Skip to content
2000
image of Unveiling the Therapeutic Promise of Indole and Thiazole Derivatives in Treating Lung Diseases

Abstract

Heterocyclic scaffolds, particularly indole and thiazole compounds, are revolutionizing the treatment of lung diseases due to their structural diversity and broad therapeutic potential. Their ability to target multiple biological pathways positions them as powerful tools for developing innovative treatments for lung disorders, particularly lung cancer. This review systematically explores recent advances in the synthesis and biological evaluation of indole and thiazole derivatives, emphasizing detailed synthetic strategies and the identification of the most potent molecules reported in the studies referenced within this manuscript for their relevance to lung diseases, particularly lung cancer. The SAR studies elucidate the role of molecular features and key functional groups in enhancing the potency, selectivity, and therapeutic efficacy of synthetic indole and thiazole derivatives. Given that lung cancer remains the leading cause of cancer-related deaths worldwide, the findings highlight the urgent need for developing innovative and effective anti-lung cancer agents, with indole and thiazole scaffolds serving as promising therapeutic frameworks.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728363709250208183711
2025-02-20
2025-05-01
Loading full text...

Full text loading...

References

  1. Acheson R.M. Reactions of acetylenecarboxylic acids and their esters with nitrogen-containing heterocyclic compounds. Adv. Heterocycl. Chem. 1963 1 C 125 165 10.1016/S0065‑2725(08)60524‑3 14087219
    [Google Scholar]
  2. Brack W. Schirmer K. Effect-directed identification of oxygen and sulfur heterocycles as major polycyclic aromatic cytochrome P4501A-inducers in a contaminated sediment. Environ. Sci. Technol. 2003 37 14 3062 3070 10.1021/es020248j 12901651
    [Google Scholar]
  3. Padwa A. Bur S.K. The domino way to heterocycles. Tetrahedron 2007 63 25 5341 5378 10.1016/j.tet.2007.03.158 17940591
    [Google Scholar]
  4. McGrath N. A. Brichacek M. Njardarson J. T. A graphical journey of innovative organic architectures that have improved our lives J. Chem. Educ. 2010 87 12 10.1021/ed1003806
    [Google Scholar]
  5. Gomtsyan A. Heterocycles in drugs and drug discovery. Chem Heterocycl Comp 2012 48 7 10 10.1007/s10593‑012‑0960‑z
    [Google Scholar]
  6. Minickaitė R. Grybaitė B. Vaickelionienė R. Kavaliauskas P. Petraitis V. Petraitienė R. Tumosienė I. Jonuškienė I. Mickevičius V. Synthesis of novel aminothiazole derivatives as promising antiviral, antioxidant and antibacterial candidates. Int. J. Mol. Sci. 2022 23 14 7688 10.3390/ijms23147688 35887038
    [Google Scholar]
  7. Dorababu A. Indole-a promising pharmacophore in recent antiviral drug discovery RSC Med Chem. 2020 11 12 1335 10.1039/D0MD00288G
    [Google Scholar]
  8. Rakesh K.P. Kumara H.K. Ullas B.J. Shivakumara J. Channe Gowda D. Amino acids conjugated quinazolinone-Schiff’s bases as potential antimicrobial agents: Synthesis, SAR and molecular docking studies. Bioorg. Chem. 2019 90 103093 10.1016/j.bioorg.2019.103093 31288137
    [Google Scholar]
  9. Qin H. L. Liu J. Fang W. Y. Ravindar L. Rakesh K. P. Indole-based derivatives as potential antibacterial activity against methicillin-resistance Staphylococcus aureus (MRSA) Eur J Med Chem. 2020 194 112245 10.1016/j.ejmech.2020.112245
    [Google Scholar]
  10. Jatav V. Mishra P. Kashaw S. Stables J.P. Synthesis and CNS depressant activity of some novel 3-[5-substituted 1,3,4-thiadiazole-2-yl]-2-styryl quinazoline-4(3H)-ones. Eur. J. Med. Chem. 2008 43 1 135 141 10.1016/j.ejmech.2007.02.004 17418452
    [Google Scholar]
