscher-Bru V. Dalle F. Denis B. Alanio A. Boutoille D. Bougnoux M.E. Botterel F. Chouaki T. Charbonnier A. Ader F. Dupont D. Bellanger A.P. Rocchi S. Scherer E. Gbaguidi-Haore H. Herbrecht R. Evaluation of serum Mucorales polymerase chain reaction (PCR) for the diagnosis of mucormycoses: the MODIMUCOR prospective trial. Clin. Infect. Dis. 2022 75 5 777 785 10.1093/cid/ciab1066 34986227
    [Google Scholar]
  49. Millon L. Herbrecht R. Grenouillet F. Morio F. Alanio A. Letscher-Bru V. Cassaing S. Chouaki T. Kauffmann-Lacroix C. Poirier P. Toubas D. Augereau O. Rocchi S. Garcia-Hermoso D. Bretagne S. Dupont H. Marolleau J.P. Totet A. Damiani C. Berceanu A. Larosa F. Bonhomme J. Chabrot C. Bouteille B. Boutoille D. Gastinne T. Peterlin P. Gari Toussaint M. Poisson D. Briet D. Buret J. Legrand M. Denis B. Raffoux E. Bergeron A. Veinstein A. Godet C. N’guyen Y. Diallo S. Sabou M. Denis J. Ledoux M.P. Recher C. Ruiz J. Desoubeaux G. Bailly E. Chachaty E. Dromer F. Lortholary O. Sitbon K. Hoinard D. French Mycosis Study Group Early diagnosis and monitoring of mucormycosis by detection of circulating DNA in serum: retrospective analysis of 44 cases collected through the French Surveillance Network of Invasive Fungal Infections (RESSIF). Clin. Microbiol. Infect. 2016 22 9 810.e1 810.e8 10.1016/j.cmi.2015.12.006 26706615
    [Google Scholar]
  50. Scherer E. Iriart X. Bellanger A.P. Dupont D. Guitard J. Gabriel F. Cassaing S. Charpentier E. Guenounou S. Cornet M. Botterel F. Rocchi S. Berceanu A. Millon L. Quantitative PCR (qPCR) detection of Mucorales DNA in bronchoalveolar lavage fluid to diagnose pulmonary mucormycosis. J. Clin. Microbiol. 2018 56 8 e00289-18 10.1128/JCM.00289‑18 29875192
    [Google Scholar]
  51. Rocchi S. Scherer E. Mengoli C. Alanio A. Botterel F. Bougnoux M.E. Bretagne S. Cogliati M. Cornu M. Dalle F. Damiani C. Denis J. Fuchs S. Gits-Muselli M. Hagen F. Halliday C. Hare R. Iriart X. Klaassen C. Lackner M. Lengerova M. Letscher-Bru V. Morio F. Nourrisson C. Posch W. Sendid B. Springer J. Willinger B. White P.L. Barnes R.A. Cruciani M. Donnelly J.P. Loeffler J. Millon L. Interlaboratory evaluation of Mucorales PCR assays for testing serum specimens: A study by the fungal PCR Initiative and the Modimucor study group. Med. Mycol. 2021 59 2 126 138 10.1093/mmy/myaa036 32534456
    [Google Scholar]
  52. Guegan H. Iriart X. Bougnoux M.E. Berry A. Robert-Gangneux F. Gangneux J.P. Evaluation of MucorGenius® mucorales PCR assay for the diagnosis of pulmonary mucormycosis. J. Infect. 2020 81 2 311 317 10.1016/j.jinf.2020.05.051 32474046
    [Google Scholar]
  53. Frater J.L. Hall G.S. Procop G.W. Histologic features of zygomycosis: emphasis on perineural invasion and fungal morphology. Arch. Pathol. Lab. Med. 2001 125 3 375 378 10.5858/2001‑125‑0375‑HFOZ 11231486
    [Google Scholar]
  54. Lass-Flörl C. Zygomycosis: conventional laboratory diagnosis. Clin. Microbiol. Infect. 2009 15 Suppl. 5 60 65 10.1111/j.1469‑0691.2009.02999.x 19754760
