Skip to content
2000
image of Recent Advances on the α-Functionalization and Ring Transformations of Cycloheptane-based β-ketoesters

Abstract

This review investigates the reactivity of cycloheptane-based β-ketoesters in producing α-functionalized derivatives. Cyclic β-ketoesters are a versatile chemical reagent that can react with suitable electrophiles to produce a variety of α-functionalized derivatives with excellent synthetic potential and promising biological properties. This review covers all reports on α-functionalization of cycloheptane-based β-ketoesters, including those demonstrating enantioselective synthesis using appropriate asymmetric catalysts. The review is divided into sections based on the α-center reaction. We reviewed also all available papers on the ring transformation of cycloheptane-based β-ketoesters, including their ring-opening and ring-expansion reactions. The mechanistic postulates of some complex procedures are highlighted.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728363292241212075337
2025-01-14
2025-05-06
Loading full text...

Full text loading...

References

  1. Chen S. Vaccaro L. Gu Y. Recent advances of versatile reagents as controllable building blocks in organic synthesis. Chin. Chem. Lett. 2024 35 2 109152 10.1016/j.cclet.2023.109152
    [Google Scholar]
  2. Xie G. de Moura Ricketti N. Török B. Ultrasound-assisted catalyst-free synthesis of α,β -unsaturated amino acid esters and unsaturated amino ketones. Curr. Green Chem. 2024 11 2 201 209 10.2174/2213346110666230816095531
    [Google Scholar]
  3. Kalar P.L. Agrawal S. Kushwaha S. Gayen S. Das K. Recent developments on synthesis of organofluorine compounds using green approaches. Curr. Org. Chem. 2023 27 3 190 205 10.2174/1385272827666230516100739
    [Google Scholar]
  4. Kaur C. Sharma S. Thakur A. Sharma R. Asymmetric synthesis: A glance at various methodologies for different frameworks. Curr. Org. Chem. 2022 26 8 771 806 10.2174/1385272826666220610162605
    [Google Scholar]
  5. Rao G.B.D. Anjaneyulu B. Kaushik M.P. Prasad M.R. β‐Ketoesters: An overview and it’s applications via transesterification. ChemistrySelect 2021 6 40 11060 11075 10.1002/slct.202102949
    [Google Scholar]
  6. Xie Z.Y. Li Q.Q. Liu Y. Cai B.G. Xuan J. Photoinduced asymmetric formal siloxycarbene insertion into sp 3 C–H bonds enabled by chiral phosphoric acid. Org. Lett. 2024 26 27 5827 5832 10.1021/acs.orglett.4c02020 38954473
    [Google Scholar]
  7. Dong Y. Guo C. Bai Y. Jia H. Yang A. Ren J. Regioselective halogenation of 2‐oxindoles and β‐keto esters using oxone‐halide with or without aryl iodine. Eur. J. Org. Chem. 2024 27 e202400522 10.1002/ejoc.202400522
    [Google Scholar]
  8. Guo H. Ding Y. Fan J. Li Z. Cheng G. Lithium bromide-promoted formal C(sp 3 )–H bond insertion reactions of β-carbonyl esters with sulfoxonium ylides to synthesize 1,4-dicarbonyl compounds. J. Org. Chem. 2024 89 10 6974 6986 10.1021/acs.joc.4c00336 38703123
    [Google Scholar]
  9. Özsırkıntı Z. Hakimi A.H. Erşatır M. Türk M. Demirkol O. Giray E.S. Using supercritical diethyl ether as the reaction medium for the synthesis of 3-acetyl and 4-methyl substituted coumarins. Curr. Org. Chem. 2024 28 10 789 798 10.2174/0113852728284871240215103216
    [Google Scholar]
  10. Claisen L. Claparède A. Condensationen von ketonen mit aldehyden. Ber. Dtsch. Chem. Ges. 1881 14 2 2460 2468 10.1002/cber.188101402192