  11. Kumar R.R. Kumar V. Kaur D. Nandi N.K. Dwivedi A.R. Kumar V. Kumar B. Investigation of indole‐3‐piperazinyl derivatives as potential antidepressants: Design, synthesis, in‐vitro, in‐vivo and in‐silico analysis. ChemistrySelect 2021 6 41 11276 11284 10.1002/slct.202103568
    [Google Scholar]
  12. Singh T.P. Singh O.M. Recent progress in biological activities of indole and indole alkaloids. Mini Rev. Med. Chem. 2017 18 1 9 25 10.2174/1389557517666170807123201 28782480
    [Google Scholar]
  13. Arshad M. F. Alam A. Alshammari A.A. Alhazza M.B. Alzimam I.M. Alam M.A. Mustafa G. Ansari M.S. Alotaibi A.M. Alotaibi M.M. Thiazole: A versatile standalone moiety contributing to the development of various drugs and biologically active agents Molecules 2022 27 13 3994 10.3390/molecules27133994
    [Google Scholar]
  14. Luo M. L. Huang W. Zhu H. P. Peng C. Zhao Q. Han B. Advances in indole-containing alkaloids as potential anticancer agents by regulating autophagy Biomed Pharmacother. 2022 149 112827 10.1016/j.biopha.2022.112827
    [Google Scholar]
  15. Masoudinia S. Samadizadeh M. Safavi M. Bijanzadeh H.R. Foroumadi A. Novel quinazolines bearing 1,3,4-thiadiazole-aryl urea derivative as anticancer agents: Design, synthesis, molecular docking, DFT and bioactivity evaluations. BMC Chem. 2024 18 1 30 10.1186/s13065‑024‑01119‑0 38347613
    [Google Scholar]
  16. Akhtar J. Khan A.A. Ali Z. Haider R. Shahar Yar M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem. 2017 125 143 189 10.1016/j.ejmech.2016.09.023 27662031
    [Google Scholar]
  17. Niu Z.X. Wang Y.T. Zhang S.N. Li Y. Chen X.B. Wang S.Q. Liu H.M. Application and synthesis of thiazole ring in clinically approved drugs. Eur. J. Med. Chem. 2023 250 115172 115172 10.1016/j.ejmech.2023.115172 36758304
    [Google Scholar]
  18. Pun V.C. Kazemiparkouhi F. Manjourides J. Suh Scd H.H. Suh H.H. Professor D. Long-Term PM2.5 exposure and respiratory, cancer, and cardiovascular mortality in older US adults. Am J Epidemiol. 2017 186 8 961 10.1093/aje/kwx166.
    [Google Scholar]
  19. Krueger G.R.F. Wagner M. Oldham S.A.A. Pathology of the Respiratory Tract. Atlas of Anatomic Pathology with Imaging. London Springer London 2013 105 189 10.1007/978‑1‑4471‑2846‑5_3
    [Google Scholar]
  20. Rabe K. F. Watz H. Chronic obstructive pulmonary disease Lancet 2017 389 1931 1940 10.1016/S0140‑6736(17)31222‑9
    [Google Scholar]
  21. Alcón A. Fàbregas N. Torres A. Pathophysiology of pneumonia. Clin Chest Med. 2005 26 6 39 10.1016/j.ccm.2004.10.013
    [Google Scholar]
  22. Cheung W. K. C. Nguyen D. X. Lineage factors and differentiation states in lung cancer progression Oncogene 2015 34 47 5771 10.1038/onc.2015.85
    [Google Scholar]
  23. Seale D.D. Beaver B.M. Pathophysiology of lung cancer. Nurs. Clin. North Am. 1992 27 3 603 613 10.1016/S0029‑6465(22)02790‑6 1508734
    [Google Scholar]
  24. Landi M.T. Synnott N.C. Rosenbaum J. Zhang T. Zhu B. Shi J. Zhao W. Kebede M. Sang J. Choi J. Mendoza L. Pacheco M. Hicks B. Caporaso N.E. Abubakar M. Gordenin D.A. Wedge D.C. Alexandrov L.B. Rothman N. Lan Q. Garcia-Closas M. Chanock S.J. Tracing lung cancer risk factors through mutational signatures in never-smokers. Am. J. Epidemiol. 2021 190 6 962 976 10.1093/aje/kwaa234 33712835
    [Google Scholar]
  25. Harker J. A. Lloyd C. M. T helper 2 cells in asthma J. Exp. Med. 2023 220 6 e20221094 10.1084/jem.20221094
    [Google Scholar]
  26. Zhu X. Cui J. Yi L. Qin J. Tulake W. Teng F. Tang W. Wei Y. Dong J. The role of T cells and macrophages in asthma pathogenesis: A new perspective on mutual crosstalk. Mediators Inflamm. 2020 2020 1 14 10.1155/2020/7835284 32922208
    [Google Scholar]
  27. Sundar I. K. Yao H. Rahman I. Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases Antioxid Redox Signal. 2013 18 15 1956 10.1089/ars.2012.4863
    [Google Scholar]
  28. Macnee W. Pathogenesis of chronic obstructive pulmonary disease Proc Am Thorac Soc 2005 2 4 258 10.1513/pats.200504‑045SR.
