Skip to content
2000
image of Sunlight Resurgence in the COVID-19 Era: A Review on Health-risk Dualities via Ayurveda and Conventional Science Perspectives

Abstract

With the advent of COVID-19, numerous scientific studies from different parts of the world emerged, documenting the beneficial effects of sunlight on decreasing transmittance, morbidity, and mortality due to COVID-19. Research also highlighted the beneficial effects of sunlight in terms of antimicrobial, antiviral effects, and vitamin D production and its role in improving immunity and decreasing mortality due to COVID-19. Along with this, also resurfaced the debate on the hype of the above-mentioned and other positive attributes and the negative attributes of sunlight in terms of causing skin cancer and aggravation of certain other disease conditions. This article revisits the scientific and historical evidence in the context of sunlight and presents an interdisciplinary, integrative perspective, including Ayurveda and conventional science, for the evaluation of the advantages and disadvantages and contemplation regarding the application of sunlight exposure in health care.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975322692240927073026
2024-10-11
2024-11-22
Loading full text...

Full text loading...

References

  1. Worldometer. COVID-19 Coronavirus pandemic. 2020 Available from: Worldometers.info/coronavirus www.worldometers.info/coronavirus
  2. Short K.R. Kedzierska K. van de Sandt C.E. Back to the future: Lessons learned from the 1918 influenza pandemic. Front. Cell. Infect. Microbiol. 2018 8 343 10.3389/fcimb.2018.00343 30349811
    [Google Scholar]
  3. Bloomfield M. The Religion of the Veda - The Ancient Religion of India (From Rig-Veda To Upanishads). American Lectures on the History of Religions Seventh Series—1906-1907. G. P. Putnam’s Sons New York And London. New York The Knickerbocker Press 1908 86
    [Google Scholar]
  4. Prasad P.V.V. General medicine in Atharvaveda with special reference to Yaksma (consumption/tuberculosis). Bull. Indian Inst. Hist. Med. Hyderabad 2002 32 1 1 14 15303286
    [Google Scholar]
  5. Bloomfield M. The Religion of the Veda. The Ancient Religion of India (From Rig-Veda To Upanishads). American Lectures on the History of Religions Seventh Series-1906-1907. G. P. Putnam’s Sons New York And London. New York The Knickerbocker Press 1908 86
    [Google Scholar]
  6. Mukhopadhyay A. Skin in health and diseases in Ṛgveda saṃhiṭa : An overview. Indian J. Dermatol. 2013 58 6 413 416 10.4103/0019‑5154.119945 24249889
    [Google Scholar]
  7. Jelínková H. In: Introduction: the history of lasers in medicine. Lasers for Medical Applications, Woodhead Publishing Series in Electronic and Optical Materials. Woodhead Publishing 2013 1 13
    [Google Scholar]
  8. Aacharya Y.T. Charaka Samhita of Agnivesa, Tiriya Stana Varanasi: Chaukhamba Surabharati Prakasana 2005 409
    [Google Scholar]
  9. Shastri K.A. Ayurveda Tattva Sandipika, Medical Place. Varanasi: Chaukhambha Sanskrit Sansthan 2014 397
    [Google Scholar]
  10. Aacharya Y.T. Charaka Samhita of Agnivesha, Sutra sthana. Varanasi: Chaukhambha Surbharati Prakashana 2005 121
    [Google Scholar]
  11. Aacharya Y.T. Charaka Samhita of Agnivesha, Sutra sthana. Varanasi: Chaukhambha Surbharati Prakashana 2005 89
    [Google Scholar]
  12. Aacharya Y.T. Charaka Samhita of Agnivesha, Chikitsa sthana. Varanasi: Chaukhambha Surbharati Prakashana 2005 458
    [Google Scholar]
  13. Aacharya Y.T. Charaka Samhita of Agnivesha, Sutra sthana. Varanasi: Chaukhambha Surbharati Prakashana 2005 124
    [Google Scholar]
  14. Aacharya Y.T. Charaka Samhita of Agnivesha, Sutra sthana. Varanasi: Chaukhambha Surbharati Prakashana 2005 124