    [Google Scholar]
  11. Claisen L. Ueber die einführung von säureradicalen in ketone. Ber. Dtsch. Chem. Ges. 1887 20 1 655 657 10.1002/cber.188702001150
    [Google Scholar]
  12. Prakash Rao H.S. Rafi S. Padmavathy K. The Blaise reaction. Tetrahedron 2008 64 35 8037 8043 10.1016/j.tet.2008.05.109
    [Google Scholar]
  13. Kashima C. Huang X.C. Harada Y. Hosomi A. Synthesis of. beta.-keto esters by the Reformatsky reaction of 3-acyloxazolidin-2-ones and -thiazolidine-2-thiones. J. Org. Chem. 1993 58 3 793 794 10.1021/jo00055a046
    [Google Scholar]
  14. Roskamp E.J. Dragovich P.S. Hartung J.B. Jr Pedersen S.F. A regioselective synthesis of pyrroles via the coupling of. alpha.beta.-unsaturated imines with esters or N,N-dimethylformamide promoted by NbCl3(DME). J. Org. Chem. 1989 54 20 4736 4737 10.1021/jo00281a006
    [Google Scholar]
  15. Brinkerhoff R.C. Tarazona H.F. de Oliveira P.M. Flores D.C. Montes D’Oca C.D.R. Russowsky D. Montes D’Oca M.G. Synthesis of β-ketoesters from renewable resources and Meldrum’s acid. RSC Advances 2014 4 91 49556 49559 10.1039/C4RA08986C
    [Google Scholar]
  16. Witzeman J.S. Nottingham W.D. Transacetoacetylation with tert-butyl acetoacetate: synthetic applications. J. Org. Chem. 1991 56 5 1713 1718 10.1021/jo00005a013
    [Google Scholar]
  17. Romeo R. Legnani L. Chiacchio M.A. Giofrè S.V. Iannazzo D. Antiviral compounds to address influenza pandemics: An update from 2016-2022. Curr. Med. Chem. 2024 31 18 2507 2549 10.2174/0929867331666230907093501 37691217
    [Google Scholar]
  18. Tayade Y.A. Wagh Y.B. Dalal D.S. β-cyclodextrin mediated green synthesis of bioactive heterocycles. Curr. Org. Chem. 2023 27 12 1036 1052 10.2174/1385272827666230911115818
    [Google Scholar]
  19. Osman N.A. EL-Sayed N.S. Abdel Fattah H.A. Almalki A.J. Kammoun A.K. Ibrahim T.S. Alharbi A.S. AL-Mahmoudy A.M. Design, synthesis and anticancer evaluation of new 1-allyl-4-oxo-6-(3,4,5- trimethoxyphenyl)-1,4-dihydropyrimidine-5-carbonitrile bearing pyrazole moieties. Curr. Org. Synth. 2023 20 8 897 909 10.2174/1570179420666230320153649 36941818
    [Google Scholar]
  20. Dieckmann W. Zur kenntniss der ringbildung aus kohlenstoffketten. Ber. Dtsch. Chem. Ges. 1894 27 1 102 103 10.1002/cber.18940270126
    [Google Scholar]
  21. Leonard N.J. Schimelpfenig C.W. Jr Synthesis of medium-and large-ring ketones via the Dieckmann condensation. J. Org. Chem. 1958 23 11 1708 1710 10.1021/jo01105a034
    [Google Scholar]
  22. Smith A.M.R. Hii K.K.M. Transition metal catalyzed enantioselective α-heterofunctionalization of carbonyl compounds. Chem. Rev. 2011 111 3 1637 1656 10.1021/cr100197z 20954710
    [Google Scholar]
  23. Kawaguchi M. Minami S. Ieda N. Nakagawa H. [1,2,4]Triazolo[1,5-a]pyrimidine derivatives: Structure-activity relationship study leading to highly selective ENPP1 inhibitors. Bioorg. Med. Chem. Lett. 2024 110 129820 10.1016/j.bmcl.2024.129820 38851358
    [Google Scholar]
  24. Wang T.T. Cao J. Li X. Synthesis of N–N axially chiral pyrrolyl-oxoisoindolin via isothiourea-catalyzed acylative dynamic kinetic resolution. Org. Lett. 2024 26 29 6179 6184 10.1021/acs.orglett.4c02031 39023300
    [Google Scholar]
  25. Mak J.Y.W. Rivero R.J.D. Hoang H.N. Lim X.Y. Deng J. McWilliam H.E.G. Villadangos J.A. McCluskey J. Corbett A.J. Fairlie D.P. Potent immunomodulators developed from an unstable bacterial metabolite of vitamin B2 biosynthesis. Angew. Chem. Int. Ed. 2024 63 31 e202400632 10.1002/anie.202400632 38679861
