Skip to content
2000
Volume 19, Issue 6
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Low-dimensional nanocarbon materials and metal/metal oxide (hydroxide) or semiconductors have been world-widely investigated due to their distinct physical and chemical properties for potential applications in environmental remediation. Three-dimensional (3D) hierarchical nanocomposites can be facilely constructed by using different low-dimensional nanomaterials as building blocks, thus leading to the full utilization or even synergistic effect of all the component materials with multifunctional properties. Herein, an overview is presented on the design and construction of hierarchically organized nanocomposites derived from low-dimensional nanocarbons (i.e. one-dimensional (1D) carbon nanotubes (CNTs), two-dimensional (2D) graphene, and 3D aerogels) and metal, metal oxide (hydroxide) or semiconductors (i.e. 0D nanoparticles (NPs), 1D nanorods, nanowires, nanotubes or nanofibers, 2D flakes), and their potential applications for efficient removal of organic pollutants through adsorption or catalytic reactions.

Loading

Article metrics loading...

/content/journals/coc/10.2174/1385272819666150115000550
2015-03-01
2025-05-05
Loading full text...

Full text loading...

/content/journals/coc/10.2174/1385272819666150115000550
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test