    [Google Scholar]
  15. Aacharya Y.T. Charaka Samhita of Agnivesha, Sutra sthana. Varanasi: Chaukhambha Surbharati Prakashana 2005 179
    [Google Scholar]
  16. Kethamakka S.R.P. Carbon dating of Charaka Samhita J-ISM 2014 148 151
    [Google Scholar]
  17. Enwemeka C.S. Bumah V.V. Masson-Meyers D.S. Light as a potential treatment for pandemic coronavirus infections: A perspective. J. Photochem. Photobiol. B 2020 207 111891 10.1016/j.jphotobiol.2020.111891 32388486
    [Google Scholar]
  18. Clark W. Treatment of bone and joint tuberculosis with tuberculin and heliotherapy. J Bone Joint Surg 1923 5 721 739
    [Google Scholar]
  19. Hinsdale G. “Surgical” tuberculosis and its treatment by heliotherapy. Br J Tuberc 1915 9 2 67 70 10.1016/S0366‑0850(15)80031‑3
    [Google Scholar]
  20. Auguste Rollier In Heliotherapy: With special consideration of surgical tuberculosis. 1st ed London Frowde and Hodder & Stoughton 1923 110
    [Google Scholar]
  21. Grant W.B. Giovannucci E. The possible roles of solar ultraviolet-B radiation and vitamin D in reducing case-fatality rates from the 1918–1919 influenza pandemic in the United States. Dermatoendocrinol 2009 1 4 215 219 10.4161/derm.1.4.9063 20592793
    [Google Scholar]
  22. Hobday R.A. Cason J.W. The open-air treatment of pandemic influenza. Am. J. Public Health 2009 99 S2 Suppl. 2 S236 S242 10.2105/AJPH.2008.134627 19461112
    [Google Scholar]
  23. Hobday R. Coronavirus and the Sun: A lesson from the 1918 influenza pandemic. medium.com/@ra.hobday/coronavirus-and-the-sun-a-lesson-from-the-1918-influenza-pandemic-509151dc8065 2020
  24. Aloia J.F. Li-Ng M. Re: epidemic influenza and vitamin D. Epidemiol. Infect. 2007 135 7 1095 1096 10.1017/S0950268807008308 17352842
    [Google Scholar]
  25. Miller B. Immune System: Your Best Defense against Viruses and Bacteria from the Common Cold to the SARS Virus. Malaysia Oak Publication Sdn Bhd 2018
    [Google Scholar]
  26. Geier D.A. Kern J.K. Geier M.R. A longitudinal ecological study of seasonal influenza deaths in relation to climate conditions in the United States from 1999 through 2011. Infect. Ecol. Epidemiol. 2018 8 1 1474708 10.1080/20008686.2018.1474708 29805785
    [Google Scholar]
  27. Slusky D.J.G. Zeckhauser R.J. Sunlight and protection against influenza. Econ. Hum. Biol. 2021 40 100942 10.1016/j.ehb.2020.100942 33340885
    [Google Scholar]
  28. World Health Organization Fact or Fiction. Nov. Coronavirus. 2019 Available from: https://www.who.int/southeastasia/outbreaks-and-mergencies/novelcoronavirus-2019/fact-or-fiction
  29. Karapiperis C. Kouklis P. Papastratos S. Chasapi A. Danchin A. Ouzounis C.A. Preliminary evidence for seasonality of Covid-19 due to ultraviolet radiation. F1000 Res. 2020 9 658 10.12688/f1000research.24774.1
    [Google Scholar]
  30. Maffetone P.B. Laursen P.B. The perfect storm: Coronavirus (covid-19) pandemic meets overfat pandemic. Front. Public Health 2020 8 135 10.3389/fpubh.2020.00135 32391307
    [Google Scholar]
  31. Ahmadi M. Sharifi A. Dorosti S. Jafarzadeh Ghoushchi S. Ghanbari N. Ghanbari N. Investigation of effective climatology parameters on COVID-19 outbreak in Iran. Sci. Total Environ. 2020 729 138705 10.1016/j.scitotenv.2020.138705 32361432
    [Google Scholar]
  32. Qi H. Xiao S. Shi R. Ward M.P. Chen Y. Tu W. Su Q. Wang W. Wang X. Zhang Z. COVID-19 transmission in Mainland China is associated with temperature and humidity: A time-series analysis. Sci. Total Environ. 2020 728 138778 10.1016/j.scitotenv.2020.138778 32335405
    [Google Scholar]
  33. Şahin M. Impact of weather on COVID-19 pandemic in Turkey. Sci. Total Environ. 2020 728 138810 10.1016/j.scitotenv.2020.138810 32334158