    [Google Scholar]
  55. Lass-Flörl C. Resch G. Nachbaur D. Mayr A. Gastl G. Auberger J. Bialek R. Freund M.C. The value of computed tomography-guided percutaneous lung biopsy for diagnosis of invasive fungal infection in immunocompromised patients. Clin. Infect. Dis. 2007 45 7 e101 e104 10.1086/521245 17806041
    [Google Scholar]
  56. Monheit J.E. Cowan D.F. Moore D.G. Rapid detection of fungi in tissues using calcofluor white and fluorescence microscopy. Arch. Pathol. Lab. Med. 1984 108 8 616 618 6204621
    [Google Scholar]
  57. Sharma A. Alam M.A. Dhoundiyal S. Sharma P.K. Review on mucormycosis: pathogenesis, epidemiology, microbiology and diagnosis. Infect. Disord. Drug Targ. 2024 24 1 46 55 10.2174/1871526523666230822154407
    [Google Scholar]
  58. Ribes J.A. Vanover-Sams C.L. Baker D.J. Zygomycetes in human disease. Clin. Microbiol. Rev. 2000 13 2 236 301 10.1128/CMR.13.2.236 10756000
    [Google Scholar]
  59. Chakrabarti A. Das A. Mandal J. Shivaprakash M.R. George V.K. Tarai B. Rao P. Panda N. Verma S.C. Sakhuja V. The rising trend of invasive zygomycosis in patients with uncontrolled diabetes mellitus. Med. Mycol. 2006 44 4 335 342 10.1080/13693780500464930 16772227
    [Google Scholar]
  60. Lass-Flörl C. Mayr A. Diagnosing invasive fungal diseases – limitations of microbiological diagnostic methods. Expert Opin. Med. Diagn. 2009 3 4 461 470 10.1517/17530050902878031 23485213
    [Google Scholar]
  61. Walsh T.J. Gamaletsou M.N. McGinnis M.R. Hayden R.T. Kontoyiannis D.P. Early clinical and laboratory diagnosis of invasive pulmonary, extrapulmonary, and disseminated mucormycosis (zygomycosis). Clin. Infect. Dis. 2012 54 Suppl. 1 S55 S60 10.1093/cid/cir868 22247446
    [Google Scholar]
  62. Guarner J. Brandt M.E. Histopathologic diagnosis of fungal infections in the 21st century. Clin. Microbiol. Rev. 2011 24 2 247 280 10.1128/CMR.00053‑10 21482725
    [Google Scholar]
  63. Gupta M.K. Kumar N. Dhameja N. Sharma A. Tilak R. Laboratory diagnosis of mucormycosis. J. Family Med. Prim. Care 2022 11 5 1664 1671 10.4103/jfmpc.jfmpc_1479_21 35800582
    [Google Scholar]
  64. Alvarez E. Sutton D.A. Cano J. Fothergill A.W. Stchigel A. Rinaldi M.G. Guarro J. Spectrum of zygomycete species identified in clinically significant specimens in the United States. J. Clin. Microbiol. 2009 47 6 1650 1656 10.1128/JCM.00036‑09 19386856
    [Google Scholar]
  65. Schrödl W. Heydel T. Schwartze V.U. Hoffmann K. Große-Herrenthey A. Walther G. Alastruey-Izquierdo A. Rodriguez-Tudela J.L. Olias P. Jacobsen I.D. de Hoog G.S. Voigt K. Direct analysis and identification of pathogenic Lichtheimia species by matrix-assisted laser desorption ionization-time of flight analyzer-mediated mass spectrometry. J. Clin. Microbiol. 2012 50 2 419 427 10.1128/JCM.01070‑11 22135259
    [Google Scholar]