    [Google Scholar]
  29. Maison D. P. Tuberculosis pathophysiology and anti-VEGF intervention Clin Tuberc Other Mycobact Dis. 2022 27 100300 10.1016/j.jctube.2022.100300
    [Google Scholar]
  30. Gazdar A.F. Shigematsu H. Herz J. Minna J.D. Mutations and addiction to EGFR: The Achilles ‘heal’ of lung cancers? Trends Mol. Med. 2004 10 10 481 486 10.1016/j.molmed.2004.08.008 15464447
    [Google Scholar]
  31. Burge S. Wedzicha J.A. COPD exacerbations: Definitions and classifications. Eur Respir J Suppl. 2003 41 46s 56S 10.1183/09031936.03.00078002
    [Google Scholar]
  32. Halwani R. Al-Muhsen S. Hamid Q. T helper 17 cells in airway diseases: From laboratory bench to bedside. Chest 2013 143 2 494 501 10.1378/chest.12‑0598 23381314
    [Google Scholar]
  33. Barnes P.J. Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond). 2017 131 13 1541 1558 10.1042/CS20160487
    [Google Scholar]
  34. Adler V. Yin Z. Ronai Z. Tew K.D. Role of redox potential and reactive oxygen species in stress signaling. Oncogene 1999 18 6104 6111 10.1038/sj.onc.1203128
    [Google Scholar]
  35. Rahman I. Macnee W. Role of transcription factors in inflammatory lung diseases. Thorax 1998 53 7 601 10.1136/thx.53.7.601
    [Google Scholar]
  36. Liu Y. Kong H. Cai H. Chen G. Chen H. Ruan W. Progression of the PI3K/Akt signaling pathway in chronic obstructive pulmonary disease Front Pharmacol. 2023 14 1238782 10.3389/fphar.2023.1238782
    [Google Scholar]
  37. Sethi S. Infectious etiology of acute exacerbations of chronic bronchitis. Chest 2000 117 5 Suppl. 2 380S 385S 10.1378/chest.117.5_suppl_2.380S 10843981
    [Google Scholar]
  38. Gosens R. Hiemstra P.S. Adcock I.M. Bracke K.R. Dickson R.P. Hansbro P.M. Krauss-Etschmann S. Smits H.H. Stassen F.R.M. Bartel S. Host–microbe cross-talk in the lung microenvironment: Implications for understanding and treating chronic lung disease. Eur. Respir. J. 2020 56 2 1902320 10.1183/13993003.02320‑2019 32430415
    [Google Scholar]
  39. Ballester B. Milara J. Cortijo J. Idiopathic pulmonary fibrosis and lung cancer: Mechanisms and molecular targets Int J Mol Sci. 2019 20 3 593 10.3390/ijms20030593
    [Google Scholar]
  40. Wang J. Hu K. Cai X. Yang B. He Q. Wang J. Weng Q. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis Acta Pharm Sin B 2022 12 18 32 10.1016/j.apsb.2021.07.023
    [Google Scholar]
  41. Martín-Medina A. Cerón-Pisa N. Martinez-Font E. Shafiek H. Obrador-Hevia H. Sauleda J. Iglesias A. TLR/WNT: A novel relationship in immunomodulation of lung cancer Int J Mol Sci. 2022 23 12 6539 10.3390/ijms23126539
    [Google Scholar]
  42. Stella G. M. D'Agnano V. Piloni D. Saracino L. Lettieri S. Mariani F. Lancia A. Bortolotto C. Rinaldi P. The oncogenic landscape of the idiopathic pulmonary fibrosis: A narrative review Transl Lung Cancer Res. 2022 11 472 496 10.21037/tlcr‑21‑880
    [Google Scholar]
  43. Ge L. Hu Q. Shi M. Yang H. Zhu G. Design and discovery of novel thiazole derivatives as potential MMP inhibitors to protect against acute lung injury in sepsis rats via attenuation of inflammation and apoptotic oxidative stress. RSC Advances 2017 7 52 32909 32922 10.1039/C7RA03511J
    [Google Scholar]