    [Google Scholar]
  34. Alonso W.J. Viboud C. Simonsen L. Hirano E.W. Daufenbach L.Z. Miller M.A. Seasonality of influenza in Brazil: A traveling wave from the Amazon to the subtropics. Am. J. Epidemiol. 2007 165 12 1434 1442 10.1093/aje/kwm012 17369609
    [Google Scholar]
  35. Ianevski A. Zusinaite E. Shtaida N. Kallio-Kokko H. Valkonen M. Kantele A. Telling K. Lutsar I. Letjuka P. Metelitsa N. Oksenych V. Dumpis U. Vitkauskiene A. Stašaitis K. Öhrmalm C. Bondeson K. Bergqvist A. Cox R.J. Tenson T. Merits A. Kainov D.E. Low temperature and low UV indexes correlated with peaks of influenza virus activity in northern Europe during 2010–2018. Viruses 2019 11 3 207 10.3390/v11030207 30832226
    [Google Scholar]
  36. Anis A. The effect of temperature upon transmission of COVID-19: Australia And Egypt Case Study. Research Square 2020
    [Google Scholar]
  37. Asyary A. Veruswati M. Sunlight exposure increased Covid-19 recovery rates: A study in the central pandemic area of Indonesia. Sci. Total Environ. 2020 729 139016 10.1016/j.scitotenv.2020.139016 32361458
    [Google Scholar]
  38. Tang L. Liu M. Ren B. Wu Z. Yu X. Peng C. Tian J. Sunlight ultraviolet radiation dose is negatively correlated with the percent positive of SARS-CoV-2 and four other common human coronaviruses in the U.S. Sci. Total Environ. 2021 751 141816 10.1016/j.scitotenv.2020.141816 32861186
    [Google Scholar]
  39. Takagi H. Kuno T. Yokoyama Y. Ueyama H. Matsushiro T. Hari Y. Ando T. The higher temperature and ultraviolet, the lower COVID-19 prevalence–meta-regression of data from large US cities. Am. J. Infect. Control 2020 48 10 1281 1285 10.1016/j.ajic.2020.06.181 32569613
    [Google Scholar]
  40. Blum A. Nicolaou C. Henghes B. Lahav O. On the anti-correlation between COVID-19 infection rate and natural UV light in the UK. medRxiv 2020 2020.11.28.20240242 10.1101/2020.11.28.20240242
    [Google Scholar]
  41. Chen S. Prettner K. Kuhn M. Geldsetzer P. Wang C. Bärnighausen T. Bloom D.E. COVID-19 and climate: global evidence from 117 countries. medRxiv 2020 2020.06.04.20121863 10.1101/2020.06.04.20121863
    [Google Scholar]
  42. Gunthe S.S. Swain B. Patra S.S. Amte A. On the global trends and spread of the COVID-19 outbreak: Preliminary assessment of the potential relation between location-specific temperature and UV index. J. Public Health 2022 30 1 219 228 10.1007/s10389‑020‑01279‑y 32337151
    [Google Scholar]
  43. Merow C. Urban M.C. Seasonality and uncertainty in global COVID-19 growth rates. Proc. Natl. Acad. Sci. USA 2020 117 44 27456 27464 10.1073/pnas.2008590117 33051302
    [Google Scholar]
  44. Alex A. Follow the sun: Slower covid-19 morbidity and mortality growth at higher irradiances. 2020 Available from: https://ssrn.com/abstract=3567587
  45. Guasp M. Laredo C. Urra X. Higher solar irradiance is associated with a lower incidence of COVID-19. Clin. Infect. Dis. 2020 71 16 2269 2271 10.1093/cid/ciaa575 32426805
    [Google Scholar]
  46. Whittemore P.B. COVID-19 fatalities, latitude, sunlight, and vitamin D. Am. J. Infect. Control 2020 48 9 1042 1044 10.1016/j.ajic.2020.06.193 32599103
    [Google Scholar]
  47. Rhodes J.M. Subramanian S. Laird E. Kenny R.A. Editorial: Low population mortality from COVID‐19 in countries south of latitude 35 degrees North supports vitamin D as a factor determining severity. Aliment. Pharmacol. Ther. 2020 51 12 1434 1437 10.1111/apt.15777 32311755
    [Google Scholar]
  48. Duan S.M. Zhao X.S. Wen R.F. Huang J.J. Pi G.H. Zhang S.X. Han J. Bi S.L. Ruan L. Dong X.P. SARS Research Team Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed. Environ. Sci. 2003 16 3 246 255 14631830
    [Google Scholar]