    [Google Scholar]
  26. Marchesani F. Rebecchi F. Pieroni M. Faggiano S. Annunziato G. Spaggiari C. Bruno S. Rinaldi S. Giaccari R. Costantino G. Campanini B. Chemical probes to investigate central nervous system disorders: Design, synthesis and mechanism of action of a potent human serine racemase inhibitor. ACS Med. Chem. Lett. 2024 15 8 1298 1305 10.1021/acsmedchemlett.4c00174 39140049
    [Google Scholar]
  27. Dierks A. Tönjes J. Schmidtmann M. Christoffers J. Synthesis of Benzo[ b ]azocin‐2‐ones by aryl amination and ring‐expansion of α‐(Iodophenyl)‐β‐oxoesters. Chemistry 2019 25 65 14912 14920 10.1002/chem.201903139 31433088
    [Google Scholar]
  28. Geibel I. Kahrs C. Christoffers J. Formation of bicyclic cyclopentenone derivatives by Robinson-type annulation of cyclic β-oxoesters containing a 1,4-diketone moiety. Synthesis 2017 49 17 3874 3884 10.1055/s‑0036‑1590812
    [Google Scholar]
  29. Boumediene M. Guignard R.F. Zard S.Z. Methoxycarbonyl migration in 3-methylene-1,4-cyclohexadienes. An extension of the von Auwers rearrangement. Tetrahedron 2016 72 26 3678 3686 10.1016/j.tet.2016.03.032
    [Google Scholar]
  30. Yang S. Abdel-Razek O.A. Cheng F. Bandyopadhyay D. Shetye G.S. Wang G. Luk Y.Y. Bicyclic brominated furanones: A new class of quorum sensing modulators that inhibit bacterial biofilm formation. Bioorg. Med. Chem. 2014 22 4 1313 1317 10.1016/j.bmc.2014.01.004 24485124
    [Google Scholar]
  31. Aeissen E. von Seggern A.R. Schmidtmann M. Christoffers J. Enantioselective synthesis of [ b ]‐annulated azepane scaffolds. Eur. J. Org. Chem. 2023 26 14 e202300180 10.1002/ejoc.202300180
    [Google Scholar]
  32. Christoffers J. Fliegel L. Krauß J. Ring transformation of annulated benzofuran derivatives to medium-sized lactones. Synlett 2024 35 9 979 982 10.1055/a‑2192‑4044
    [Google Scholar]
  33. Bayir A. Brewer M. Fragmentation of bicyclic γ-silyloxy-β-hydroxy-α-diazolactones as an approach to ynolides. J. Org. Chem. 2014 79 13 6037 6046 10.1021/jo500634d 24922068
    [Google Scholar]
  34. Weck C. Nauha E. Gruber T. Does the exception prove the rule? A comparative study of supramolecular synthons in a series of lactam esters. Cryst. Growth Des. 2019 19 5 2899 2911 10.1021/acs.cgd.9b00116
    [Google Scholar]
  35. Kuninobu Y. Morita J. Nishi M. Kawata A. Takai K. Rhenium-catalyzed formation of bicyclo[3.3.1]nonene frameworks by a reaction of cyclic β-keto esters with terminal alkynes. Org. Lett. 2009 11 12 2535 2537 10.1021/ol900772h 19456121
    [Google Scholar]
  36. Kitsiou C. Hindes J.J. I’Anson P. Jackson P. Wilson T.C. Daly E.K. Felstead H.R. Hearnshaw P. Unsworth W.P. The synthesis of structurally diverse macrocycles by successive ring expansion. Angew. Chem. Int. Ed. 2015 54 52 15794 15798 10.1002/anie.201509153 26768697
    [Google Scholar]
  37. Maejima S. Yamaguchi E. Itoh A. Visible light/molecular-iodine-mediated intermolecular spirolactonization reaction of olefins with cyclic ketones. J. Org. Chem. 2019 84 15 9519 9531 10.1021/acs.joc.9b01081 31131602
    [Google Scholar]
  38. Chung S.H. Cho M.S. Choi J.Y. Kwon D.W. Kim Y.H. Facile ring expansions of α-Halomethyl β-keto esters mediated with SmI2. Synlett 2001 2001 8 1266 1268 10.1055/s‑2001‑16064
    [Google Scholar]
  39. Dieckmann W. Über keto‐Enol‐gleichgewichte und die claisensche regel. Ber. Dtsch. Chem. Ges. B 1922 55 8 2470 2491 10.1002/cber.19220550826
