Skip to content
2000
Volume 16, Issue 11
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The reaction of 5-aminouracil with peroxyl radicals generated by the thermal decomposition of 2,2'-azo-bis(2- methylpropionitrile) (AIBN) and 2,2'-azo-bis(2-amidinopropane) dihydrochloride was studied at 50°C in ethanol and water (pH 7.0) solution respectively. The oxidation product of 5-aminouracil formed by peroxyl radicals was dihydro-5,5,6-trihydroxypyrimidine-2,4-dione. The relative rate constant of 5-aminouracil vs. quercetin and 2,6-di-tert-butyl-4-methylphenol by peroxyl radicals generated from AIBN was measured in ethanol and found to be 0.19 (50°C) and 3.6 (70°C) respectively. Theoretical data of the redox potential and the bound dissociation energy oppose against single electron/proton transfer mechanism and provide support for a hydrogen atom abstraction mechanism. Transition structures and activation barriers of the hydrogen abstraction from 5-aminouracil, 5-hydroxy-6-methyluracil and 2,6-di-tert-butyl-4-methylphenol by methyl peroxyl radical were determined with the BB1K/6-31+G(d,p) level of theory. The relative theoretical reactivity was found to be in a good agreement with the experimental results and also supported the hydrogen abstraction mechanism.

Loading

Article metrics loading...

/content/journals/coc/10.2174/138527212800672619
2012-06-01
2024-12-24
Loading full text...

Full text loading...

/content/journals/coc/10.2174/138527212800672619
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test