  66. Vitale R.G. de Hoog G.S. Schwarz P. Dannaoui E. Deng S. Machouart M. Voigt K. van de Sande W.W.J. Dolatabadi S. Meis J.F. Walther G. Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales. J. Clin. Microbiol. 2012 50 1 66 75 10.1128/JCM.06133‑11 22075600
    [Google Scholar]
  67. Bonifaz A. Stchigel A.M. Guarro J. Guevara E. Pintos L. Sanchis M. Cano-Lira J.F. Primary cutaneous mucormycosis produced by the new species Apophysomyces mexicanus. J. Clin. Microbiol. 2014 52 12 4428 4431 10.1128/JCM.02138‑14 25297328
    [Google Scholar]
  68. Sandven P. Eduard W. Detection and quantitation of antibodies against Rhizopus by enzyme‐linked immunosorbent assay. Acta Pathol. Microbiol. Scand. Suppl. 1992 100 7-12 981 987 10.1111/j.1699‑0463.1992.tb04029.x 1472367
    [Google Scholar]
  69. Wysong D.R. Waldorf A.R. Electrophoretic and immunoblot analyses of Rhizopus arrhizus antigens. J. Clin. Microbiol. 1987 25 2 358 363 10.1128/jcm.25.2.358‑363.1987 3546367
    [Google Scholar]
  70. Potenza L. Vallerini D. Barozzi P. Riva G. Forghieri F. Zanetti E. Quadrelli C. Candoni A. Maertens J. Rossi G. Morselli M. Codeluppi M. Paolini A. Maccaferri M. Del Giovane C. D’Amico R. Rumpianesi F. Pecorari M. Cavalleri F. Marasca R. Narni F. Luppi M. Mucorales-specific T cells emerge in the course of invasive mucormycosis and may be used as a surrogate diagnostic marker in high-risk patients. Blood 2011 118 20 5416 5419 10.1182/blood‑2011‑07‑366526 21931119
    [Google Scholar]
  71. Yang M. Lee J.H. Kim Y.K. Ki C.S. Huh H.J. Lee N.Y. Identification of mucorales from clinical specimens: a 4-year experience in a single institution. Ann. Lab. Med. 2016 36 1 60 63 10.3343/alm.2016.36.1.60 26522761
    [Google Scholar]
  72. Son H.J. Sung H. Park S.Y. Kim T. Lee H.J. Kim S.M. Chong Y.P. Lee S.O. Choi S.H. Kim Y.S. Woo J.H. Kim S.H. Diagnostic performance of the (1–3)-β-D-glucan assay in patients with Pneumocystis jirovecii compared with those with candidiasis, aspergillosis, mucormycosis, and tuberculosis, and healthy volunteers. PLoS One 2017 12 11 e0188860 10.1371/journal.pone.0188860 29190812
    [Google Scholar]
  73. Dichtl K. Forster J. Ormanns S. Horns H. Suerbaum S. Seybold U. Wagener J. Comparison of? -D-Glucan and galactomannan in serum for detection of invasive aspergillosis:Retrospective analysis with focus on early diagnosis. J. Fungi (Basel) 2020 6 4 253 10.3390/jof6040253 33126428
    [Google Scholar]
  74. Choudhary H. Kaur H. Singh S. Singh R. Muthu V. Verma R. Rudramurthy S.M. Agarwal R. Jain S. Bal A. Ghosh A.K. Chakrabarti A. A novel indirect ELISA for serodiagnosis of mucormycosis using antigens from Rhizopus arrhizus. Mycoses 2024 67 5 e13730 10.1111/myc.13730 38712824
    [Google Scholar]
  75. Deng H. Wang F. Wu Q. Sun H. Ma J. Ni R. Li Z. Zhang L. Zhang J. Liu M. Novel Multiresistant Osmotin-like Protein from Sweetpotato as a Promising Biofungicide to Control Ceratocystis fimbriata by Destroying Spores through Accumulation of Reactive Oxygen Species. J. Agric. Food Chem. 2024 72 3 1487 1499 10.1021/acs.jafc.3c07663 38215405
