Skip to content
2000
image of Covalent Inhibitors - An Overview of Design Process, Challenges and Future Directions

Abstract

Covalent inhibitor drugs or targeted covalent inhibitors (TCIs) are a type of drug category that interact with their target by covalent bond formation. They represent a unique category having desired properties such as high potency and longer duration of action, making them an attractive opportunity to pursue by researchers in drug discovery. In history, covalent inhibitors were often discovered serendipitously ( aspirin and penicillin). However, modern times have witnessed numerous cases of rational design of these drugs, which has caused their rise to occupy a significant fraction of marketed drugs (over 30%). Here, we have given an overview of the discovery process of covalent inhibitors, including target identification/validation, warhead selection and optimization, linker design and conjugation and the role of computational tools in covalent inhibitors. To conclude, the challenges in this field and future directions to foresee are discussed. The objective of this article is to provide a summary of the general development process of covalent inhibitors as well as prospects or research gaps awaiting to be solved to overcome the challenges that hinder the discovery of covalent drugs.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728361926250123092017
2025-02-17
2025-05-22
Loading full text...

Full text loading...

References

  1. McWhirter C. Kinetic mechanisms of covalent inhibition The Design of Covalent-Based Inhibitors. Academic Press 2021 1 31 10.1016/bs.armc.2020.11.001
    [Google Scholar]
  2. Sutanto F. Konstantinidou M. Dömling A. Covalent inhibitors: A rational approach to drug discovery. RSC med. chem. 2020 11 8 876 884 10.1039/D0MD00154F 33479682
    [Google Scholar]
  3. Singh J. The ascension of targeted covalent inhibitors. J. Med. Chem. 2022 65 8 5886 5901 10.1021/acs.jmedchem.1c02134 35439421
    [Google Scholar]
  4. Covalent inhibitors in strategic therapeutic design. 2023 https://www.cas.org/resources/cas-insights/rise-covalent-inhibitors-strategic-therapeutic-design
  5. Advantages and disadvantages of covalent inhibitors. 2024 https://encyclopedia.pub/entry/43976
  6. Lu D. Yu X. Lin H. Cheng R. Monroy E.Y. Qi X. Wang M.C. Wang J. Applications of covalent chemistry in targeted protein degradation. Chem. Soc. Rev. 2022 51 22 9243 9261 10.1039/D2CS00362G 36285735
    [Google Scholar]
  7. Barragan A.M. Ghaby K. Pond M.P. Roux B. Computational investigation of the covalent inhibition mechanism of Bruton’s tyrosine kinase by Ibrutinib. J. Chem. Inf. Model. 2024 64 8 3488 3502 10.1021/acs.jcim.4c00023 38546820
    [Google Scholar]
  8. Voice A.T. Tresadern G. Twidale R.M. van Vlijmen H. Mulholland A.J. Mechanism of covalent binding of ibrutinib to Bruton’s tyrosine kinase revealed by QM/MM calculations. Chem. Sci. (Camb.) 2021 12 15 5511 5516 10.1039/D0SC06122K 33995994
    [Google Scholar]
  9. Mehta N.V. Degani M.S. The expanding repertoire of covalent warheads for drug discovery. Drug. Discov. Today 2023 28 12 103799 10.1016/j.drudis.2023.103799 37839776
    [Google Scholar]
  10. Mondal D. Warshel A. Exploring the mechanism of covalent inhibition: Simulating the binding free energy of α-ketoamide inhibitors of the main protease of SARS-CoV-2. Biochemistry 2020 59 48 4601 4608 10.1021/acs.biochem.0c00782 33205654