    [Google Scholar]
  40. Sum P.E. Weiler L. Ring formation via β-keto ester dianions. Can. J. Chem. 1977 55 6 996 1000 10.1139/v77‑140
    [Google Scholar]
  41. Schietroma D.M.S. Monaco M.R. Visca V. Insogna S. Overgaard J. Bella M. Enamine‐mediated addition of aldehydes to cyclic enones. Adv. Synth. Catal. 2011 353 14-15 2648 2652 10.1002/adsc.201000755
    [Google Scholar]
  42. Müller S.T.R. Hokamp T. Ehrmann S. Hellier P. Wirth T. Ethyl lithiodiazoacetate: Extremely unstable intermediate handled efficiently in flow. Chemistry 2016 22 34 11940 11942 10.1002/chem.201602133 27339757
    [Google Scholar]
  43. Winkler J.D. Hong B.C. Hey J.P. Williard P.G. Inside-outside stereoisomerism. 5. Synthesis and reactivity of trans-bicyclo[n.3.1] alkanones prepared via the intramolecular photocycloaddition of dioxenones. J. Am. Chem. Soc. 1991 113 23 8839 8846 10.1021/ja00023a037
    [Google Scholar]
  44. Pazdera P. Simbera J. Facile carbethoxylation and carbamoylation of ketones. Org. Prep. Proced. Int. 2011 43 3 297 301 10.1080/00304948.2011.582002
    [Google Scholar]
  45. Jang H.L. El-Gamal M.I. Choi H.E. Choi H.Y. Lee K.T. Oh C.H. Synthesis of tricyclic fused coumarin sulfonates and their inhibitory effects on LPS-induced nitric oxide and PGE2 productions in RAW 264.7 macrophages. Bioorg. Med. Chem. Lett. 2014 24 2 571 575 10.1016/j.bmcl.2013.12.018 24360561
    [Google Scholar]
  46. Shibatomi K. Soga Y. Narayama A. Fujisawa I. Iwasa S. Highly enantioselective chlorination of β-keto esters and subsequent S(N)2 displacement of tertiary chlorides: A flexible method for the construction of quaternary stereogenic centers. J. Am. Chem. Soc. 2012 134 24 9836 9839 10.1021/ja304806j 22651700
    [Google Scholar]
  47. Darses B. Michaelides I.N. Sladojevich F. Ward J.W. Rzepa P.R. Dixon D.J. Expedient construction of the [7-5-5] all-carbon tricyclic core of the Daphniphyllum alkaloids daphnilongeranin B and daphniyunnine D. Org. Lett. 2012 14 7 1684 1687 10.1021/ol3002267 22404493
    [Google Scholar]
  48. Fukushi K. Suzuki S. Kamo T. Tokunaga E. Sumii Y. Kagawa T. Kawada K. Shibata N. Methyl NFSI: atom-economical alternative to NFSI shows higher fluorination reactivity under Lewis acid-catalysis and non-catalysis. Green Chem. 2016 18 7 1864 1868 10.1039/C5GC02612A
    [Google Scholar]
  49. Kawatsura M. Hayashi S. Komatsu Y. Hayase S. Itoh T. Enantioselective α-fluorination and chlorination of β-ketoesters by cobalt catalyst. Chem. Lett. 2010 39 5 466 467 10.1246/cl.2010.466
    [Google Scholar]
  50. Bartoli G. Bosco M. Carlone A. Locatelli M. Melchiorre P. Sambri L. Organocatalytic asymmetric α-halogenation of 1,3-dicarbonyl compounds. Angew. Chem. Int. Ed. 2005 44 38 6219 6222 10.1002/anie.200502134 16136622
    [Google Scholar]
  51. Marigo M. Kumaragurubaran N. Jørgensen K.A. Catalytic asymmetric bromination and chlorination of β-ketoesters. Chemistry 2004 10 9 2133 2137 10.1002/chem.200305759 15112201
    [Google Scholar]
  52. Kirsch S. Umland K-D. Mayer C. Oxidative chlorination of activated methylene compounds with sodium chloride. Synlett 2014 25 6 813 816 10.1055/s‑0033‑1340793
    [Google Scholar]
  53. Zhu L. Guo Y. Zu B. Ke J. He C. Electrochemical α-thiolation and azidation of 1,3-dicarbonyls. Chem. Commun. (Camb.) 2022 58 16 2758 2761 10.1039/D1CC06891A 35129193
    [Google Scholar]