  49. Guidelines on clinical evaluation of vaccines: Regulatory expectations, Annex 1 , TRS No 924. 2004 Available from: https://www.who.int/publications/m/item/guidelines-on-clinical-evaluation-of-vaccines-regulatory-expectations
  50. McLean R.L. Comments on reducing influenza epidemics among hospitalized veterans by UV irradiation of droplets in the air. Am. Rev. Respir. Dis. 1956 83 36 38
    [Google Scholar]
  51. Sagripanti J.L. Lytle C.D. Estimated inactivation of Coronaviruses by solar radiation with special reference to COVID-19. Photochem. Photobiol. 2020 96 4 731 737 10.1111/php.13293 32502327
    [Google Scholar]
  52. Ratnesar-Shumate S. Williams G. Green B. Krause M. Holland B. Wood S. Bohannon J. Boydston J. Freeburger D. Hooper I. Beck K. Yeager J. Altamura L.A. Biryukov J. Yolitz J. Schuit M. Wahl V. Hevey M. Dabisch P. Simulated sunlight rapidly inactivates sars-cov-2 on surfaces. J. Infect. Dis. 2020 222 2 214 222 10.1093/infdis/jiaa274 32432672
    [Google Scholar]
  53. Schuit M. Ratnesar-Shumate S. Yolitz J. Williams G. Weaver W. Green B. Miller D. Krause M. Beck K. Wood S. Holland B. Bohannon J. Freeburger D. Hooper I. Biryukov J. Altamura L.A. Wahl V. Hevey M. Dabisch P. Airborne SARS-CoV-2 is rapidly inactivated by simulated sunlight. J. Infect. Dis. 2020 222 4 564 571 10.1093/infdis/jiaa334 32525979
    [Google Scholar]
  54. Schade N. Esser C. Krutmann J. Ultraviolet B radiation-induced immunosuppression: Molecular mechanisms and cellular alterations. Photochem. Photobiol. Sci. 2005 4 9 699 708 10.1039/b418378a 16121280
    [Google Scholar]
  55. Bernard J.J. Gallo R.L. Krutmann J. Photoimmunology: How ultraviolet radiation affects the immune system. Nat. Rev. Immunol. 2019 19 11 688 701 10.1038/s41577‑019‑0185‑9 31213673
    [Google Scholar]
  56. Juzeniene A. Moan J. Beneficial effects of UV radiation other than via vitamin D production. Dermatoendocrinol 2012 4 2 109 117 10.4161/derm.20013 22928066
    [Google Scholar]
  57. Brenner M. Hearing V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008 84 3 539 549 10.1111/j.1751‑1097.2007.00226.x 18435612
    [Google Scholar]
  58. Bumah V.V. Aboualizadeh E. Masson-Meyers D. Eells J. Enwemeka C.S. Hirschmugl C. Resistance of B-DNA to blue light induced damage in methicillin-resistant Staphylococcus aureus. J. Photochem. Photobiol. B 2017 167 150 157 10.1016/j.jphotobiol.2016.12.030 28064075
    [Google Scholar]
  59. Yang P. Wang N. Wang C. Yao Y. Fu X. Yu W. Cai R. Yao M. 460 nm visible light irradiation eradicates MRSA via inducing prophage activation. J. Photochem. Photobiol. B 2017 166 311 322 10.1016/j.jphotobiol.2016.12.001 28024282
    [Google Scholar]
  60. Duteil L. Cardot-Leccia N. Queille-Roussel C. Maubert Y. Harmelin Y. Boukari F. Ambrosetti D. Lacour J.P. Passeron T. Differences in visible light‐induced pigmentation according to wavelengths: A clinical and histological study in comparison with UVB exposure. Pigment Cell Melanoma Res. 2014 27 5 822 826 10.1111/pcmr.12273 24888214
    [Google Scholar]
  61. Ramaswamy P. Powers J.G. Bhawan J. Polyak I. Gilchrest B.A. Effective blue light photodynamic therapy does not affect cutaneous langerhans cell number or oxidatively damage DNA. Dermatol. Surg. 2014 40 9 979 987 10.1097/01.DSS.0000452624.01889.8a 25072126
    [Google Scholar]
  62. Becker D. Langer E. Seemann M. Seemann G. Fell I. Saloga J. Grabbe S. von Stebut E. Clinical efficacy of blue light full body irradiation as treatment option for severe atopic dermatitis. PLoS One 2011 6 6 e20566 10.1371/journal.pone.0020566 21687679
    [Google Scholar]
  63. Fischer M.R. Abel M. Lopez Kostka S. Rudolph B. Becker D. von Stebut E. Blue light irradiation suppresses dendritic cells activation in vitro. Exp. Dermatol. 2013 22 8 558 560 10.1111/exd.12193