    [Google Scholar]
  11. Meissner F. Geddes-McAlister J. Mann M. Bantscheff M. The emerging role of mass spectrometry-based proteomics in drug discovery. Nat. Rev. Drug Discov. 2022 21 9 637 654 10.1038/s41573‑022‑00409‑3 35351998
    [Google Scholar]
  12. Lonsdale R. Burgess J. Colclough N. Davies N.L. Lenz E.M. Orton A.L. Ward R.A. Expanding the armory: Predicting and tuning covalent warhead reactivity. J. Chem. Inf. Model. 2017 57 12 3124 3137 10.1021/acs.jcim.7b00553 29131621
    [Google Scholar]
  13. Zhang G. Zhang J. Gao Y. Li Y. Li Y. Strategies for targeting undruggable targets. Expert. Opin. Drug Discov. 2022 17 1 55 69 10.1080/17460441.2021.1969359 34455870
    [Google Scholar]
  14. Du H. Gao J. Weng G. Ding J. Chai X. Pang J. Kang Y. Li D. Cao D. Hou T. CovalentInDB: A comprehensive database facilitating the discovery of covalent inhibitors. Nucleic. Acids Res. 2021 49 D1 D1122 D1129 10.1093/nar/gkaa876 33068433
    [Google Scholar]
  15. Guo Y. shuai W. Tong A. Wang Y. Advanced technologies for screening and identifying covalent inhibitors. Trends. Analyt. Chem. 2024 178 117833 10.1016/j.trac.2024.117833
    [Google Scholar]
  16. Zheng L. Li Y. Wu D. Xiao H. Zheng S. Wang G. Sun Q. Development of covalent inhibitors: Principle, design, and application in cancer. MedComm Oncol. 2023 2 4 e56 10.1002/mog2.56
    [Google Scholar]
  17. Gallagher J. Developing targeted covalent inhibitor drugs: 3 key considerations https://www.certara.com/blog/developing-targeted-covalent-inhibitor-drugs-3-key-considerations/
  18. Jones L.H. Design of next-generation covalent inhibitors: Targeting residues beyond cysteine The Design of Covalent-Based Inhibitors. Academic Press. 2021 95 134 10.1016/bs.armc.2020.10.001
    [Google Scholar]
  19. Csorba N. Ábrányi-Balogh P. Keserű G.M. Covalent fragment approaches targeting non-cysteine residues. Trends. Pharmacol. Sci. 2023 44 11 802 816 10.1016/j.tips.2023.08.014 37770315
    [Google Scholar]
  20. De Cesco S. Kurian J. Dufresne C. Mittermaier A.K. Moitessier N. Covalent inhibitors design and discovery. Eur. J. Med. Chem. 2017 138 96 114 10.1016/j.ejmech.2017.06.019 28651155
    [Google Scholar]
  21. Raouf Y.S. Covalent inhibitors: To infinity and beyond. J. Med. Chem. 2024 67 13 10513 10516 10.1021/acs.jmedchem.4c01308 38913822
    [Google Scholar]
  22. Bhatt T.K. Nimesh S. The Design and Development of Novel Drugs and Vaccines: Principles and Protocols. Academic Press 2021
    [Google Scholar]
  23. Dai L. Li Z. Chen D. Jia L. Guo J. Zhao T. Nordlund P. Target identification and validation of natural products with label-free methodology: A critical review from 2005 to 2020. Pharmacol. Ther. 2020 216 107690 10.1016/j.pharmthera.2020.107690 32980441
    [Google Scholar]
  24. Rousseaux C.G. Bracken W.M. Overview of Drug Development. Haschek and Rousseaux’s Handbook of Toxicologic Pathology. Chapter 21 3rd ed Haschek W.M. Rousseaux C.G. Wallig M.A. Boston Academic Press 2013 647 685 10.1016/B978‑0‑12‑415759‑0.00021‑2
    [Google Scholar]
  25. Péczka N. Orgován Z. Ábrányi-Balogh P. Keserű G.M. Electrophilic warheads in covalent drug discovery: An overview. Expert Opin. Drug Discov. 2022 17 4 413 422 10.1080/17460441.2022.2034783 35129005
    [Google Scholar]