    [Google Scholar]
  76. Jones K.W. Kaufman L. Development and evaluation of an immunodiffusion test for diagnosis of systemic zygomycosis (mucormycosis): preliminary report. J. Clin. Microbiol. 1978 7 1 97 101 10.1128/jcm.7.1.97‑101.1978 75212
    [Google Scholar]
  77. Bettelli F. Vallerini D. Lagreca I. Barozzi P. Riva G. Nasillo V. Paolini A. D’Amico R. Forghieri F. Morselli M. Pioli V. Gilioli A. Giusti D. Messerotti A. Bresciani P. Cuoghi A. Colaci E. Marasca R. Pagano L. Candoni A. Maertens J. Viale P. Mussini C. Manfredini R. Tagliafico E. Sarti M. Trenti T. Lewis R. Comoli P. Eccher A. Luppi M. Potenza L. Identification and validation of diagnostic cut-offs of the ELISpot assay for the diagnosis of invasive aspergillosis in high-risk patients. PLoS One 2024 19 7 e0306728 10.1371/journal.pone.0306728 38980880
    [Google Scholar]
  78. Sato K. Oinuma K.I. Niki M. Yamagoe S. Miyazaki Y. Asai K. Yamada K. Hirata K. Kaneko Y. Kakeya H. Identification of a novel rhizopus-specific antigen by screening with a signal sequence trap and evaluation as a possible diagnostic marker of mucormycosis. Med. Mycol. 2017 55 7 713 719 10.1093/mmy/myw146 28199672
    [Google Scholar]
  79. Hamilos G. Samonis G. Kontoyiannis D.P. Pulmonary mucormycosis. Semin Respir Crit Care Med. 2011 32 6 693 702 10.1055/s‑0031‑1295717
    [Google Scholar]
  80. Jeican I.I. Horhat D.I. Dumitru M. Florea A. Barbu-Tudoran L. Gheban B.A. Anton V. Toader C. Aluaș M. Siserman C.V. Balica N. Vrînceanu D. Albu S. COVID-19-associated rhino-orbital Mucormycosis: histological and electron microscopy characteristics. Diagnostics (Basel) 2024 14 4 429 10.3390/diagnostics14040429 38396469
    [Google Scholar]
  81. Hwang S.S. Kim H.H. Park S.H. Jung J.I. Jang H.S. The value of CT-guided percutaneous needle aspiration in immunocompromised patients with suspected pulmonary infection. AJR Am. J. Roentgenol. 2000 175 1 235 238 10.2214/ajr.175.1.1750235 10882278
    [Google Scholar]
  82. Sharma S. Gupta P. Gupta N. Lal A. Behera D. Rajwanshi A. Pulmonary infections in immunocompromised patients: the role of image‐guided fine needle aspiration cytology. Cytopathology 2017 28 1 46 54 10.1111/cyt.12359 27292015
    [Google Scholar]
  83. Pyrgos V. Shoham S. Walsh T.J. Pulmonary zygomycosis. Semin. Respirat. Crit. Care Med. 2008 29 2 111 120 10.1055/s‑2008‑1063850
    [Google Scholar]
  84. Blauwkamp T.A. Thair S. Rosen M.J. Blair L. Lindner M.S. Vilfan I.D. Kawli T. Christians F.C. Venkatasubrahmanyam S. Wall G.D. Cheung A. Rogers Z.N. Meshulam-Simon G. Huijse L. Balakrishnan S. Quinn J.V. Hollemon D. Hong D.K. Vaughn M.L. Kertesz M. Bercovici S. Wilber J.C. Yang S. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat. Microbiol. 2019 4 4 663 674 10.1038/s41564‑018‑0349‑6 30742071
    [Google Scholar]