    [Google Scholar]
  64. Monfrecola G. Lembo S. Cantelli M. Ciaglia E. Scarpato L. Fabbrocini G. Balato A. The effect of visible blue light on the differentiation of dendritic cells in vitro. Biochimie 2014 101 252 255 10.1016/j.biochi.2014.02.001 24530862
    [Google Scholar]
  65. Akhalaya M.Y. Maksimov G.V. Rubin A.B. Lademann J. Darvin M.E. Molecular action mechanisms of solar infrared radiation and heat on human skin. Ageing Res. Rev. 2014 16 1 11 10.1016/j.arr.2014.03.006 24742502
    [Google Scholar]
  66. Barolet D. Christiaens F. Hamblin M.R. Infrared and skin: Friend or foe. J. Photochem. Photobiol. B 2016 155 78 85 10.1016/j.jphotobiol.2015.12.014 26745730
    [Google Scholar]
  67. Bornstein E Hermans W Gridley S Manni J Near-infrared photoinactivation of bacteria and fungi at physiologic temperatures. Photochem. Photobiol. 2009 85 1364 1374 10.1111/j.1751‑1097.2009.00615.x
    [Google Scholar]
  68. Agrawal T. Gupta G.K. Rai V. Carroll J.D. Hamblin M.R. Pre-conditioning with low-level laser (light) therapy: light before the storm. Dose Response 2014 12 4 dose-response.1 10.2203/dose‑response.14‑032.Agrawal 25552961
    [Google Scholar]
  69. Passarella S. Karu T. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J. Photochem. Photobiol. B 2014 140 344 358 10.1016/j.jphotobiol.2014.07.021 25226343
    [Google Scholar]
  70. Shan Q. Ma F. Wei J. Li H. Ma H. Sun P. Physiological functions of heat shock proteins. Curr. Protein Pept. Sci. 2020 21 8 751 760 10.2174/1389203720666191111113726 31713482
    [Google Scholar]
  71. Tripathi S Wang G White M Qi L Taubenberger J Hartshorn KL Antiviral activity of the human cathelicidin, LL-37, and derived peptides on seasonal and pandemic influenza A viruses. PLoS One 2015 10 4 e0124706
    [Google Scholar]
  72. Cannell J.J. Vieth R. Umhau J.C. Holick M.F. Grant W.B. Madronich S. Garland C.F. Giovannucci E. Epidemic influenza and vitamin D. Epidemiol. Infect. 2006 134 6 1129 1140 10.1017/S0950268806007175 16959053
    [Google Scholar]
  73. D’Avolio A. Avataneo V. Manca A. Cusato J. De Nicolò A. Lucchini R. Keller F. Cantù M. 25-hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients 2020 12 5 1359 10.3390/nu12051359 32397511
    [Google Scholar]
  74. Laird E. Rhodes J. Kenny R.A. Vitamin D and inflammation: Potential implications for severity of covid-19. Ir. Med. J. 2020 113 5 81 32603576
    [Google Scholar]
  75. Kunutsor S.K. Apekey T.A. Steur M. Vitamin D and risk of future hypertension: Meta-analysis of 283,537 participants. Eur. J. Epidemiol. 2013 28 3 205 221 10.1007/s10654‑013‑9790‑2 23456138
    [Google Scholar]
  76. Mauss D. Jarczok M.N. Hoffmann K. Thomas G.N. Fischer J.E. Association of vitamin D levels with type 2 diabetes in older working adults. Int. J. Med. Sci. 2015 12 5 362 368 10.7150/ijms.10540 26005370
    [Google Scholar]
  77. Yao Y. Zhu L. He L. Duan Y. Liang W. Nie Z. Jin Y. Wu X. Fang Y. A meta-analysis of the relationship between vitamin D deficiency and obesity. Int. J. Clin. Exp. Med. 2015 8 9 14977 14984 26628980
    [Google Scholar]
  78. Charoenngam N. Holick M.F. Immunologic effects of vitamin D on human health and disease. Nutrients 2020 12 7 2097 10.3390/nu12072097 32679784
    [Google Scholar]
  79. Grant W. Lahore H. McDonnell S. Baggerly C. French C. Aliano J. Bhattoa H. Evidence that vitamin D supplementation could reduce risk of influenza and covid-19 infections and deaths. Nutrients 2020 12 4 988 10.3390/nu12040988 32252338
    [Google Scholar]
  80. Isaia G. Medico E. Associations between hypovitaminosis D and COVID-19: A narrative review. Aging Clin. Exp. Res. 2020 32 9 1879 1881 10.1007/s40520‑020‑01650‑9 32705585
