Skip to content
2000
Volume 16, Issue 17
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Comninellis and his research group have elucidated a theoretical model that permits us to predict the chemical oxygen demand (COD) and instantaneous current efficiency (ICE), during the electrochemical oxidation of organic pollutants on a synthetic boron-doped diamond thin film electrodes (BDD) in a batch recirculation system under galvanostatic conditions. Several studies highlight the good correlation between theoretical predictions and empirical data, but it was noted that some data, from some experiments, were not in agreement with the theoretical model, since it achieved efficiencies above 100%. Recently, few studies have reported phenomena that occur in electrocatalytic systems which were not deducted in the first models. Thus, we emphasize that the mineralization of organic compounds on BDD electrodes involves not only hydroxyl radicals but also the molecular oxygen present in air, in saturated aqueous solutions or strong oxidants generated from simultaneous reactions. Therefore, this highlights summarizes the results reported by other electrochemists until nowadays to understand the electrochemical oxidation mechanisms.

Loading

Article metrics loading...

/content/journals/coc/10.2174/138527212803251730
2012-09-01
2025-05-04
Loading full text...

Full text loading...

/content/journals/coc/10.2174/138527212803251730
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test