  85. Liang M. Xu J. Luo Y. Qu J. Epidemiology, pathogenesis, clinical characteristics, and treatment of mucormycosis: a review. Ann. Med. 2024 56 1 2396570 10.1080/07853890.2024.2396570 39221718
    [Google Scholar]
  86. Hussain M.K. Ahmed S. Khan A. Siddiqui A.J. Khatoon S. Jahan S. Mucormycosis: A hidden mystery of fungal infection, possible diagnosis, treatment and development of new therapeutic agents. Eur. J. Med. Chem. 2023 246 115010 10.1016/j.ejmech.2022.115010 36566630
    [Google Scholar]
  87. Sun Q.N. Najvar L.K. Bocanegra R. Loebenberg D. Graybill J.R. In vivo activity of posaconazole against Mucor spp. in an immunosuppressed-mouse model. Antimicrob. Agents Chemother. 2002 46 7 2310 2312 10.1128/AAC.46.7.2310‑2312.2002 12069997
    [Google Scholar]
  88. SHIGLE T.L. Pharmacology of drugs used in hematopoietic cell transplant and chimeric antigen receptor therapies. Manual of Hematopoietic Cell Transplantation and Cellular Therapies-E-Book. Elsevier 2022
    [Google Scholar]
  89. De Beule K. Van Gestel J. Pharmacology of Itraconazole. Drugs 2001 61 Suppl. 1 27 37 10.2165/00003495‑200161001‑00003 11219548
    [Google Scholar]
  90. Bastidas R.J. Shertz C.A. Lee S.C. Heitman J. Cardenas M.E. Rapamycin exerts antifungal activity in vitro and in vivo against Mucor circinelloides via FKBP12-dependent inhibition of Tor. Eukaryot. Cell 2012 11 3 270 281 10.1128/EC.05284‑11 22210828
    [Google Scholar]
  91. Gebremariam T. Wiederhold N.P. Fothergill A.W. Garvey E.P. Hoekstra W.J. Schotzinger R.J. Patterson T.F. Filler S.G. Ibrahim A.S. VT-1161 protects immunosuppressed mice from Rhizopus arrhizus var. arrhizus infection. Antimicrob. Agents Chemother. 2015 59 12 7815 7817 10.1128/AAC.01437‑15 26369977
    [Google Scholar]
  92. Harris T.E. Lawrence J.C. Jr TOR Signaling. Sci. STKE 2003 2003 212 re15 10.1126/stke.2122003re15 14668532
    [Google Scholar]
  93. Ryder N.S. Terbinafine: Mode of action and properties of the squalene epoxidase inhibition. Br. J. Dermatol. 1992 126 s39 Suppl. 39 2 7 10.1111/j.1365‑2133.1992.tb00001.x 1543672
    [Google Scholar]
  94. Bhattacharya S. Esquivel B.D. White T.C. Overexpression or deletion of ergosterol biosynthesis genes alters doubling time, response to stress agents, and drug susceptibility in Saccharomyces cerevisiae. MBio 2018 9 4 e01291-18 10.1128/mBio.01291‑18 30042199
    [Google Scholar]
  95. Mazu T.K. Bricker B.A. Flores-Rozas H. Ablordeppey S.Y. The Mechanistic Targets of Antifungal Agents: An Overview. Mini Rev. Med. Chem. 2016 16 7 555 578 10.2174/1389557516666160118112103 26776224
    [Google Scholar]
  96. Rosam K. Monk B.C. Lackner M. Sterol 14α-demethylase ligand-binding pocket-mediated acquired and intrinsic azole resistance in fungal pathogens. J. Fungi (Basel) 2020 7 1 1 10.3390/jof7010001 33374996
    [Google Scholar]
  97. Sucher A.J. Chahine E.B. Balcer H.E. Echinocandins: the newest class of antifungals. Ann. Pharmacother. 2009 43 10 1647 1657 10.1345/aph.1M237 19724014
    [Google Scholar]