    [Google Scholar]
  81. Tang S.W. Ducroux A. Jeang K.T. Neuveut C. Impact of cellular autophagy on viruses: Insights from hepatitis B virus and human retroviruses. J. Biomed. Sci. 2012 19 1 92 10.1186/1423‑0127‑19‑92 23110561
    [Google Scholar]
  82. Urashima M. Segawa T. Okazaki M. Kurihara M. Wada Y. Ida H. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am. J. Clin. Nutr. 2010 91 5 1255 1260 10.3945/ajcn.2009.29094 20219962
    [Google Scholar]
  83. Hoel D.G. Berwick M. de Gruijl F.R. Holick M.F. The risks and benefits of sun exposure 2016. Dermatoendocrinol 2016 8 1 e1248325 10.1080/19381980.2016.1248325 27942349
    [Google Scholar]
  84. Gasmi A. Noor S. Tippairote T. Dadar M. Menzel A. Bjørklund G. Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clin. Immunol. 2020 215 108409 10.1016/j.clim.2020.108409 32276137
    [Google Scholar]
  85. Holick M.F. Biological effects of sunlight, ultraviolet radiation, visible light, infrared radiation and vitamin D for health. Anticancer Res. 2016 36 3 1345 1356 26977036
    [Google Scholar]
  86. Sassone-Corsi P. The time of your life. Cerebrum 2014 2014 11 26034518
    [Google Scholar]
  87. Yang G. Wang H. Zhang E. Editorial: Therapeutic implications of circadian rhythms. Front. Pharmacol. 2015 6 175 10.3389/fphar.2015.00175 26347653
    [Google Scholar]
  88. Danilenko K.V. Mustafina S.V. Pechenkina E.A. Bright light for weight loss: Results of a controlled crossover trial. Obes. Facts 2013 6 1 28 38 10.1159/000348549 23429094
    [Google Scholar]
  89. Dunai A. Novak M. Chung S.A. Kayumov L. Keszei A. Levitan R. Shapiro C.M. Moderate exercise and bright light treatment in overweight and obese individuals. Obesity 2007 15 7 1749 1757 10.1038/oby.2007.208 17636093
    [Google Scholar]
  90. Schwarz A. Maeda A. Kernebeck K. van Steeg H. Beissert S. Schwarz T. Prevention of UV radiation–induced immunosuppression by IL-12 is dependent on DNA repair. J. Exp. Med. 2005 201 2 173 179 10.1084/jem.20041212 15657287
    [Google Scholar]
  91. Fisher G.J. Talwar H.S. Lin J. Voorhees J.J. Molecular mechanisms of photoaging in human skin in vivo and their prevention by all-trans retinoic acid. Photochem. Photobiol. 1999 69 2 154 157 10048311
    [Google Scholar]
  92. de Gruijl F.R. Sterenborg H.J. Forbes P.D. Davies R.E. Cole C. Kelfkens G. van Weelden H. Slaper H. van der Leun J.C. Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Res. 1993 53 1 53 60 8416751
    [Google Scholar]
  93. Chapman R.S. Cooper K.D. De Fabo E.C. Frederick J.E. Gelatt K.N. Hammond S.P. Hersey P. Koren H.S. Ley R.D. Noonan F. Solar ultraviolet radiation and the risk of infectious disease: Summary of a workshop. Photochem. Photobiol. 1995 61 3 223 247 10.1111/j.1751‑1097.1995.tb03966.x 7716186
    [Google Scholar]
  94. Cooper S. Bowden G. Ultraviolet B regulation of transcription factor families: Roles of nuclear factor-kappa B (NF-kappaB) and activator protein-1 (AP-1) in UVB-induced skin carcinogenesis. Curr. Cancer Drug Targets 2007 7 4 325 334 10.2174/156800907780809714 17979627
    [Google Scholar]
  95. You Y.H. Lee D.H. Yoon J.H. Nakajima S. Yasui A. Pfeifer G.P. Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells. J. Biol. Chem. 2001 276 48 44688 44694 10.1074/jbc.M107696200 11572873
    [Google Scholar]
  96. Levandovski R. Pfaffenseller B. Carissimi A. Gama C.S. Hidalgo M.P.L. The effect of sunlight exposure on interleukin-6 levels in depressive and non-depressive subjects. BMC Psychiatry 2013 13 1 75 10.1186/1471‑244X‑13‑75 23497121
    [Google Scholar]