  26. Martin J.S. MacKenzie C.J. Fletcher D. Gilbert I.H. Characterising covalent warhead reactivity. Bioorg. Med. Chem. 2019 27 10 2066 2074 10.1016/j.bmc.2019.04.002 30975501
    [Google Scholar]
  27. Shindo N. Ojida A. Recent progress in covalent warheads for in vivo targeting of endogenous proteins. Bioorg. Med. Chem. 2021 47 116386 10.1016/j.bmc.2021.116386 34509863
    [Google Scholar]
  28. Gehringer M. Laufer S.A. Emerging and re-emerging warheads for targeted covalent inhibitors: Applications in medicinal chemistry and chemical biology. J. Med. Chem. 2019 62 12 5673 5724 10.1021/acs.jmedchem.8b01153 30565923
    [Google Scholar]
  29. Hillebrand L. Liang X.J. Serafim R.A.M. Gehringer M. Emerging and re-emerging warheads for targeted covalent inhibitors: An update. J. Med. Chem. 2024 67 10 7668 7758 10.1021/acs.jmedchem.3c01825 38711345
    [Google Scholar]
  30. Baillie T.A. Targeted covalent inhibitors for drug design. Angew. Chem. Int. Ed. 2016 55 43 13408 13421 10.1002/anie.201601091 27539547
    [Google Scholar]
  31. Maurais A.J. Weerapana E. Reactive-cysteine profiling for drug discovery. Curr. Opin. Chem. Biol. 2019 50 29 36 10.1016/j.cbpa.2019.02.010 30897495
    [Google Scholar]
  32. Yver A. Osimertinib (AZD9291): A science-driven, collaborative approach to rapid drug design and development. Ann. Oncol. 2016 27 6 1165 1170 10.1093/annonc/mdw129 26961148
    [Google Scholar]
  33. Lu X. Smaill J.B. Patterson A.V. Ding K. Discovery of cysteine-targeting covalent protein kinase inhibitors. J. Med. Chem. 2022 65 1 58 83 10.1021/acs.jmedchem.1c01719 34962782
    [Google Scholar]
  34. Danilack A.D. Dickson C.J. Soylu C. Fortunato M. Rodde S. Munkler H. Hornak V. Duca J.S. Reactivities of acrylamide warheads toward cysteine targets: A QM/ML approach to covalent inhibitor design. J. Comput. Aided Mol. Des. 2024 38 1 21 10.1007/s10822‑024‑00560‑6 38693331
    [Google Scholar]
  35. Huang F. Han X. Xiao X. Zhou J. Covalent warheads targeting cysteine residue: The promising approach in drug development. Molecules 2022 27 22 7728 10.3390/molecules27227728 36431829
    [Google Scholar]
  36. Li X. Song Y. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Eur. J. Med. Chem. 2023 260 115772 10.1016/j.ejmech.2023.115772 37659195
    [Google Scholar]
  37. Chen D. Guo D. Yan Z. Zhao Y. Allenamide as a bioisostere of acrylamide in the design and synthesis of targeted covalent inhibitors. Med. Chem. Comm. 2018 9 2 244 253 10.1039/C7MD00571G 30108918
    [Google Scholar]
  38. McAulay K. Hoyt E.A. Thomas M. Schimpl M. Bodnarchuk M.S. Lewis H.J. Barratt D. Bhavsar D. Robinson D.M. Deery M.J. Ogg D.J. Bernardes G.J.L. Ward R.A. Waring M.J. Kettle J.G. Alkynyl benzoxazines and dihydroquinazolines as cysteine targeting covalent warheads and their application in identification of selective irreversible kinase inhibitors. J. Am. Chem. Soc. 2020 142 23 10358 10372 10.1021/jacs.9b13391 32412754
    [Google Scholar]
  39. Hacker S.M. Backus K.M. Lazear M.R. Forli S. Correia B.E. Cravatt B.F. Global profiling of lysine reactivity and ligandability in the human proteome. Nat. Chem. 2017 9 12 1181 1190 10.1038/nchem.2826 29168484
    [Google Scholar]
  40. Boll L.B. Raines R.T. Context‐dependence of the reactivity of cysteine and lysine residues. Chem. Bio. Chem. 2022 23 14 e202200258 10.1002/cbic.202200258 35527228
    [Google Scholar]
