Skip to content
2000
image of Comparative Study of Catalysis Strategies: Friedel-Crafts Alkylation Vs. Michael's Addition of Indoles to Nitroalkenes

Abstract

Indoles are critical in natural amalgamation for their flexible jobs in drugs, regular items, and material science, exhibiting huge pharmacological and compound reactivity. Due to their versatility and high reactivity, nitroalkenes are essential electrophilic partners in organic synthesis. While indoles and nitroalkenes are used in both Michael addition and Friedel-Crafts alkylation for producing carbon-carbon bonds, the catalyst types and reactions involved are different. Michael addition employs conjugate addition, whereas Friedel-Crafts alkylation employs electrophilic aromatic substitution. Each technique has a different level of selectivity and distinct synthetic applications. This review examines the advancements and persistent challenges in catalysis, focusing on the comparative methodologies of Friedel-Crafts alkylation and Michael addition involving indoles and nitroalkenes. Emphasizing green chemistry principles, it discusses the potential for sustainable and efficient synthetic processes through the use of innovative catalysts, including photocatalysis and biocatalysis. The integration of computational studies and interdisciplinary collaboration is essential for developing economically viable and environmentally responsible chemical synthesis, ultimately contributing to the creation of advanced materials and pharmaceuticals.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728352142241007074507
2024-10-28
2025-01-18
Loading full text...

Full text loading...

References

  1. Inman M. Moody C.J. Indole synthesis – Something old, something new. Chem. Sci. (Camb.) 2013 4 1 29 41 10.1039/C2SC21185H
    [Google Scholar]
  2. Kochanowska-Karamyan A.J. Hamann M.T. Marine indole alkaloids: Potential new drug leads for the control of depression and anxiety. Chem. Rev. 2010 110 8 4489 4497 10.1021/cr900211p 20380420
    [Google Scholar]
  3. Humphrey G.R. Kuethe J.T. Practical methodologies for the synthesis of indoles. Chem. Rev. 2006 106 7 2875 2911 10.1021/cr0505270 16836303
    [Google Scholar]
  4. Zhang M.Z. Chen Q. Yang G.F. A review on recent developments of indole-containing antiviral agents. Eur. J. Med. Chem. 2015 89 421 441 10.1016/j.ejmech.2014.10.065 25462257
    [Google Scholar]
  5. Umer S.M. Solangi M. Khan K.M. Saleem R.S.Z. Indole-containing natural products 2019–2022: Isolations, reappraisals, syntheses, and biological activities. Molecules 2022 27 21 7586 10.3390/molecules27217586 36364413
    [Google Scholar]
  6. Stempel E. Gaich T. Cyclohepta[b]indoles: A privileged structure motif in natural products and drug design. Acc. Chem. Res. 2016 49 11 2390 2402 10.1021/acs.accounts.6b00265 27709885
    [Google Scholar]
  7. Youn S.W. Ko T.Y. Metal‐catalyzed synthesis of substituted indoles. Asian J. Org. Chem. 2018 7 8 1467 1487 10.1002/ajoc.201800290
    [Google Scholar]
  8. Wilkinson M.L. Gow A.J. Effects of fatty acid nitroalkanes on signal transduction pathways and airway macrophage activation. Innate Immun. 2021 27 5 353 364 10.1177/17534259211015330 34375151
    [Google Scholar]