  98. Douglas C.M. D’Ippolito J.A. Shei G.J. Meinz M. Onishi J. Marrinan J.A. Li W. Abruzzo G.K. Flattery A. Bartizal K. Mitchell A. Kurtz M.B. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob. Agents Chemother. 1997 41 11 2471 2479 10.1128/AAC.41.11.2471 9371352
    [Google Scholar]
  99. Li G. Cao X. Tumukunde E. Zeng Q. Wang S. The target of rapamycin signaling pathway regulates vegetative development, aflatoxin biosynthesis, and pathogenicity in Aspergillus flavus. eLife 2024 12 RP89478 10.7554/eLife.89478 38990939
    [Google Scholar]
  100. Kamiński D.M. Recent progress in the study of the interactions of amphotericin B with cholesterol and ergosterol in lipid environments. Eur. Biophys. J. 2014 43 10-11 453 467 10.1007/s00249‑014‑0983‑8 25173562
    [Google Scholar]
  101. Anderson T.M. Clay M.C. Cioffi A.G. Diaz K.A. Hisao G.S. Tuttle M.D. Nieuwkoop A.J. Comellas G. Maryum N. Wang S. Uno B.E. Wildeman E.L. Gonen T. Rienstra C.M. Burke M.D. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat. Chem. Biol. 2014 10 5 400 406 10.1038/nchembio.1496 24681535
    [Google Scholar]
  102. Nakamura T. Yoshinouchi T. Okumura M. Yokoyama T. Mori D. Nakata H. Yasunaga J.I. Tanaka Y. Antifungal potency of terbinafine as a therapeutic agent against Exophiala dermatitidis in vitro. bioRxiv 2024.05.25.595862 2024 10.1101/2024.05.25.595862
    [Google Scholar]
  103. Warrilow A.G.S. Hull C.M. Parker J.E. Garvey E.P. Hoekstra W.J. Moore W.R. Schotzinger R.J. Kelly D.E. Kelly S.L. The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme. Antimicrob. Agents Chemother. 2014 58 12 7121 7127 10.1128/AAC.03707‑14 25224009
    [Google Scholar]
  104. Brand S.R. Sobel J.D. Nyirjesy P. Ghannoum M.A. Schotzinger R.J. Degenhardt T.P. A randomized phase 2 study of VT-1161 for the treatment of acute vulvovaginal candidiasis. Clin. Infect. Dis. 2021 73 7 e1518 e1524 10.1093/cid/ciaa1204 32818963
    [Google Scholar]
  105. Waldmeier P. Zimmermann K. Qian T. Tintelnot-Blomley M. Lemasters J. Cyclophilin D as a drug target. Curr. Med. Chem. 2003 10 16 1485 1506 10.2174/0929867033457160 12871122
    [Google Scholar]
  106. Tavakkoli A. Johnston T.P. Sahebkar A. Antifungal effects of statins. Pharmacol. Ther. 2020 208 107483 10.1016/j.pharmthera.2020.107483 31953128
    [Google Scholar]
  107. Desnos-Ollivier M. Blanc C. Garcia-Hermoso D. Hoinard D. Alanio A. Dromer F. Misidentification of Saprochaete clavata as Magnusiomyces capitatus in clinical isolates: utility of internal transcribed spacer sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry and importance of reliable databases. J. Clin. Microbiol. 2014 52 6 2196 2198 10.1128/JCM.00039‑14 24696028
    [Google Scholar]
  108. Sipsas N.V. Gamaletsou M.N. Anastasopoulou A. Kontoyiannis D.P. Therapy of Mucormycosis. J. Fungi (Basel) 2018 4 3 90 10.3390/jof4030090 30065232
    [Google Scholar]