  41. Ramazi S. Zahiri J. Post-translational modifications in proteins: Resources, tools and prediction methods. Database (Oxford) 2021 2021 baab012 10.1093/database/baab012 33826699
    [Google Scholar]
  42. Kawano M. Murakawa S. Higashiguchi K. Matsuda K. Tamura T. Hamachi I. Lysine-L N -Acyl- N -aryl Sulfonamide Warheads: Improved reaction properties and application in the covalent inhibition of an ibrutinib-resistant BTK Mutant. J. Am. Chem. Soc. 2023 145 48 26202 26212 10.1021/jacs.3c08740 37987622
    [Google Scholar]
  43. Pettinger J. Jones K. Cheeseman M.D. Lysine‐targeting covalent inhibitors. Angew. Chem. Int. Ed. 2017 56 48 15200 15209 10.1002/anie.201707630 28853194
    [Google Scholar]
  44. Udompholkul P. Baggio C. Gambini L. Alboreggia G. Pellecchia M. Lysine covalent antagonists of melanoma inhibitors of apoptosis protein. J. Med. Chem. 2021 64 21 16147 16158 10.1021/acs.jmedchem.1c01459 34705456
    [Google Scholar]
  45. Goins C.M. Sudasinghe T.D. Liu X. Wang Y. O’Doherty G.A. Ronning D.R. Characterization of tetrahydrolipstatin and stereoderivatives on the inhibition of essential Mycobacterium tuberculosis lipid esterases. Biochemistry 2018 57 16 2383 2393 10.1021/acs.biochem.8b00152 29601187
    [Google Scholar]
  46. Wang Y.H. Zhang F. Diao H. Wu R. Covalent inhibition mechanism of antidiabetic drugs—Vildagliptin vs Saxagliptin. ACS Catal. 2019 9 3 2292 2302 10.1021/acscatal.8b05051
    [Google Scholar]
  47. Fallah A. Mohanazadeh F. Safavi M. Design, synthesis, and in vitro evaluation of novel 1,3,4-oxadiazolecarbamothioate derivatives of Rivastigmine as selective inhibitors of BuChE. Med. Chem. Res. 2020 29 3 341 355 10.1007/s00044‑019‑02475‑6
    [Google Scholar]
  48. Ray S. Murkin A.S. New electrophiles and strategies for mechanism-based and targeted covalent inhibitor design. Biochemistry 2019 58 52 5234 5244 10.1021/acs.biochem.9b00293 30990686
    [Google Scholar]
  49. Ruddraraju K.V. Zhang Z.Y. Covalent inhibition of protein tyrosine phosphatases. Mol. Biosyst. 2017 13 7 1257 1279 10.1039/C7MB00151G 28534914
    [Google Scholar]
  50. Edgcomb S.P. Murphy K.P. Variability in the pKa of histidine side‐chains correlates with burial within proteins. Proteins 2002 49 1 1 6 10.1002/prot.10177 12211010
    [Google Scholar]
  51. Che J. Jones L.H. Covalent drugs targeting histidine: An unexploited opportunity? RSC med. chem. 2022 13 10 1121 1126 10.1039/D2MD00258B 36325394
    [Google Scholar]
  52. Compain G. Monsarrat C. Blagojevic J. Brillet K. Dumas P. Hammann P. Kuhn L. Martiel I. Engilberge S. Oliéric V. Wolff P. Burnouf D.Y. Wagner J. Guichard G. Peptide-based covalent inhibitors bearing mild electrophiles to target a conserved his residue of the bacterial sliding clamp. JACS Au 2024 4 2 432 440 10.1021/jacsau.3c00572 38425897
    [Google Scholar]
  53. Heinrich T. Zenke F.T. Bomke J. Gunera J. Wegener A. Friese-Hamim M. Hewitt P. Methionine aminopeptidases. Metalloenzymes. Supuran C.T. Donald W.A. Academic Press 2024 343 373 10.1016/B978‑0‑12‑823974‑2.00023‑1
    [Google Scholar]
  54. Anscombe E. Meschini E. Mora-Vidal R. Martin M.P. Staunton D. Geitmann M. Danielson U.H. Stanley W.A. Wang L.Z. Reuillon T. Golding B.T. Cano C. Newell D.R. Noble M.E.M. Wedge S.R. Endicott J.A. Griffin R.J. Identification and characterization of an irreversible inhibitor of CDK2. Chem. Biol. 2015 22 9 1159 1164 10.1016/j.chembiol.2015.07.018 26320860