  54. Xu C. Zhang L. Luo S. Merging aerobic oxidation and enamine catalysis in the asymmetric α-amination of β-ketocarbonyls using N-hydroxycarbamates as nitrogen sources. Angew. Chem. Int. Ed. 2014 53 16 4149 4153 10.1002/anie.201400776 24623653
    [Google Scholar]
  55. Kasaplar P. Ozkal E. Rodríguez-Escrich C. Pericàs M.A. Enantioselective α-amination of 1,3-dicarbonyl compounds in batch and flow with immobilized thiourea organocatalysts. Green Chem. 2015 17 5 3122 3129 10.1039/C5GC00496A
    [Google Scholar]
  56. Kumar A. Ghosh S.K. Gladysz J.A. Tris(1,2-diphenylethylenediamine)cobalt(III) complexes: Chiral hydrogen bond donor catalysts for enantioselective α-aminations of 1,3-dicarbonyl compounds. Org. Lett. 2016 18 4 760 763 10.1021/acs.orglett.6b00023 26820242
    [Google Scholar]
  57. Inokuma T. Furukawa M. Uno T. Suzuki Y. Yoshida K. Yano Y. Matsuzaki K. Takemoto Y. Bifunctional hydrogen-bond donors that bear a quinazoline or benzothiadiazine skeleton for asymmetric organocatalysis. Chemistry 2011 17 37 10470 10477 10.1002/chem.201101338 21812044
    [Google Scholar]
  58. Naganawa Y. Komatsu H. Nishiyama H. Zinc-catalyzed enantioselective electrophilic amination of β-ketocarbonyl compounds with axially chiral phenanthroline ligands. Chem. Lett. 2015 44 12 1652 1654 10.1246/cl.150802
    [Google Scholar]
  59. Rao M.V.K. Reddy K.N. Sridhar B. Reddy B.V.S. Ru(II)-catalyzed α-sulfonamidation of cyclic β-ketoesters with sulfonyl azides. Tetrahedron Lett. 2019 60 41 151083 10.1016/j.tetlet.2019.151083
    [Google Scholar]
  60. Duschek A. Kirsch S.F. Novel oxygenations with IBX. Chemistry 2009 15 41 10713 10717 10.1002/chem.200901867 19760735
    [Google Scholar]
  61. Cai M. Xu K. Li Y. Nie Z. Zhang L. Luo S. Chiral primary amine/ketone cooperative catalysis for asymmetric α-hydroxylation with hydrogen peroxide. J. Am. Chem. Soc. 2021 143 2 1078 1087 10.1021/jacs.0c11787 33399468
    [Google Scholar]
  62. Wang D. Xu C. Zhang L. Luo S. Asymmetric α-benzoyloxylation of β-ketocarbonyls by a chiral primary amine catalyst. Org. Lett. 2015 17 3 576 579 10.1021/ol503592n 25590858
    [Google Scholar]
  63. Zhang L. Nagaraju S. Paplal B. Lin Y. Liu S. Sulfonium salts enable the direct sulfenylation of activated C( sp 3 )−H bonds. Eur. J. Org. Chem. 2021 2021 9 1365 1369 10.1002/ejoc.202001569
    [Google Scholar]
  64. Krawczyk E. Owsianik K. Skowrońska A. Wieczorek M. Majzner W. An expedient, stereoselective synthesis of highly functionalized cyclic compounds. New J. Chem. 2002 26 12 1753 1767 10.1039/B207700K
    [Google Scholar]
  65. Ramesh B. Kumar G.R. Yarlagadda S. Sridhar B. Reddy B.V.S. BINOL-phosphoric acid catalyzed asymmetric Mannich addition of β-ketoesters to indolenines generated in situ by DDQ. Tetrahedron 2019 75 44 130620 10.1016/j.tet.2019.130620
    [Google Scholar]
  66. You Y. Zhang L. Cui L. Mi X. Luo S. Catalytic asymmetric mannich reaction with N‐carbamoyl imine surrogates of formaldehyde and glyoxylate. Angew. Chem. Int. Ed. 2017 56 44 13814 13818 10.1002/anie.201707005 28887903
    [Google Scholar]
  67. Holloway C.A. Muratore M.E. Storer R. Dixon D.J. Direct enantioselective Brønsted acid catalyzed N-acyliminium cyclization cascades of tryptamines and ketoacids. Org. Lett. 2010 12 21 4720 4723 10.1021/ol101651t 20929214
    [Google Scholar]
  68. Geibel I. Christoffers J. Synthesis of 1,4‐diketones from β‐oxo esters and enol acetates by ­Cerium‐Catalyzed Oxidative Umpo­lung reaction. Eur. J. Org. Chem. 2016 2016 5 918 920 10.1002/ejoc.201600057
