Skip to content
2000
image of Thermodynamical Characteristics and Molecular Structures of 3d-element Macrocyclic Complexes Containing Phthalocyanine, Oxo, and Fluoro Ligands: DFT Consideration

Abstract

Establishing the fundamental possibility of the existence of the heteroligand macrotetracyclic complexes of vanadium, chromium, manganese, and iron-containing in the inner coordination sphere phthalocyanine, oxygen (O2-) and fluorine (F-) ions and having general [MPc(O)F] formula (M= V, Cr, Mn, Fe), by using of quantum-chemical calculation of parameters of their molecular/electronic structures and thermodynamical characteristics. The molecular and electronic structures of the above-mentioned heteroligand macrotetracyclic chelates of 3d elements (M) of the type [MPc(O)F] (M= V, Cr, Mn, Fe) which are unknown at present, were theoretically investigated. Standard thermodynamic parameters of formation (standard enthalpy 0, entropy 0 and Gibbs’s energy 0) for these macrocyclic compounds were calculated, too. Identifying details of molecular and electronic structures of compounds indicated above. Density functional theory (DFT) model chemistries (B3PW91/TZVP and OPBE/TZVP) with a combination of the D3 version of Grimme’s dispersion. The data on the geometric parameters of the molecular structure of these complexes are presented; it was shown that MN4 chelate nodes, all metal-chelate and 6-membered non-chelate rings in each of these macrocyclic coordination compounds, are practically planar with a small deviation from coplanarity (not more 3o); nonetheless, N4 grouping from donor nitrogen atoms and 5-membered non-chelate rings are strictly planar. Wherein, the bond angles between two donor nitrogen atoms and M atom are not equal to 90o; a similar situation occurs for the bond angles between donor atoms N, M, and O or F (notwithstanding the bond angles formed by M, O, and F atoms are exactly 180°). Also, NBO analysis data and the values of the standard enthalpy, entropy, and Gibbs energy of the formation of these compounds were presented. Specific features of DFT calculated molecular and electronic structures of the heteroligand metal macrocyclic compounds have been discussed. It has been shown that good agreement between the parameters of molecular structures obtained by two various DFT model chemistries takes place. Also, it has been noted that predicting the possibility of the existence of exotic coordination compounds and modeling their molecular/electronic structures using modern quantum chemical calculations (and, in particular, using DFT of various levels) is a very useful tool for solving problems associated with such synthesis.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728360044250110004808
2025-02-28
2025-05-10
Loading full text...

Full text loading...