  44. Lin Z. Wang Z. Zhou X. Zhang M. Gao D. Zhang L. Wang P. Chen Y. Lin Y. Zhao B. Miao J. Kong F. Discovery of new fluorescent thiazole–pyrazoline derivatives as autophagy inducers by inhibiting mTOR activity in A549 human lung cancer cells. Cell Death Dis. 2020 11 7 551 10.1038/s41419‑020‑02746‑w 32686662
    [Google Scholar]
  45. Sharma A. Sharma D. Saini N. Sharma S.VV Thakur V.K. Recent advances in synthetic strategies and SAR of thiazolidin-4-one containing molecules in cancer therapeutics Cancer Metastasis Rev. 2023 42 3 847 10.1007/s10555‑023‑10106‑1
    [Google Scholar]
  46. Evren A.E. Yurttas L. Ekselli B. Akalin-Ciftci G. Synthesis and biological evaluation of 5-methyl-4-phenyl thiazole derivatives as anticancer agents. Phosphorus Sulfur Silicon Relat. Elem. 2019 194 8 820 828 10.1080/10426507.2018.1550642
    [Google Scholar]
  47. Sharma P. Srinivasa Reddy T. Thummuri D. Senwar K.R. Praveen Kumar N. Naidu V.G.M. Bhargava S.K. Shankaraiah N. Synthesis and biological evaluation of new benzimidazole-thiazolidinedione hybrids as potential cytotoxic and apoptosis inducing agents. Eur. J. Med. Chem. 2016 124 608 621 10.1016/j.ejmech.2016.08.029 27614408
    [Google Scholar]
  48. Sharma P. Reddy T.S. Kumar N.P. Senwar K.R. Bhargava S.K. Shankaraiah N. Conventional and microwave-assisted synthesis of new 1 H -benzimidazole-thiazolidinedione derivatives: A potential anticancer scaffold. Eur. J. Med. Chem. 2017 138 234 245 10.1016/j.ejmech.2017.06.035 28668476
    [Google Scholar]
  49. Turan-Zitouni G. Altıntop M.D. Özdemir A. Kaplancıklı Z.A. Çiftçi G.A. Temel H.E. Synthesis and evaluation of bis-thiazole derivatives as new anticancer agents. Eur. J. Med. Chem. 2016 107 288 294 10.1016/j.ejmech.2015.11.002 26599534
    [Google Scholar]
  50. Havrylyuk D. Mosula L. Zimenkovsky B. Vasylenko O. Gzella A. Lesyk R. Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety. Eur. J. Med. Chem. 2010 45 11 5012 5021 10.1016/j.ejmech.2010.08.008 20810193
    [Google Scholar]
  51. Fu P.K. Yang C.Y. Huang S.C. Hung Y.W. Jeng K.C. Huang Y.P. Chuang H. Huang N.C. Li J.P. Hsu M.H. Chen J.K. Evaluation of LPS-induced acute lung injury attenuation in rats by aminothiazole-paeonol derivatives. Molecules 2017 22 10 1605 10.3390/molecules22101605 28946699
    [Google Scholar]
  52. Pesce E. Pedemonte N. Leoni A. Locatelli A. Morigi R. Synthesis and biological evaluation of thiazole derivatives on basic defects underlying cystic fibrosis. Bioorg. Med. Chem. Lett. 2020 30 21 127473 10.1016/j.bmcl.2020.127473 32784089
    [Google Scholar]
  53. Ashmawy F.O. Gomha S.M. Abdallah M.A. Zaki M.E.A. Al-Hussain S.A. El-desouky M.A. Synthesis, in vitro evaluation and molecular docking studies of novel thiophenyl thiazolyl-pyridine hybrids as potential anticancer agents. Molecules 2023 28 11 4270 10.3390/molecules28114270 37298747
    [Google Scholar]
  54. Sondhi S.M. Rani R. Gupta P.P. Agrawal S.K. Saxena A.K. Synthesis, anticancer, and anti-inflammatory activity evaluation of methanesulfonamide and amidine derivatives of 3,4-diaryl-2-imino-4-thiazolines. Mol. Divers. 2009 13 3 357 366 10.1007/s11030‑009‑9125‑0 19267213
    [Google Scholar]
  55. Chen T. Wei Y. Zhu G. Zhao H. Zhang X. Design, synthesis and structure-activity relationship studies of 4- indole-2-arylaminopyrimidine derivatives as anti-inflammatory agents for acute lung injury Eur J Med Chem. 2020 225 113766 10.1016/j.ejmech.2021.113766.