    [Google Scholar]
  69. Geibel I. Dierks A. Schmidtmann M. Christoffers J. Formation of δ-lactones by cerium-catalyzed, Baeyer-Villiger-type coupling of β-oxoesters, enol acetates, and dioxygen. J. Org. Chem. 2016 81 17 7790 7798 10.1021/acs.joc.6b01441 27494288
    [Google Scholar]
  70. Zhang W. Zhu Y. Zhang L. Luo S. Asymmetric α‐Alkylation of β‐Ketocarbonyls via direct phenacyl bromide photolysis by chiral primary amine. Chin. J. Chem. 2018 36 8 716 722 10.1002/cjoc.201800125
    [Google Scholar]
  71. Zhu Y. Zhang L. Luo S. Asymmetric α-photoalkylation of β-ketocarbonyls by primary amine catalysis: Facile access to acyclic all-carbon quaternary stereocenters. J. Am. Chem. Soc. 2014 136 42 14642 14645 10.1021/ja508605a 25229998
    [Google Scholar]
  72. Muthusamy S. Arulananda Babu S. Gunanathan C. 1,8-Diazabicyclo[5.4.0]Undec-7-ENE (DBU): A powerful catalyst for the michael addition reaction of β-KETOESTERS to acrylates and enones. Synth. Commun. 2002 32 21 3247 3254 10.1081/SCC‑120014028
    [Google Scholar]
  73. Yoshida M. Asymmetric α-allylation of α-substituted β-ketoesters with allyl alcohols. J. Org. Chem. 2017 82 23 12821 12826 10.1021/acs.joc.7b02188 29047274
    [Google Scholar]
  74. Kita Y. Kavthe R.D. Oda H. Mashima K. Asymmetric allylic alkylation of β‐ketoesters with allylic alcohols by a nickel/diphosphine catalyst. Angew. Chem. Int. Ed. 2016 55 3 1098 1101 10.1002/anie.201508757 26637131
    [Google Scholar]
  75. Zhang G.M. Zhang H. Wang B. Wang J.Y. Boron-catalyzed dehydrative allylation of 1,3-diketones and β-ketone esters with 1,3-diarylallyl alcohols in water. RSC Advances 2021 11 28 17025 17031 10.1039/D1RA01922H 35479693
    [Google Scholar]
  76. Yoshida M. Yano S. Hara S. Asymmetric allylation of 2-oxocycloalkanecarboxylates. Synthesis 2016 49 6 1295 1300 10.1055/s‑0036‑1588095
    [Google Scholar]
  77. Nemoto T. Fukuda T. Matsumoto T. Hitomi T. Hamada Y. Enantioselective construction of all‐carbon quaternary stereocenters using palladium‐catalyzed asymmetric allylic alkylation of γ‐Acetoxy‐α,β‐unsaturated carbonyl compounds. Adv. Synth. Catal. 2005 347 11-13 1504 1506 10.1002/adsc.200505149
    [Google Scholar]
  78. Liu J. Han Z. Wang X. Meng F. Wang Z. Ding K. Palladium‐catalyzed asymmetric construction of vicinal tertiary and all‐carbon quaternary stereocenters by allylation of β‐ketocarbonyls with morita–Baylis–hillman adducts. Angew. Chem. Int. Ed. 2017 56 18 5050 5054 10.1002/anie.201701455 28378466
    [Google Scholar]
  79. Aburel P.S. Rømming C. Ma K. Undheim K. Synthesis of α-hydroxy and α-oxospiranes through ruthenium(II)-catalyzed ring-closing metathesis. J. Chem. Soc., Perkin Trans. 1 2001 2001 12 1458 1472 10.1039/b101462p
    [Google Scholar]
  80. Moloney M.G. Nettleton E. Smithies K. Novel alkylation, lactonisation and cascade coupling processes mediated by lead tetracarboxylates: The importance of ligands. Tetrahedron Lett. 2002 43 5 907 909 10.1016/S0040‑4039(01)02288‑2
    [Google Scholar]
  81. Xu Y.N. Zhu M.Z. Tian S.K. Chiral α-amino acid/palladium-catalyzed asymmetric allylation of α-branched β-ketoesters with allylic amines: Highly enantioselective construction of all-carbon quaternary stereocenters. J. Org. Chem. 2019 84 22 14936 14942 10.1021/acs.joc.9b02282 31608635
    [Google Scholar]