  109. Donnelley M.A. Zhu E.S. Thompson G.R. III Isavuconazole in the treatment of invasive aspergillosis and mucormycosis infections. Infect. Drug Resist. 2016 9 79 86 27330318
    [Google Scholar]
  110. Arendrup M.C. Jensen R.H. Meletiadis J. In vitro activity of isavuconazole and comparators against clinical isolates of the Mucorales order. Antimicrob. Agents Chemother. 2015 59 12 7735 7742 10.1128/AAC.01919‑15 26438494
    [Google Scholar]
  111. Luo G. Gebremariam T. Lee H. Edwards J.E. Jr Kovanda L. Ibrahim A.S. Isavuconazole therapy protects immunosuppressed mice from mucormycosis. Antimicrob. Agents Chemother. 2014 58 4 2450 2453 10.1128/AAC.02301‑13 24492363
    [Google Scholar]
  112. Marty F.M. Ostrosky-Zeichner L. Cornely O.A. Mullane K.M. Perfect J.R. Thompson G.R. III Alangaden G.J. Brown J.M. Fredricks D.N. Heinz W.J. Herbrecht R. Klimko N. Klyasova G. Maertens J.A. Melinkeri S.R. Oren I. Pappas P.G. Ráčil Z. Rahav G. Santos R. Schwartz S. Vehreschild J.J. Young J.A.H. Chetchotisakd P. Jaruratanasirikul S. Kanj S.S. Engelhardt M. Kaufhold A. Ito M. Lee M. Sasse C. Maher R.M. Zeiher B. Vehreschild M.J.G.T. Isavuconazole treatment for mucormycosis: a single-arm open-label trial and case-control analysis. Lancet Infect. Dis. 2016 16 7 828 837 10.1016/S1473‑3099(16)00071‑2 26969258
    [Google Scholar]
  113. Tissot F. Agrawal S. Pagano L. Petrikkos G. Groll A.H. Skiada A. Lass-Flörl C. Calandra T. Viscoli C. Herbrecht R. ECIL-6 guidelines for the treatment of invasive candidiasis, aspergillosis and mucormycosis in leukemia and hematopoietic stem cell transplant patients. haematologica 2017 102 3 433
    [Google Scholar]
  114. Cornely O.A. Arikan-Akdagli S. Dannaoui E. Groll A.H. Lagrou K. Chakrabarti A. Lanternier F. Pagano L. Skiada A. Akova M. Arendrup M.C. Boekhout T. Chowdhary A. Cuenca-Estrella M. Freiberger T. Guinea J. Guarro J. de Hoog S. Hope W. Johnson E. Kathuria S. Lackner M. Lass-Flörl C. Lortholary O. Meis J.F. Meletiadis J. Muñoz P. Richardson M. Roilides E. Tortorano A.M. Ullmann A.J. van Diepeningen A. Verweij P. Petrikkos G. ESCMID† and ECMM‡ joint clinical guidelines for the diagnosis and management of mucormycosis 2013. Clin. Microbiol. Infect. 2014 20 Suppl. 3 5 26 10.1111/1469‑0691.12371 24479848
    [Google Scholar]
  115. Kong C. Zong L. Ji S. Liu Y. Li M. Case report: Disseminated mucormycosis misdiagnosed as malignancy developed from allergic bronchopulmonary mycosis caused by Rhizopus microsporus following SARS-CoV-2 infection in a woman. Front. Med. (Lausanne) 2024 11 1394500 10.3389/fmed.2024.1394500 38988360
    [Google Scholar]
  116. Alqarihi A. Kontoyiannis D.P. Ibrahim A.S. Mucormycosis in 2023: an update on pathogenesis and management. Front. Cell. Infect. Microbiol. 2023 13 1254919 10.3389/fcimb.2023.1254919 37808914
    [Google Scholar]
/content/journals/covid/10.2174/0126667975333545241011060632
Loading
/content/journals/covid/10.2174/0126667975333545241011060632
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test