    [Google Scholar]
  56. Zheng Z. Li X. Chen P. Zou Y. Shi X. Li X. Young Kim E. Liao J. Yang J. Chattipakorn N. Wu G. Tang Q. Cho W.J. Liang G. Design and synthesis optimization of novel diimide indoles derivatives for ameliorating acute lung injury through modulation of NF-κB signaling pathway. Bioorg. Chem. 2023 136 106557 10.1016/j.bioorg.2023.106557 37121106
    [Google Scholar]
  57. Offerman S.C. Kadirvel M. Abusara O.H. Bryant J.L. Telfer B.A. Brown G. Freeman S. White A. Williams K.J. Aojula H.S. N-tert-Prenylation of the indole ring improves the cytotoxicity of a short antagonist G analogue against small cell lung cancer. MedChemComm 2017 8 3 551 558 10.1039/C6MD00691D 30108771
    [Google Scholar]
  58. Haitham Abusara O. Freeman S. Aojula H.S. Pentapeptides for the treatment of small cell lung cancer: Optimisation by N ind -alkyl modification of the tryptophan side chain. Eur. J. Med. Chem. 2017 137 221 232 10.1016/j.ejmech.2017.05.053 28595067
    [Google Scholar]
  59. Manuel-Manresa P. Korrodi-Gregório L. Hernando E. Villanueva A. Martínez-García D. Rodilla A.M. Ramos R. Fardilha M. Moya J. Quesada R. Soto-Cerrato V. Pérez-Tomás R. Novel indole-based tambjamine-analogues induce apoptotic lung cancer cell death through p38 mitogen-activated protein kinase activation. Mol. Cancer Ther. 2017 16 7 1224 1235 10.1158/1535‑7163.MCT‑16‑0752 28396364
    [Google Scholar]
  60. Gu J. Yuan Y. Yang Q. Zheng P.F. Shan C. Wang F. Chen X.H. Ouyang Q. Discovery of a pyrano[2,3-b]pyridine derivative YX-2102 as a cannabinoid receptor 2 agonist for alleviating lung fibrosis. Eur. J. Med. Chem. 2022 20 1 565 10.1186/s12967‑022‑03773‑1
    [Google Scholar]
  61. Dhuguru J. Skouta R. Role of indole scaffolds as pharmacophores in the development of anti-lung cancer agents. Molecules 2020 25 7 1615 10.3390/molecules25071615 32244744
    [Google Scholar]
  62. Song Z. Zhou Y. Zhang W. Zhan L. Yu Y. Chen Y. Jia W. Liu Z. Qian J. Zhang Y. Li C. Liang G. Base promoted synthesis of novel indole-dithiocarbamate compounds as potential anti-inflammatory therapeutic agents for treatment of acute lung injury. Eur. J. Med. Chem. 2019 171 54 65 10.1016/j.ejmech.2019.03.022 30909020
    [Google Scholar]
  63. Gaikwad R. Bobde Y. Ganesh R. Patel T. Rathore A. Ghosh B. Das K. Gayen S. 2-Phenylindole derivatives as anticancer agents: ynthesis and screening against murine melanoma, human lung and breast cancer cell lines. Synth. Commun. 2019 49 17 2258 2269 10.1080/00397911.2019.1620282
    [Google Scholar]
  64. Lim H.M. Park S.H. Nam M.J. Induction of apoptosis in indole-3-carbinol-treated lung cancer H1299 cells via ROS level elevation. Hum. Exp. Toxicol. 2021 40 5 812 825 10.1177/0960327120969968 33118390
    [Google Scholar]
  65. Islam M.I. Seo H. Kim S. Sadu V.S. Lee K.I. Song H.Y. Antimicrobial activity of IDD-B40 against drug-resistant Mycobacterium tuberculosis. Sci. Rep. 2021 11 1 740 10.1038/s41598‑020‑80227‑y 33436895
    [Google Scholar]
  66. Ramesh D. Joji A. Vijayakumar B.G. Sethumadhavan A. Mani M. Kannan T. Indole chalcones: Design, synthesis, in vitro and in silico evaluation against Mycobacterium tuberculosis. Eur. J. Med. Chem. 2020 198 112358 10.1016/j.ejmech.2020.112358 32361610
    [Google Scholar]
  67. Li L. Ma L. Wang D. Jia H. Yu M. Gu Y. Shang H. Zou Z. Design and synthesis of matrine derivatives as novel anti-pulmonary fibrotic agents via repression of the TGFβ/Smad pathway. Molecules 2019 24 6 1108 10.3390/molecules24061108 30897818
    [Google Scholar]
/content/journals/coc/10.2174/0113852728363709250208183711
Loading
/content/journals/coc/10.2174/0113852728363709250208183711
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: thiazole ; lung cancer ; Lung diseases ; indole ; heterocyclic compounds ; SAR studies
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test