- Home
- A-Z Publications
- Current Organic Chemistry
- Previous Issues
- Volume 26, Issue 6, 2022
Current Organic Chemistry - Volume 26, Issue 6, 2022
Volume 26, Issue 6, 2022
-
-
Role of the Supporting Surface in the Thermodynamics and Cooperativity of Axial Ligand Binding to Metalloporphyrins at Interfaces
Authors: Kristen N. Johnson, Bhaskar Chilukuri, Zachary E. Fisher, K.W. Hipps and Ursula MazurMetalloporphyrins have been shown to bind axial ligands in a variety of environments, including the vacuum/solid and solution/solid interfaces. Understanding the dynamics of such interactions is a desideratum for the design and implementation of next generation molecular devices which draw inspiration from biological systems to accomplish diverse tasks such as molecular sensing, electron transport, and catalysis to name a few. In this article, we review the current literature of axial ligand coordination to surface-supported porphyrin receptors. We will focus on the coordination process as monitored by scanning tunneling microscopy (STM) that can yield qualitative and quantitative information on the dynamics and binding affinity at the single molecule level. In particular, we will address the role of the substrate and intermolecular interactions in influencing cooperative effects (positive or negative) in the binding affinity of adjacent molecules based on experimental evidence and theoretical calculations.
-
-
-
Supramolecular Chirality in Porphyrin Self-Assembly Systems in Aqueous Solution
Authors: Gabriele Travagliante, Massimiliano Gaeta, Roberto Purrello and Alessandro D’UrsoThe self-assembly process appears as a powerful and attractive strategy for constructing complex supramolecules by the spontaneous organization of appropriate building blocks. In this scenario, water-soluble porphyrinoids lend themselves as ideal paradigms to disclose the self-assembly phenomenon by exploiting their well-known tendency to build aggregates in aqueous media via weak non-covalent forces. Nevertheless, the spontaneous organization of achiral porphyrins can result in a final chiral superstructure moving away from single- molecule behaviour to supramolecular chirality. Therefore, over the years numerous attempts have been implemented to investigate how a porphyrin aggregate, made up of achiral monomers, becomes not-symmetric and which processes govern the bias for a certain enantiomeric assembly rather than another. Thus, in this mini-review, we exclusively discuss the main strategies for designing and building chiral aggregates in water from achiral porphyrin monomers, with particular regard to their chiroptical features.
-
-
-
Analyte Interactions with Oxoporphyrinogen Derivatives: Computational Aspects
The binding of anions by highly-coloured chromophore compounds is of interest from the point-of-view of the development of optical sensors for analyte species. In this review, we have summarised our work on the interactions between oxoporphyrinogen type host compounds and different analyte species using computational methods. The origin of our interest in sensing using oxoporphyrinogens stems from an initial finding involving anion-host interactions involving a conjugated oxoporphyrinogen molecule. This review starts from that point, introducing some additional exemplary anion binding data, which is then elaborated to include descriptions of our synthesis work towards multitopic and ion pair interactions. In all the projects, we have consulted computational data on host structure and host-guest complexes in order to obtain information about the interactions occurring during complexation. Density functional theory and molecular dynamics simulations have been extensively used for these purposes.
-
-
-
Conjugated Porphyrin Materials for Solar Fuel Generation
Authors: Yang Bai and Reiner S. SprickConjugated materials have emerged as a new class of photocatalysts for solar fuel generation, thus allowing for the Sun’s energy to be converted into a storable fuel that can be used without further emissions at the point of use. Many different building blocks have been used to make conjugated materials that act as photocatalysts allowing for efficient light absorption and tuing of photophysical properties. The porphyrin moiety is a very interesting building block for photocatalysts as the large π-conjugated system allows efficient light absorption. Metalation of porphyrins allows for further tuning of the materials’ properties, thus further expanding the property space that these materials can cover. This allows to design and better control over the properties of the materials, which is discussed in this review together with the state-of-the-art in porphyrin photocatalysts and hybrid systems.
-
-
-
Dendronized Porphyrins: Molecular Design and Synthesis
In this review, we report different methods and strategies to synthesize flexible and rigid dendronized porphyrins. We will focus on porphyrin dendrimers that have been reported in the last 10 years. Particularly, in our research group, we have designed and synthesized different series of dendronized porphyrins (free base and metallated) with pyrene units at the periphery and Fréchet-type dendritic arms. The Lindsey methodology has allowed the synthesis of meso-substituted porphyrins with various substitution patterns, such as symmetric, dissymmetric, or unsymmetric. Porphyrin dendrimers have been prepared by different synthetic methodologies; one of the most reported being the convergent method, where the dendrons are first prepared and further linked to a meso-substituted functionalized porphyrin unit, which will constitute the core of the dendrimer. Another interesting synthetic approach is the use of a reactive dendron bearing a terminal aldehyde functional group to form the final porphyrin core. In this way, a two-armed dendronized dissymmetric porphyrin core can be prepared from a dendritic precursor and a dipyrromethene derivative. This strategy is very convenient to prepare low-generation dendritic porphyrins. The divergent approach is another well-known methodology for porphyrin dendrimer synthesis, mostly used for achieving highgeneration dendrimers. Click chemistry reaction has been advantageous for the development of more complex porphyrin dendritic structures. This reaction presents important advantages, such as high yields and mild reaction conditions, which permit the assembly of different multiporphyrin dendritic structures. In the constructs presented in this review, the emission of the porphyrin moiety has been observed, leading to potential applications in artificial photosynthesis, sensing, nanomedicine, and biological sciences.
-
Volumes & issues
-
Volume 29 (2025)
-
Volume 28 (2024)
-
Volume 27 (2023)
-
Volume 26 (2022)
-
Volume 25 (2021)
-
Volume 24 (2020)
-
Volume 23 (2019)
-
Volume 22 (2018)
-
Volume 21 (2017)
-
Volume 20 (2016)
-
Volume 19 (2015)
-
Volume 18 (2014)
-
Volume 17 (2013)
-
Volume 16 (2012)
-
Volume 15 (2011)
-
Volume 14 (2010)
-
Volume 13 (2009)
-
Volume 12 (2008)
-
Volume 11 (2007)
-
Volume 10 (2006)
-
Volume 9 (2005)
-
Volume 8 (2004)
-
Volume 7 (2003)
-
Volume 6 (2002)
-
Volume 5 (2001)
-
Volume 4 (2000)