  82. Jia Z. Gálvez E. Sebastián R.M. Pleixats R. Álvarez-Larena Á. Martin E. Vallribera A. Shafir A. An alternative to the classical α-arylation: the transfer of an intact 2-iodoaryl from ArI(O₂CCF₃)₂. Angew. Chem. Int. Ed. 2014 53 42 11298 11301 10.1002/anie.201405982 25196839
    [Google Scholar]
  83. Zhou F. Driver T.G. Efficient synthesis of 3H-indoles enabled by the lead-mediated α-arylation of β-ketoesters or γ-lactams using aryl azides. Org. Lett. 2014 16 11 2916 2919 10.1021/ol5010615 24865180
    [Google Scholar]
  84. Azimioara M. Alper P. Cow C. Mutnick D. Nikulin V. Lelais G. Mecom J. McNeill M. Michellys P.Y. Wang Z. Reding E. Paliotti M. Li J. Bao D. Zoll J. Kim Y. Zimmerman M. Groessl T. Tuntland T. Joseph S.B. McNamara P. Seidel H.M. Epple R. Novel tricyclic pyrazolopyrimidines as potent and selective GPR119 agonists. Bioorg. Med. Chem. Lett. 2014 24 23 5478 5483 10.1016/j.bmcl.2014.10.010 25455488
    [Google Scholar]
  85. Corral-Bautista F. Mayr H. Quantification of the nucleophilic reactivities of cyclic β‐keto ester anions. Eur. J. Org. Chem. 2015 2015 34 7594 7601 10.1002/ejoc.201501107
    [Google Scholar]
  86. Zhang L. Liu S. Lin Y. Wang Y. Hydroxymethylation of active methenyl compounds: DMSO as methylene source and H2O as oxygen source. Tetrahedron Lett. 2022 93 153663 10.1016/j.tetlet.2022.153663
    [Google Scholar]
  87. Andrés J.M. Losada J. Maestro A. Rodríguez-Ferrer P. Pedrosa R. Supported and unsupported chiral squaramides as organocatalysts for stereoselective Michael additions: Synthesis of enantiopure chromenes and spirochromanes. J. Org. Chem. 2017 82 16 8444 8454 10.1021/acs.joc.7b01177 28738149
    [Google Scholar]
  88. Willig F. Lang J. Hans A.C. Ringenberg M.R. Pfeffer D. Frey W. Peters R. Polyfunctional imidazolium aryloxide betaine/Lewis acid catalysts as tools for the asymmetric synthesis of disfavored diastereomers. J. Am. Chem. Soc. 2019 141 30 12029 12043 10.1021/jacs.9b04902 31268701
    [Google Scholar]
  89. Owolabi I.A. Chennapuram M. Seki C. Okuyama Y. Kwon E. Uwai K. Tokiwa M. Takeshita M. Nakano H. Amino amide organocatalysts for asymmetric michael addition of β-Keto esters with β-nitroolefins. Bull. Chem. Soc. Jpn. 2019 92 3 696 701 10.1246/bcsj.20180302
    [Google Scholar]
  90. Shim J.H. Lee M.J. Lee M.H. Kim B.S. Ha D.C. Enantioselective organocatalytic Michael reactions using chiral ( R, R )-1,2-diphenylethylenediamine-derived thioureas. RSC Advances 2020 10 53 31808 31814 10.1039/D0RA03550E 35518159
    [Google Scholar]
  91. Andrés J.M. González M. Maestro A. Naharro D. Pedrosa R. Recyclable chiral bifunctional thioureas derived from [60]fullerene and their use as highly efficient organocatalysts for the asymmetric nitro‐michael reaction. Eur. J. Org. Chem. 2017 2017 19 2683 2691 10.1002/ejoc.201601640
    [Google Scholar]
  92. Andrés J.M. Ceballos M. Maestro A. Sanz I. Pedrosa R. Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective nitro-Michael reactions. Beilstein J. Org. Chem. 2016 12 628 635 10.3762/bjoc.12.61 27340453
    [Google Scholar]
  93. Andrés J.M. de La Cruz N. Valle M. Pedrosa R. Bottom‐up synthesis of supported thioureas and their use in enantioselective solvent‐free Aza‐Henry and Michael additions. ChemPlusChem 2016 81 1 86 92 10.1002/cplu.201500476 31968742
    [Google Scholar]
