Skip to content
2000
Volume 15, Issue 9
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Association units with high strength and specificity are getting increasing attention in the construction of well-defined selfassembling systems, which are making controlled non-covalent synthesis a reality. A class of hydrogen-bonded duplexes consisting of oligoamide strands carrying various combinations (sequences) of hydrogen-bond donors and acceptors has exhibited superb ability as intermolecular association units. These duplexes are featured by programmable sequence-specificity, predictable binding strength, ready synthetic availability and modifiability. With association constants ranging from ∼104 to 109M-1, these hydrogen-bonded duplexes offer a diverse set of association units capable of specifying intermolecular association in a controlled and directed manner. The efficacy of these molecules as molecular assembler has already been demonstrated by a number of examples such as the construction of supramolecular block copolymers, the templation of β-sheets, directed chemical reactions such as olefin metathesis and disulfide exchange. By integrating hydrogen bonding with dynamic covalent interactions, covalently linked duplexes are formed sequence-specifically in a selfassembling fashion in highly competitive media, which represents a major progress in creating association units combining the strength of covalent bonds and the specificity of multiple hydrogen bonds. Recently, hydrogen-bonded and/or covalent crosslinked duplexes have been found to serve as gelators for organic solvents, which may open a new avenue for developing novel materials.

Loading

Article metrics loading...

/content/journals/coc/10.2174/138527211795378236
2011-05-01
2025-05-20
Loading full text...

Full text loading...

/content/journals/coc/10.2174/138527211795378236
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test