Skip to content
2000
Volume 19, Issue 7
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The photoluminescent (PL) properties of composites based on single-walled carbon nanotubes (SWNTs) and poly(2,2´-bithiophene-co-pyrene) (PBTh-Py), prepared by in situ chemical polymerization of the two monomers in the presence of carbon nanotubes, are reported. We demonstrate that the functionalization of SWNTs with PBTh-Py copolymer is revealed through a gradual quenching process of PL with the increase of SWNT content (semiconducting component) in the composite mass. FTIR spectroscopy indicates the existence of several steric hindrance effects that originate in the covalent functionalization of SWNTs with PBTh-Py copolymer. The film deposition of PBTh-Py copolymer and PBTh-Py/SWNTs composite onto rough Au supports induces changes in the FTIR spectrum, which originate in an adsorption mechanism caused by the preferential orientation of molecules on the metallic support. Surface-enhanced Raman scattering (SERS) spectroscopy reveals the side-wall functionalization of SWNTs with PBTh-Py copolymer by changes in the shapes, peak position and relative intensities of different Raman lines.

Loading

Article metrics loading...

/content/journals/coc/10.2174/1385272819666150311231454
2015-04-01
2024-11-20
Loading full text...

Full text loading...

/content/journals/coc/10.2174/1385272819666150311231454
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test