  9. Rodriguez-Duarte J. Dapueto R. Galliussi G. Turell L. Kamaid A. Khoo N.K.H. Schopfer F.J. Freeman B.A. Escande C. Batthyány C. Ferrer-Sueta G. López G.V. Electrophilic nitroalkene-tocopherol derivatives: Synthesis, physicochemical characterization and evaluation of anti-inflammatory signaling responses. Sci. Rep. 2018 8 1 12784 10.1038/s41598‑018‑31218‑7 30143727
    [Google Scholar]
  10. Fazzari M. Trostchansky A. Schopfer F.J. Salvatore S.R. Sánchez-Calvo B. Vitturi D. Valderrama R. Barroso J.B. Radi R. Freeman B.A. Rubbo H. Olives and olive oil are sources of electrophilic fatty acid nitroalkenes. PLoS One 2014 9 1 e84884 10.1371/journal.pone.0084884 24454759
    [Google Scholar]
  11. Volkova Y.A. Averina E.B. Vasilenko D.A. Sedenkova K.N. Grishin Y.K. Bruheim P. Kuznetsova T.S. Zefirov N.S. Unexpected heterocyclization of electrophilic alkenes by tetranitromethane in the presence of triethylamine. Synthesis of 5-nitroisoxazoles. J. Org. Chem. 2019 84 6 3192 3200 10.1021/acs.joc.8b03086 30726081
    [Google Scholar]
  12. Zhang J. Lu X. Shen C. Xu L. Ding L. Zhong G. Recent advances in chelation-assisted site- and stereoselective alkenyl C–H functionalization. Chem. Soc. Rev. 2021 50 5 3263 3314 10.1039/D0CS00447B 33491691
    [Google Scholar]
  13. Abaev V.T. Aksenov N.A. Aksenov D.A. Aleksandrova E.V. Akulova A.S. Kurenkov I.A. Leontiev A.V. Aksenov A.V. One-pot synthesis of polynuclear indole derivatives by friedel–crafts alkylation of γ-hydroxybutyrolactams. Molecules 2023 28 7 3162 10.3390/molecules28073162 37049924
    [Google Scholar]
  14. Henche S. Nestl B.M. Hauer B. Enzymatic friedel‐crafts alkylation using squalene‐hopene cyclases. ChemCatChem 2021 13 15 3405 3409 10.1002/cctc.202100452
    [Google Scholar]
  15. Zubkevich S.V. Tuskaev V.A. Gagieva S.C. Pavlov A.A. Khrustalev V.N. Wang F. Pan L. Li Y. Saracheno D. Vikhrov A.A. Zarubin D.N. Bulychev B.M. Trapping the short-chain odd carbon number olefins using nickel(II)-catalyzed tandem ethylene oligomerization and friedel-crafts alkylation of toluene. Chin. J. Chem. 2023 41 21 2855 2865 10.1002/cjoc.202300175
    [Google Scholar]
  16. Ortiz Villamizar M.C. Puerto Galvis C.E. Pedraza Rodríguez S.A. Zubkov F.I. Kouznetsov V.V. Synthesis, in silico and in vivo toxicity assessment of functionalized pyridophenanthridinones via sequential MW-assisted intramolecular friedel-crafts alkylation and direct C–H arylation. Molecules 2022 27 23 8112 10.3390/molecules27238112 36500206
    [Google Scholar]
  17. Xiao L. Li B. Xiao F. Fu C. Wei L. Dang Y. Dong X.Q. Wang C.J. Stereodivergent synthesis of enantioenriched azepino[3,4,5- cd]-indoles via cooperative Cu/Ir-catalyzed asymmetric allylic alkylation and intramolecular Friedel–Crafts reaction. Chem. Sci. (Camb.) 2022 13 17 4801 4812 10.1039/D1SC07271D 35655885
    [Google Scholar]
  18. Tang R.J. Milcent T. Crousse B. Friedel–Crafts alkylation reaction with fluorinated alcohols as hydrogen-bond donors and solvents. RSC Advances 2018 8 19 10314 10317 10.1039/C8RA01397G 35540471
    [Google Scholar]
  19. Wei X. Liu M. Lu K. Wu H. Wu J. Friedel-Crafts alkylation modification and hydrophilic soft finishing of meta aramid. J. Eng. Fibers Fabrics 2021 16 10.1177/1558925021999061
    [Google Scholar]