    [Google Scholar]
  55. Thomas R. P. Grant E. K. Dickinson, E. R. Zappacosta F. Edwards L.J. Hann, M. M. House D. Tomkinson N.C.O Bush J. T Reactive fragments targeting carboxylate residues employing direct to biology, high-throughput chemistry RSC Med. Chem. 14 671 679 10.1039/D2MD00453D
    [Google Scholar]
  56. Ofman T.P. van der Marel G.A. Codée J.D.C. Overkleeft H.S. Design and synthesis of exocyclic cyclitol aziridines as potential mechanism‐based glycosidase inactivators. Eur. J. Org. Chem. 2023 26 16 e202300186 10.1002/ejoc.202300186
    [Google Scholar]
  57. Silva M.P. Saraiva L. Pinto M. Sousa M.E. Boronic acids and their derivatives in medicinal chemistry: Synthesis and biological applications. Molecules 2020 25 18 4323 10.3390/molecules25184323 32967170
    [Google Scholar]
  58. Che A. Installing the acrylamide warheads in the FDA-approved covalent drugs. 2024z https://medium.com/@allen-che/acryloylamide-warhead-installation-in-fda-approved-covalent-inhibitors-9402b4a26dfd
  59. Kluge A.F. Petter R.C. Acylating drugs: Redesigning natural covalent inhibitors. Curr. Opin. Chem. Biol. 2010 14 3 421 427 10.1016/j.cbpa.2010.03.035 20457000
    [Google Scholar]
  60. Sandanayaka V. Prashad A. Resistance to β-lactam antibiotics: Structure and mechanism based design of β-lactamase inhibitors. Curr. Med. Chem. 2002 9 12 1145 1165 10.2174/0929867023370031 12052169
    [Google Scholar]
  61. Bonatto V. Lameiro R. F. Rocho F. R. Lameira J. Leitão A. Montanari C. A. Nitriles: An attractive approach to the development of covalent inhibitors RSC Med. Chem. 2023 14 2 201 217 10.1039/D2MD00204C
    [Google Scholar]
  62. Du S. Hu X. Lindsley C.W. Zhan P. New Applications of sulfonyl fluorides: A microcosm of the deep integration of chemistry and biology in drug design. J. Med. Chem. 2024 67 19 16925 16927 10.1021/acs.jmedchem.4c02112 39315939
    [Google Scholar]
  63. Gambini L. Udompholkul P. Salem A.F. Baggio C. Pellecchia M. Stability and cell permeability of sulfonyl fluorides in the design of lys‐covalent antagonists of protein‐protein interactions. Chem. Med. Chem. 2020 15 22 2176 2184 10.1002/cmdc.202000355 32790900
    [Google Scholar]
  64. Narayanan A. Jones L.H. Sulfonyl fluorides as privileged warheads in chemical biology. Chem. Sci. (Camb.) 2015 6 5 2650 2659 10.1039/C5SC00408J 28706662
    [Google Scholar]
  65. Plescia J. Moitessier N. Design and discovery of boronic acid drugs. Eur. J. Med. Chem. 2020 195 112270 10.1016/j.ejmech.2020.112270 32302879
    [Google Scholar]
  66. Faridoon R. Ng R. Zhang G. Li J.J. An update on the discovery and development of reversible covalent inhibitors. Med. Chem. Res. 2023 32 6 1039 1062 10.1007/s00044‑023‑03065‑3 37305209
    [Google Scholar]
  67. Gomes A.R. Varela C.L. Tavares-da-Silva E.J. Roleira F.M.F. Epoxide containing molecules: A good or a bad drug design approach. Eur. J. Med. Chem. 2020 201 112327 10.1016/j.ejmech.2020.112327 32526552
    [Google Scholar]
  68. Schiefer I.T. Tapadar S. Litosh V. Siklos M. Scism R. Wijewickrama G.T. Chandrasena E.P. Sinha V. Tavassoli E. Brunsteiner M. Fa’ M. Arancio O. Petukhov P. Thatcher G.R.J. Design, synthesis, and optimization of novel epoxide incorporating peptidomimetics as selective calpain inhibitors. J. Med. Chem. 2013 56 15 6054 6068 10.1021/jm4006719 23834438
    [Google Scholar]