References

  1. Koifman O.I. Ageeva T.A. Beletskaya I.P. Averin A.D. Yakushev A.A. Tomilova L.G. Dubinina T.V. Tsivadze A.Y. Gorbunova Y.G. Martynov A.G. Konarev D.V. Khasanov S.S. Lyubovskaya R.N. Lomova T.N. Korolev V.V. Zenkevich E.I. Blaudeck T. von Borczyskowski C. Zahn D.R.T. Mironov A.F. Bragina N.A. Ezhov A.V. Zhdanova K.A. Stuzhin P.A. Pakhomov G.L. Rusakova N.V. Semenishyn N.N. Smola S.S. Parfenyuk V.I. Vashurin A.S. Makarov S.V. Dereven’kov I.A. Mamardashvili N.Z. Kurtikyan T.S. Martirosyan G.G. Burmistrov V.А. Aleksandriiskii V.V. Novikov I.V. Pritmov D.A. Grin M.A. Suvorov N.V. Tsigankov A.A. Fedorov A.Y. Kuzmina N.S. Nyuchev A.V. Otvagin V.F. Kustov A.V. Belykh D.V. Berezin D.B. Solovieva A.B. Timashev P.S. Milaeva E.R. Gracheva Y.A. Dodokhova M.A. Safronenko A.V. Shpakovsky D.B. Syrbu S.A. Gubarev Y.A. Kiselev A.N. Koifman M.O. Lebedeva N.S. Yurina E.S. Macroheterocyclic compounds: A key building block in new functional materials and molecular devices. Macroheterocycles 2020 13 4 311 467 10.6060/mhc200814k
    [Google Scholar]
  2. Mamardashvili G.M. Mamardashvili N.Z. Koifman O.I. Self-assembling systems based on porphirins. Russ. Chem. Rev. 2008 77 1 59 75 10.1070/RC2008v077n01ABEH003743
    [Google Scholar]
  3. Balashova I.O. Pushkarev V.E. Shestov V.I. Tomilova L.G. Koifman O.I. Ponomarev G.V. Synthesis and spectral properties of phthalocyanine–methylpheophorbide a covalently linked dyad. Macroheterocycles 2015 8 3 233 238 10.6060/mhc150767p
    [Google Scholar]
  4. Afanasiev P. Kudrik E.V. Albrieux F. Briois V. Koifman O.I. Sorokin A.B. Generation and characterization of high-valent iron oxo phthalocyanines. Chem. Commun. (Camb.) 2012 48 49 6088 6090 10.1039/c2cc31917a 22517302
    [Google Scholar]
  5. Filippova A. Vashurin A. Znoyko S. Kuzmin I. Novel Co(II) phthalocyanines of extended periphery and their water-soluble derivatives. Synthesis, spectral properties and catalytic activity. J. Mol. Struct. 2017 1149 1 17 26 10.1016/j.molstruc.2017.07.086
    [Google Scholar]
  6. Stuzhin P.A. Mikhailov M.S. Yurina E.S. Bazanov M.I. Koifman O.I. Pakhomov G.L. Travkin V.V. Sinelshchikova A.A. First tellurium-containing phthalocyanine analogues: strong effect of tellurium on spectral, redox and conductivity properties of porphyrazines with annulated chalcogenodiazole ring(s). Chem. Commun. (Camb.) 2012 48 81 10135 10137 10.1039/c2cc35580a 22951673
    [Google Scholar]
  7. Vashurin A. Maizlish V. Kuzmin I. Znoyko S. Morozova A. Razumov M. Koifman O. Symmetrical and difunctional substituted cobalt phthalocyanines with benzoic acids fragments: Synthesis and catalytic activity. J. Porphyr. Phthalocyanines 2017 21 1 37 47 10.1142/S108842461750002X
    [Google Scholar]
  8. Vashurin A. Kuzmin I. Mayzlish V. Razumov M. Golubchikov O. Koifman O. Kinetics and mechanism of the oxidation of dithiocarbamic acids in the presence of Co(II) phthalocyaninetetacarboxylic acid. J. Serb. Chem. Soc. 2016 81 9 1025 1036 10.2298/JSC160105048V
    [Google Scholar]
  9. Erzunov D.A. Vashurin A.S. Koifman O.I. Synthesis and spectral properties of isomers of cobalt tetrakis(dicyanophenoxy)phthalocyaninate. Russ. Chem. Bull. 2018 67 12 2250 2252 10.1007/s11172‑018‑2364‑4
    [Google Scholar]
  10. Kuvshinov G.V. Maizlish V.E. Kuvshinova S.A. Burmistrov V.A. Koifman O.I. Copper and nickel complexes of tert-butyl substituted phthalocyanines as modifiers for films based on polyvinyl chloride and adsorbents for gas chromatography. Macroheterocycles 2016 9 244 249 10.6060/mhc160318k