  97. Urbanski A. Schwarz T. Neuner P. Krutmann J. Kirnbauer R. Luger T.A. Köck A. Ultraviolet light induces increased circulating interleukin-6 in humans. J. Invest. Dermatol. 1990 94 6 808 811 10.1111/1523‑1747.ep12874666 2355183
    [Google Scholar]
  98. Kirnbauer R. Köck A. Neuner P. Förster E. Krutmann J. Urbanski A. Schauer E. Ansel J.C. Schwarz T. Luger T.A. Regulation of epidermal cell interleukin-6 production by UV light and corticosteroids. J. Invest. Dermatol. 1991 96 4 484 489 10.1111/1523‑1747.ep12470181 2007786
    [Google Scholar]
  99. Aragane Y. Kulms D. Luger T.A. Schwarz T. Down-regulation of interferon γ-activated STAT1 by UV light. Proc. Natl. Acad. Sci. USA 1997 94 21 11490 11495 10.1073/pnas.94.21.11490 9326637
    [Google Scholar]
  100. González Maglio D.H. Paz M.L. Leoni J. Sunlight effects on immune system: Is there something else in addition to uv-induced immunosuppression? BioMed Res. Int. 2016 2016 1 10 10.1155/2016/1934518 28070504
    [Google Scholar]
  101. Cela E.M. Friedrich A. Paz M.L. Vanzulli S.I. Leoni J. González Maglio D.H. Time–course study of different innate immune mediators produced by UV‐irradiated skin: Comparative effects of short and daily versus a single harmful UV exposure. Immunology 2015 145 1 82 93 10.1111/imm.12427 25438991
    [Google Scholar]
  102. Hong S.P. Kim M.J. Jung M. Jeon H. Goo J. Ahn S.K. Lee S.H. Elias P.M. Choi E.H. Biopositive effects of low-dose UVB on epidermis: Coordinate upregulation of antimicrobial peptides and permeability barrier reinforcement. J. Invest. Dermatol. 2008 128 12 2880 2887 10.1038/jid.2008.169 18580964
    [Google Scholar]
  103. Fernandes A.B. de Lima C.J. Villaverde A.G.J.B. Pereira P.C. Carvalho H.C. Zângaro R.A. Photobiomodulation: Shining light on covid-19. Photobiomodul. Photomed. Laser Surg. 2020 38 7 395 397 10.1089/photob.2020.4882 32579049
    [Google Scholar]
  104. Jiao J. Mikulec C. Ishikawa T. Magyar C. Dumlao D.S. Dennis E.A. Fischer S.M. Herschman H. Cell-type-specific roles for COX-2 in UVB-induced skin cancer. Carcinogenesis 2014 35 6 1310 1319 10.1093/carcin/bgu020 24469308
    [Google Scholar]
  105. Athar M. An K.P. Morel K.D. Kim A.L. Aszterbaum M. Longley J. Epstein E.H. Jr Bickers D.R. Ultraviolet B(UVB)-induced cox-2 expression in murine skin: An immunohistochemical study. Biochem. Biophys. Res. Commun. 2001 280 4 1042 1047 10.1006/bbrc.2000.4201 11162632
    [Google Scholar]
  106. Narayanan D.L. Saladi R.N. Fox J.L. Review: Ultraviolet radiation and skin cancer. Int. J. Dermatol. 2010 49 9 978 986 10.1111/j.1365‑4632.2010.04474.x 20883261
    [Google Scholar]
  107. Montes de Oca M.K. Pearlman R.L. McClees S.F. Strickland R. Afaq F. Phytochemicals for the prevention of photocarcinogenesis. Photochem. Photobiol. 2017 93 4 956 974 10.1111/php.12711 28063168
    [Google Scholar]
  108. El Ghissassi F. Baan R. Straif K. Grosse Y. Secretan B. Bouvard V. Benbrahim-Tallaa L. Guha N. Freeman C. Galichet L. Cogliano V. WHO International Agency for Research on Cancer Monograph Working Group A review of human carcinogens—Part D: Radiation. Lancet Oncol. 2009 10 8 751 752 10.1016/S1470‑2045(09)70213‑X 19655431
    [Google Scholar]
  109. Wehner M.R. Shive M.L. Chren M.M. Han J. Qureshi A.A. Linos E. Indoor tanning and non-melanoma skin cancer: Systematic review and meta-analysis. BMJ 2012 345 oct02 3 e5909 10.1136/bmj.e5909 23033409
    [Google Scholar]
  110. Hornung R.L. Magee K.H. Lee W.J. Hansen L.A. Hsieh Y.C. Tanning facility use: Are we exceeding food and drug administration limits? J. Am. Acad. Dermatol. 2003 49 4 655 661 10.1067/S0190‑9622(03)01586‑X 14512912
    [Google Scholar]
  111. Tierney P. Ferguson J. Ibbotson S. Dawe R. Eadie E. Moseley H. Nine out of 10 sunbeds in England emit ultraviolet radiation levels that exceed current safety limits. Br. J. Dermatol. 2013 168 3 602 608 10.1111/bjd.12181 23330641