  20. Wu H. Zhao T. Hu X. Friedel-crafts reaction of n,n-dimethylaniline with alkenes catalyzed by cyclic diaminocarbene-gold(I) complex. Sci. Rep. 2018 8 1 11449 10.1038/s41598‑018‑29854‑0 30061755
    [Google Scholar]
  21. Leveson-Gower R.B. Roelfes G. Biocatalytic friedel‐crafts reactions. ChemCatChem 2022 14 18 e202200636 10.1002/cctc.202200636 36606067
    [Google Scholar]
  22. Zuo Y. Yang N. Huang X. Hu C. Su Z. Mechanism and origins of stereoinduction in an asymmetric friedel–crafts alkylation reaction of chalcone catalyzed by chiral N, N ′-dioxide–sc(III) complex. J. Org. Chem. 2018 83 8 4628 4640 10.1021/acs.joc.8b00387 29601193
    [Google Scholar]
  23. Feng H. Mehulkumar P. Feixiang L. Carol F. Richard M. Eric G. Huixin H. Michal S. Graphene-catalyzed direct friedel–crafts alkylation reactions: Mechanism, selectivity, and synthetic utility. J. Am. Chem. Soc. 2015 14473 14480 137 45 10.1021/jacs.5b09636
    [Google Scholar]
  24. Shim J.H. Cheun S.H. Kim H.S. Ha D.C. Enantioselective organocatalyzed michael addition of isobutyraldehyde to maleimides in aqueous media. Molecules 2022 27 9 2759 10.3390/molecules27092759 35566109
    [Google Scholar]
  25. Vybornyi O. Matviiuk T. Yegorova T. Baltas M. Voitenko Z. Michael addition of heteronucleophilic substances to N–Ar substituted maleimides: Green approach. Fr.-Ukr. J. Chem. 2013 1 1 32 37
    [Google Scholar]
  26. Przybylska A. Szymańska A. Maciejewski H. A library of new organofunctional silanes obtained by thiol-(meth)acrylate Michael addition reaction. RSC Advances 2023 13 20 14010 14017 10.1039/D3RA01583A 37181512
    [Google Scholar]
  27. Lock Toy Ki Y. Garcia A. Pelissier F. Olszewski T.K. Babst-Kostecka A. Legrand Y.M. Grison C. Mechanochemistry and eco-bases for sustainable Michael addition reactions. Molecules 2022 27 10 3306 10.3390/molecules27103306 35630783
    [Google Scholar]
  28. Olaru M. Simionescu N. Doroftei F. David G. Strategy based on Michael addition reaction for the development of bioinspired multilayered and multiphasic 3D constructs. Polymers (Basel) 2023 15 7 1635 10.3390/polym15071635 37050249
    [Google Scholar]
  29. Deepak R.J. Sathishkumar P.N. Karvembu R. Friedel–Crafts alkylation of indoles with β-nitroalkenes using ammonium niobium oxalate as a recyclable catalyst. New J. Chem. 2022 46 48 23305 23311 10.1039/D2NJ04542G
    [Google Scholar]
  30. Ibáñez I. Kaneko M. Kamei Y. Tsutsumi R. Yamanaka M. Akiyama T. Enantioselective Friedel–Crafts alkylation reaction of indoles with α-trifluoromethylated β-nitrostyrenes catalyzed by chiral BINOL metal phosphate. ACS Catal. 2019 9 8 6903 6909 10.1021/acscatal.9b01811
    [Google Scholar]
  31. Fan Y. Kass S.R. Enantioselective Friedel–Crafts alkylation between nitroalkenes and indoles catalyzed by charge activated thiourea organocatalysts. J. Org. Chem. 2017 82 24 13288 13296 10.1021/acs.joc.7b02411 29166016
    [Google Scholar]
  32. Vila C. Rostoll-Berenguer J. Sánchez-García R. Blay G. Fernández I. Muñoz M.C. Pedro J.R. Enantioselective synthesis of 2-amino-1, 1-diarylalkanes bearing a carbocyclic ring substituted indole through asymmetric catalytic reaction of hydroxyindoles with nitroalkenes. J. Org. Chem. 2018 83 12 6397 6407 10.1021/acs.joc.8b00612 29856221
    [Google Scholar]