  69. Morisseau C. Hammock B.D. Epoxide hydrolases: Mechanisms, inhibitor designs, and biological roles. Annu. Rev. Pharmacol. Toxicol. 2005 45 311 333 10.1146/annurev.pharmtox.45.120403.095920
    [Google Scholar]
  70. Ismail F.M.D. Levitsky D.O. Dembitsky V.M. Aziridine alkaloids as potential therapeutic agents. Eur. J. Med. Chem. 2009 44 9 3373 3387 10.1016/j.ejmech.2009.05.013 19540628
    [Google Scholar]
  71. Adams B.T. Niccoli S. Chowdhury M.A. Esarik A.N. Lees L.J. Rempel B.P. Phenix C.P. N-Alkylated aziridines are easily-prepared, potent, specific and cell-permeable covalent inhibitors of human β-glucocerebrosidase. Chem. Commun. (Camb). 2024 57 11390 10.1039/C5CC03828F
    [Google Scholar]
  72. Kerr I.D. Lee J.H. Farady C.J. Marion R. Rickert M. Sajid M. Pandey K.C. Caffrey C.R. Legac J. Hansell E. McKerrow J.H. Craik C.S. Rosenthal P.J. Brinen L.S. Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J. Biol. Chem. 2009 284 38 25697 25703 10.1074/jbc.M109.014340 19620707
    [Google Scholar]
  73. Schneider T.H. Rieger M. Ansorg K. Sobolev A.N. Schirmeister T. Engels B. Grabowsky S. Vinyl sulfone building blocks in covalently reversible reactions with thiols. New J. Chem. 2015 39 7 5841 5853 10.1039/C5NJ00368G
    [Google Scholar]
  74. Liu Y. Ma C. Li Y. Li M. Cui T. Zhao X. Li Z. Jia H. Wang H. Xiu X. Hu D. Zhang R. Wang N. Liu P. Yang H. Cheng M. Design, synthesis and biological evaluation of carbamate derivatives incorporating multifunctional carrier scaffolds as pseudo-irreversible cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2024 265 116071 10.1016/j.ejmech.2023.116071 38157596
    [Google Scholar]
  75. Zhang H. Wang Y. Wang Y. Li X. Wang S. Wang Z. Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer’s disease. Eur. J. Med. Chem. 2022 240 114606 10.1016/j.ejmech.2022.114606 35858523
    [Google Scholar]
  76. Li L. Chenna B.C. Yang K.S. Cole T.R. Goodall Z.T. Giardini M. Moghadamchargari Z. Hernandez E.A. Gomez J. Calvet C.M. Bernatchez J.A. Mellott D.M. Zhu J. Rademacher A. Thomas D. Blankenship L.R. Drelich A. Laganowsky A. Tseng C.T.K. Liu W.R. Wand A.J. Cruz-Reyes J. Siqueira-Neto J.L. Meek T.D. Self-masked aldehyde inhibitors: A novel strategy for inhibiting cysteine proteases. J. Med. Chem. 2021 64 15 11267 11287 10.1021/acs.jmedchem.1c00628 34288674
    [Google Scholar]
  77. Konstantinidou M. Visser E.J. Vandenboorn E. Chen S. Jaishankar P. Overmans M. Dutta S. Neitz R.J. Renslo A.R. Ottmann C. Brunsveld L. Arkin M.R. Structure-based optimization of covalent, small-molecule stabilizers of the 14-3-3σ/ERα protein–protein interaction from nonselective fragments. J. Am. Chem. Soc. 2023 145 37 20328 20343 10.1021/jacs.3c05161 37676236
    [Google Scholar]
  78. Troup R.I. Fallan C. Baud M.G.J. Current strategies for the design of PROTAC linkers: A critical review. Explor. Target. Antitumor. Ther. 2020 1 5 273 312 10.37349/etat.2020.00018 36046485
    [Google Scholar]
  79. Bancet A. Raingeval C. Lomberget T. Le Borgne M. Guichou J.F. Krimm I. Fragment linking strategies for structure-based drug design. J. Med. Chem. 2020 63 20 11420 11435 10.1021/acs.jmedchem.0c00242 32539387
    [Google Scholar]
  80. Paiva S.L. Crews C.M. Targeted protein degradation: nlms of PROTAC design. Curr. Opin. Chem. Biol. 2019 50 111 119 10.1016/j.cbpa.2019.02.022 31004963
    [Google Scholar]