    [Google Scholar]
  112. van der Rhee H. Coebergh J.W. de Vries E. Is prevention of cancer by sun exposure more than just the effect of vitamin D? A systematic review of epidemiological studies. Eur. J. Cancer 2013 49 6 1422 1436 10.1016/j.ejca.2012.11.001 23237739
    [Google Scholar]
  113. Powers J.M. Murphy J.E.J. Sunlight radiation as a villain and hero: 60 years of illuminating research. Int. J. Radiat. Biol. 2019 95 7 1043 1049 10.1080/09553002.2019.1627440 31157572
    [Google Scholar]
  114. Aacharya Y.T. Charaka Samhita of Agnivesha,, Sutra sthana Varanasi: Chaukhambha Surbharati Prakashana 2005
    [Google Scholar]
  115. Horn D. Ehret D. Gautham K.S. Soll R. Sunlight for the prevention and treatment of hyperbilirubinemia in term and late preterm neonates. Cochrane Libr. 2021 2021 7 CD013277 10.1002/14651858.CD013277.pub2 34228352
    [Google Scholar]
  116. Khadilkar A.V. Patwardhan V.G. Mughal Z.M. Padidela R. Chiplonkar S.A. Khadilkar V. Randomized control trial assessing impact of increased sunlight exposure versus Vitamin D supplementation on lipid profile in Indian Vitamin D deficient men. Indian J. Endocrinol. Metab. 2017 21 3 393 398 10.4103/ijem.IJEM_9_1 28553593
    [Google Scholar]
  117. Weller RB Wang Y He J Maddux FW Usvyat L Zhang H Feelisch M Kotanko P Does incident solar ultraviolet radiation lower blood pressure? J. Am. Heart Assoc. 2020 9 5 e013837
    [Google Scholar]
  118. Lau FH Powell CE Adonecchi G Danos DM DiNardo AR Chugden RJ Wolf P Castilla CF Pilot phase results of a prospective, randomized controlled trial of narrowband ultraviolet B phototherapy in hospitalized COVID-19 patients. Exp. Dermatol. 2022 31 7 1109 1115
    [Google Scholar]
  119. Lindqvist PG Epstein E Nielsen K Landin-Olsson M Ingvar C Olsson H Avoidance of sun exposure as a risk factor for major causes of death: A competing risk analysis of the Melanoma in Southern Sweden cohort. J. Intern. Med. 2016 280 4 375 387
    [Google Scholar]
  120. Lindqvist P.G. Epstein E. Landin Olsson M. Ingvar C. Nielsen K. Stenbeck M. Olsson H. Avoidance of sun exposure is a risk factor for all-cause mortality: Results from the MISS cohort. J. Intern. Med. 2014 276 77 86 10.1111/joim.12251 24697969
    [Google Scholar]
  121. Lars A. Armstrong B.K. Butterfield D.A. Chowdhury R. Insufficient sun exposure has become a real public health problem. Int. J. Environ. Res. Public Health 2020 17 14 5014 10.3390/ijerph17145014 32668607
    [Google Scholar]
  122. Weller R.B. Sunlight: Time for a Rethink? J. Invest. Dermatol. 2024 144 8 1724 1732 10.1016/j.jid.2023.12.027 38661623
    [Google Scholar]
  123. Marti-Soler H. Gonseth S. Gubelmann C. Stringhini S. Bovet P. Chen P.C. Wojtyniak B. Paccaud F. Tsai D.H. Zdrojewski T. Marques-Vidal P. Seasonal variation of overall and cardiovascular mortality: A study in 19 countries from different geographic locations. PLoS One 2014 9 11 e113500 10.1371/journal.pone.0113500 25419711
    [Google Scholar]
  124. World Health Organization Radiation: The known health effects of ultraviolet radiation. 2017 Available from: www.who.int/news-room/q-a-detail/the-known-health-effects-of-uv
  125. Hobday R.A. Sunlight therapy and solar architecture. Med. Hist. 1997 41 4 455 472 10.1017/S0025727300063043 9536618
    [Google Scholar]
/content/journals/covid/10.2174/0126667975322692240927073026
Loading
/content/journals/covid/10.2174/0126667975322692240927073026
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: ultraviolet ; Ayurveda ; immunity ; anti-viral ; COVID-19 ; vitamin D ; heliotherapy ; violet-blue ; sunlight
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test