    [Google Scholar]
  11. Malyasova A.S. Kostrova E.A. Abramov I.G. Maizlish V.E. Koifman O.I. Synthesis, acid-base interactions, and photostability of copper(ii) tetrakis(3,5-di-tert-butylbenzoyloxy)phthalocyanine. Russ. Chem. Bull. 2021 70 12 2405 2415 10.1007/s11172‑021‑3360‑7
    [Google Scholar]
  12. Znoiko S.A. Tikhomirova T.V. Petlina A.I. Novikov I.V. Vashurin A.S. Koifman O.I. Synthesis and physicochemical properties of organo- and water-soluble octasubstituted phthalocyanines with cyclohexylphenoxy groups. Russ. Chem. Bull. 2019 68 6 1271 1274 10.1007/s11172‑019‑2552‑x
    [Google Scholar]
  13. Vashurin A. Kuzmin I. Titov V. Pukhovskaya S. Razumov M. Golubchikov O. Koifman O. The surface modification of the polypropylene by aqueous soluble CoII phthalocyanine to obtain materials for catalysis. Macroheterocycles 2015 8 4 351 357 10.6060/mhc150248v
    [Google Scholar]
  14. Tverdova N.V. Girichev G.V. Krasnov A.V. Pimenov O.A. Koifman O.I. The molecular structure, bonding, and energetics of oxovanadium phthalocyanine: An experimental and computational study. Struct. Chem. 2013 24 3 883 890 10.1007/s11224‑013‑0259‑4
    [Google Scholar]
  15. Zaitseva S.V. Zdanovich S.A. Tyulyaeva E.Y. Grishina E.S. Koifman O.I. Reduction of (chloro)-μ-nitrido-bis[(tetra- tert -butyl-phthalocyaninato)iron(IV)] with organic N-bases. J. Porphyr. Phthalocyanines 2016 20 5 639 646 10.1142/S1088424616500474
    [Google Scholar]
  16. De Diesbach H. von der Weid E. Some complex salts of o-dinitriles with copper and pyridine. Helv. Chim. Acta> 1927 10 1 886 888 10.1002/hlca.192701001110
    [Google Scholar]
  17. Kasuda K. Tsutsui M. Some new developments in the chemistry of metallophthalocyanines. Coord. Chem. Rev. 1980 32 1 67 95 10.1016/S0010‑8545(00)80370‑7
    [Google Scholar]
  18. Thomas A.L. Phthalocyanines. Research and Applications. CRC Press 1990
    [Google Scholar]
  19. Khelevina O.G. Malyasova A.S. 40 years with porphyrazines. J. Porphyr. Phthalocyanines 2019 23 11n12 1251 1264 10.1142/S1088424619300246
    [Google Scholar]
  20. Lomova T.N. Axial coordinated metal porphyrins in science and practice. KRASAND 2018
    [Google Scholar]
  21. Mikhailov O.V. Chachkov D.V. New heteroligand complex of cobalt with phthalocyanine, oxo and fluoro ligands: DFT consideration. J. Porphyr. Phthalocyanines 2022 26 4 316 324 10.1142/S1088424622500171
    [Google Scholar]
  22. Mikhailov O.V. Chachkov D.V. Nickel macrocyclic complexes with porphyrazine and some [benzo]substituted, oxo and fluoro ligands: DFT analysis. J. Porphyr. Phthalocyanines 2022 26 3 222 231 10.1142/S1088424622500067
    [Google Scholar]
  23. Schaefer A. Horn H. Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992 97 4 2571 2577 10.1063/1.463096
    [Google Scholar]
  24. Schaefer A. Huber C. Ahlrichs R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr J. Chem. Phys. 1994 100 8 5829 5835 10.1063/1.467146
    [Google Scholar]
  25. Hoe W.M. Cohen A.J. Handy N.C. Assessment of a new local exchange functional OPTX. Chem. Phys. Lett. 2001 341 3-4 319 328 10.1016/S0009‑2614(01)00581‑4
    [Google Scholar]
  26. Perdew J.P. Burke K. Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1997 78 7 1396 1396 10.1103/PhysRevLett.78.1396
    [Google Scholar]