  81. Kao C.T. Lin C.T. Chou C.L. Lin C.C. Fragment linker prediction using the deep encoder-decoder network for PROTACs drug design. J. Chem. Inf. Model. 2023 63 10 2918 2927 10.1021/acs.jcim.2c01287 37150933
    [Google Scholar]
  82. Baghbeheshti S. Hadadian S. Eidi A. Pishkar L. Rahimi H. Effect of flexible and rigid linkers on biological activity of recombinant tetramer variants of S3 antimicrobial peptide. Int. J. Pept. Res. Ther. 2021 27 1 457 462 10.1007/s10989‑020‑10095‑7
    [Google Scholar]
  83. Kirsch P. Hartman A.M. Hirsch A.K.H. Empting M. Concepts and core principles of fragment-based drug design. Molecules 2019 24 23 4309 10.3390/molecules24234309 31779114
    [Google Scholar]
  84. Lu W. Kostic M. Zhang T. Che J. Patricelli M.P. Jones L.H. Chouchani E.T. Gray N.S. Fragment-based covalent ligand discovery. RSC chem. biol. 2021 2 2 354 367 10.1039/D0CB00222D 34458789
    [Google Scholar]
  85. Boike L. Henning N.J. Nomura D.K. Advances in covalent drug discovery. Nat. Rev. Drug Discov. 2022 21 12 881 898 10.1038/s41573‑022‑00542‑z 36008483
    [Google Scholar]
  86. Barik D. Thurakkal L. Jose A. Porel M. Click chemistry: A tool for functionalization. Click Chemistry. CRC Press 2024 10.1201/9781003403340‑7
    [Google Scholar]
  87. Oyedele A.Q.K. Ogunlana A.T. Boyenle I.D. Adeyemi A.O. Rita T.O. Adelusi T.I. Abdul-Hammed M. Elegbeleye O.E. Odunitan T.T. Docking covalent targets for drug discovery: Stimulating the computer-aided drug design community of possible pitfalls and erroneous practices. Mol. Divers. 2023 27 4 1879 1903 10.1007/s11030‑022‑10523‑4 36057867
    [Google Scholar]
  88. Schaefer D. Cheng X. Recent advances in covalent drug discovery. Pharmaceuticals 2023 16 5 663 10.3390/ph16050663 37242447
    [Google Scholar]
  89. Ghosh A.K. Samanta I. Mondal A. Liu W.R. Covalent inhibition in drug discovery. Chem. Med. Chem. 2019 14 9 889 906 10.1002/cmdc.201900107 30816012
    [Google Scholar]
  90. Ma X. Sloman D.L. Duggal R. Anderson K.D. Ballard J.E. Bharathan I. Brynczka C. Gathiaka S. Henderson T.J. Lyons T.W. Miller R. Munsell E.V. Orth P. Otte R.D. Palani A. Rankic D.A. Robinson M.R. Sather A.C. Solban N. Song X.S. Wen X. Xu Z. Yang Y. Yang R. Day P.J. Stoeck A. Bennett D.J. Han Y. Discovery of MK-1084: An orally bioavailable and low-dose KRAS G12C inhibitor. J. Med. Chem. 2024 67 13 11024 11052 10.1021/acs.jmedchem.4c00572 38924388
    [Google Scholar]
  91. Lanman B.A. Allen J.R. Allen J.G. Amegadzie A.K. Ashton K.S. Booker S.K. Chen J.J. Chen N. Frohn M.J. Goodman G. Kopecky D.J. Liu L. Lopez P. Low J.D. Ma V. Minatti A.E. Nguyen T.T. Nishimura N. Pickrell A.J. Reed A.B. Shin Y. Siegmund A.C. Tamayo N.A. Tegley C.M. Walton M.C. Wang H.L. Wurz R.P. Xue M. Yang K.C. Achanta P. Bartberger M.D. Canon J. Hollis L.S. McCarter J.D. Mohr C. Rex K. Saiki A.Y. San Miguel T. Volak L.P. Wang K.H. Whittington D.A. Zech S.G. Lipford J.R. Cee V.J. Discovery of a covalent inhibitor of KRAS G12C (AMG 510) for the treatment of solid tumors. J. Med. Chem. 2020 63 1 52 65 10.1021/acs.jmedchem.9b01180 31820981
    [Google Scholar]
/content/journals/coc/10.2174/0113852728361926250123092017
Loading
/content/journals/coc/10.2174/0113852728361926250123092017
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: linker ; Covalent inhibitors ; warhead ; electrophiles ; inhibitor design ; target residues
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test