  94. Delamare A. Naulet G. Kauffmann B. Guichard G. Compain G. Hexafluoroisobutylation of enolates through a tandem elimination/allylic shift/hydrofluorination reaction. Chem. Sci. (Camb.) 2022 13 33 9507 9514 10.1039/D2SC02871A 36091907
    [Google Scholar]
  95. Liu J.J. Lan L. Gao Y.T. Liu Q. Cheng L. Wang D. Liu L. Visible‐light‐mediated stereoselective 1,2‐iodoalkylation of alkynes. Adv. Synth. Catal. 2019 361 6 1283 1288 10.1002/adsc.201801636
    [Google Scholar]
  96. Kieslich D. Christoffers J. Formation of δ-lactones by cyanide catalyzed rearrangement of α-Hydroxy-β-oxoesters. Org. Lett. 2021 23 3 953 957 10.1021/acs.orglett.0c04157 33464092
    [Google Scholar]
  97. Krieger D. Christoffers J. Ring transformation of α‐Amino‐β‐oxoesters to δ‐Butyrolactams. Eur. J. Org. Chem. 2023 26 39 e202300757 10.1002/ejoc.202300757
    [Google Scholar]
  98. Kuninobu Y. Kawata A. Takai K. Efficient catalytic insertion of acetylenes into a carbon-carbon single bond of nonstrained cyclic compounds under mild conditions. J. Am. Chem. Soc. 2006 128 35 11368 11369 10.1021/ja064022i 16939256
    [Google Scholar]
  99. Kuninobu Y. Kawata A. Nishi M. Yudha S S. Chen J. Takai K. Rhenium- and manganese-catalyzed insertion of alkynes into a carbon-carbon single bond of cyclic and acyclic 1,3-dicarbonyl compounds. Chem. Asian J. 2009 4 9 1424 1433 10.1002/asia.200900137 19603451
    [Google Scholar]
  100. Shimizu M. Hachiya I. Maehara W. Yamada Y. Kamiki T. Ring-expansion reaction of cyclic β-keto esters or α-cyano ketones via conjugate addition to alkynyl imines: The synthesis of functionalized medium-sized carbocycles. Synlett 2006 2006 19 3271 3274 10.1055/s‑2006‑951554
    [Google Scholar]
  101. Wang M. Yang Y. Yin L. Feng Y. Li Y. Selective synthesis of pyrano[3,2-b]indoles or cyclopenta[b]indoles tethered with medium-sized rings via cascade C-C σ-bond cleavage and C-H functionalization. J. Org. Chem. 2021 86 1 683 692 10.1021/acs.joc.0c02310 33350835
    [Google Scholar]
  102. Yuan Y. Guo Z. Mu Y. Wang Y. Xu M. Li Y. Synthesis of spiro[5.n (n=6–8)]heterocycles through successive ring‐Expansion/Indole C‐2 functionalization. Adv. Synth. Catal. 2020 362 6 1298 1302 10.1002/adsc.201901631
    [Google Scholar]
  103. Baud L.G. Manning M.A. Arkless H.L. Stephens T.C. Unsworth W.P. Ring‐expansion approach to medium‐sized lactams and analysis of their medicinal lead‐like properties. Chemistry 2017 23 9 2225 2230 10.1002/chem.201605615 27935197
    [Google Scholar]
  104. Lawer A. Epton R.G. Stephens T.C. Palate K.Y. Lodi M. Marotte E. Lamb K.J. Sangha J.K. Lynam J.M. Unsworth W.P. Evaluating the viability of successive ring‐expansions based on amino acid and hydroxyacid side‐chain insertion. Chemistry 2020 26 55 12674 12683 10.1002/chem.202002164 32432817
    [Google Scholar]
  105. Hierold J. Hsia T. Lupton D.W. The Grob/Eschenmoser fragmentation of cycloalkanones bearing β-electron withdrawing groups: A general strategy to acyclic synthetic intermediates. Org. Biomol. Chem. 2011 9 3 783 792 10.1039/C0OB00632G 21103511
    [Google Scholar]
  106. Pacifico R. Destro D. Gillick-Healy M.W. Kelly B.G. Adamo M.F.A. Preparation of acidic 5-hydroxy-1,2,3-triazoles via the cycloaddition of aryl azides with β-ketoesters. J. Org. Chem. 2021 86 17 11354 11360 10.1021/acs.joc.1c00778 34314172
    [Google Scholar]
/content/journals/coc/10.2174/0113852728363292241212075337
Loading
/content/journals/coc/10.2174/0113852728363292241212075337
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test