  27. Paulsen H. Duelund L. Winkler H. Toftlund H. Trautwein A.X. Free energy of spin-crossover complexes calculated with density functional methods. Inorg. Chem. 2001 40 9 2201 2203 10.1021/ic000954q 11304167
    [Google Scholar]
  28. Swart M. Groenhof A.R. Ehlers A.W. Lammertsma K. Validation of exchange−correlation functionals for spin states of iron complexes. J. Phys. Chem. A 2004 108 25 5479 5483 10.1021/jp049043i
    [Google Scholar]
  29. Swart M. Ehlers A.W. Lammertsma K. Performance of the OPBE exchange-correlation functional. Mol. Phys. 2004 102 23-24 2467 2474 10.1080/0026897042000275017
    [Google Scholar]
  30. Swart M. Metal–ligand bonding in metallocenes: Differentiation between spin state, electrostatic and covalent bonding. Inorg. Chim. Acta 2007 360 1 179 189 10.1016/j.ica.2006.07.073
    [Google Scholar]
  31. Grimme S. Antony J. Ehrlich S. Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 nlms H-Pu. J. Chem. Phys. 2010 132 15 154104 10.1063/1.3382344 20423165
    [Google Scholar]
  32. Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A Gen. Phys. 1988 38 6 3098 3100 10.1103/PhysRevA.38.3098 9900728
    [Google Scholar]
  33. Perdew J.P. Burke K. Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B Condens. Matter 1996 54 23 16533 16539 10.1103/PhysRevB.54.16533 9985776
    [Google Scholar]
  34. Medvedev M.G. Bushmarinov I.S. Sun J. Perdew J.P. Lyssenko K.A. Density functional theory is straying from the path toward the exact functional. Science 2017 355 6320 49 52 10.1126/science.aah5975 28059761
    [Google Scholar]
  35. Frisch M.J. Trucks G.W. Schlegel H.B. Scuseria G.E. Robb M.A. Cheeseman J.R. Scalmani G. Barone V. Mennucci B. Petersson G.A. Nakatsuji H. Caricato M. Li H. Hratchian H.P. Izmaylov A.F. Bloino J. Zheng G. Sonnenberg J.L. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Vreven T. Montgomery J.A. Jr Peralta J.E. Ogliaro F. Bearpark M. Heyd J.J. Brothers E. Kudin K.N. Staroverov V.N. Kobayashi R. Normand J. Raghavachari K. Rendell A. Burant J.C. Iyengar S.S. Tomasi J. Cossi M. Rega N. Millam J.M. Klene M. Knox J.E. Cross J.B. Bakken V. Adamo C. Jaramillo J. Gomperts R. Stratmann R.E. Yazyev O. Austin A.J. Cammi R. Pomelli C. Ochterski J.W. Martin R.L. Morokuma K. Zakrzewski V.G. Voth G.A. Salvador P. Dannenberg J.J. Dapprich S. Daniels A.D. Farkas O. Foresman J.B. Ortiz J.V. Cioslowski J. Fox D.J. Gaussian, Inc., Wallingford CT 2009 Available from: https://gaussian.com/citation/
  36. Weinhold F. Landis C.R. Glendening E.D. What is NBO analysis and how is it useful? Int. Rev. Phys. Chem. 2016 35 3 399 440 10.1080/0144235X.2016.1192262
    [Google Scholar]
  37. Ochterski J.W. Thermochemistry in Gaussian. Wallingford, CT Gaussian, Inc. 2000
    [Google Scholar]
  38. Mikhailov O.V. Molecular structures of metal macrocyclic compounds with nitrogen, oxygen, and sulfur atoms in macrocycles arising in “self-assembly” processes: Quantum-chemical modeling. Struct. Chem. 2018 29 3 777 802 10.1007/s11224‑018‑1091‑7
    [Google Scholar]
/content/journals/coc/10.2174/0113852728360044250110004808
Loading
/content/journals/coc/10.2174/0113852728360044250110004808
Loading

Data & Media loading...

Supplements

The data of NBO analysis of [MPc(O)F] (M= V, Cr, Mn, Fe) complexes under study, are given in the . This material is available free of charge the Internet at http://www.worldscinet.com/jpp/jpp.shtml. Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test