Skip to content
2000
Volume 10, Issue 1
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The members of a logically built P-heterocyclic family are discussed systematically to show a dynamically developing discipline of organophosphorus chemistry. Dichlorocyclopropanation of 2,5-dihydro-1H-phosphole oxides led to 3-phosphabicyclo[3.1.0]hexane 3-oxides that were useful intermediates for the synthesis of ring expanded products, such as 1,2-dihydrophosphinine oxides and 3-alkoxy-1,2,3,6-tetrahydrophosphinine oxides. Catalytic hydrogenation of 1,2-dihydrophosphinine oxides gave 1,2,3,4,5,6-hexahydrophosphinine oxides. Selective reduction of the α,β-doublebond of 1,2-dihydrophosphinine oxides via hydroboration led to 1,2,3,6-tetrahydrophosphinine oxides. Michael addition of >P(O)H species to the electron-poor double-bond of 1,2-dihydrophosphinine oxides afforded 1,2,3,6- tetrahydrophosphinine oxides with exocyclic P-function in position 3. Hydrogenation of these P-heterocycles led to the corresponding hexahydrophosphinine oxides. Stereostructure and conformation of the tetra- and hexahydrophosphinine oxides were elucidated by stereospecific NMR couplings and/or quantum chemical calculations. After deoxygenation, some of the above P-heterocycles were suitable P-ligands in transition metal complexes. The 1,2-dihydrophosphinine oxides were also useful in the synthesis of aromatic phosphinines, phosphepine derivatives and phosphabicyclo[2.2.2]octene oxides, as well as hetrocyclic β-oxophosphoranes.

Loading

Article metrics loading...

/content/journals/coc/10.2174/138527206775193022
2006-01-01
2025-04-30
Loading full text...

Full text loading...

/content/journals/coc/10.2174/138527206775193022
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test