Skip to content
2000
Volume 20, Issue 15
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The carbon-carbon bond forming reactions are of central importance in organic synthesis and routinely practiced across the world in both research laboratories and industrial processes. Since its initial discovery in 2004, graphene, a two dimensional nanomaterial bearing a single layer of sp2-hybridized carbon sheet with hexagonal packed lattice structure, has received significant attention worldwide. Owing to its exceptional physicochemical properties such as thermal stability, ease of structural modulations, high surface area leading to considerably high mass transfer as well as high loading capacity of nanoscale structures, and easy recovery and recyclability, graphene domain and/or graphene- based nanomaterials (G-NMs) can be considered as the materials having a self-assembly of very likable or ideal properties for catalytic applications. Not surprisingly, therefore, the last few years have witnessed the significant progress in the fabrication and exploration of a variety of G-NMs as alternative heterogeneous or pseudo-homogeneous catalysts in organic synthesis. This review highlights the significant advancements in the synthesis and an up-to-date catalytic applications of G-NMs in carbon-carbon bond forming reactions with an emphasis on coupling reactions.

Loading

Article metrics loading...

/content/journals/coc/10.2174/1385272820666151208212302
2016-07-01
2025-01-15
Loading full text...

Full text loading...

/content/journals/coc/10.2174/1385272820666151208212302
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test