  33. Roca-López D. Marqués-López E. Alcaine A. Merino P. Herrera R.P. A Friedel–Crafts alkylation mechanism using an aminoindanol-derived thiourea catalyst. Org. Biomol. Chem. 2014 12 25 4503 4510 10.1039/C4OB00348A 24849715
    [Google Scholar]
  34. Jia Y. Yang W. Du D.M. Asymmetric Friedel–Crafts alkylation of indoles with 3-nitro-2H-chromenes catalyzed by diphenylamine-linked bis(oxazoline) and bis(thiazoline) Zn(II) complexes. Org. Biomol. Chem. 2012 10 24 4739 4746 10.1039/c2ob25360g 22588514
    [Google Scholar]
  35. Singh M. Neogi S. Urea-engineering mediated hydrogen-bond donating Friedel–Crafts alkylation of indoles and nitroalkenes in a dual-functionalized microporous metal–organic framework with high recyclability and pore-fitting-induced size-selectivity. Inorg. Chem. Front. 2022 9 9 1897 1911 10.1039/D2QI00206J
    [Google Scholar]
  36. Mulvey R.E. Benzene submits to main-group power. Science 2017 358 6367 1132 1132 10.1126/science.aaq1314 29191894
    [Google Scholar]
  37. Wang W. Xiong W. Wang J. Wang Q.A. Yang W. Brønsted acid-catalyzed asymmetric Friedel–Crafts alkylation of indoles with benzothiazole-bearing trifluoromethyl ketone hydrates. J. Org. Chem. 2020 85 6 4398 4407 10.1021/acs.joc.0c00116 32118421
    [Google Scholar]
  38. Pan A. Chojnacka M. Crowley R. Göttemann L. Haines B.E. Kou K.G.M. Synergistic Brønsted/Lewis acid catalyzed aromatic alkylation with unactivated tertiary alcohols or di- tert-butylperoxide to synthesize quaternary carbon centers. Chem. Sci. (Camb.) 2022 13 12 3539 3548 10.1039/D1SC06422C 35432882
    [Google Scholar]
  39. Yang C.H. Chang J.C. Wu T.Y. Sun I.W. Wu J.H. Ho W.Y. Novel aryl-imidazolium ionic liquids with dual Brønsted/Lewis acidity as both solvents and catalysts for Friedel-Crafts alkylation. Appl. Sci. (Basel) 2019 9 22 4743 10.3390/app9224743
    [Google Scholar]
  40. Rosseinsky M.J. Perspective: Metal-organic frameworks—Opportunities and challenges. APL Mater. 2014 2 12 124001 10.1063/1.4904880
    [Google Scholar]
  41. James S.L. Metal-organic frameworks. Chem. Soc. Rev. 2003 32 5 276 288 10.1039/b200393g 14518181
    [Google Scholar]
  42. Guo Z. Wu H. Srinivas G. Zhou Y. Xiang S. Chen Z. Yang Y. Zhou W. O’Keeffe M. Chen B. A metal-organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature. Angew. Chem. Int. Ed. 2011 50 14 3178 3181 10.1002/anie.201007583 21374770
    [Google Scholar]
  43. Ahmad T. Khan S. Ullah N. Recent advances in the catalytic asymmetric Friedel–Crafts reactions of indoles. ACS Omega 2022 7 40 35446 35485 10.1021/acsomega.2c05022 36249392
    [Google Scholar]
  44. Markad D. Mandal S.K. Design of a primary-amide-functionalized highly efficient and recyclable hydrogen-bond-donating heterogeneous catalyst for the friedel–crafts alkylation of indoles with β-nitrostyrenes. ACS Catal. 2019 9 4 3165 3173 10.1021/acscatal.8b04962
    [Google Scholar]
  45. Nagaraj A. Amarajothi D. Cu3(BTC)2 as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with nitroalkenes. J. Colloid Interface Sci. 2017 494 282 289 10.1016/j.jcis.2017.01.091 28160712
    [Google Scholar]
  46. Rao P.C. Mandal S. Friedel–Crafts alkylation of indoles with nitroalkenes through hydrogen‐bond‐donating metal–organic framework. ChemCatChem 2017 9 7 1172 1176 10.1002/cctc.201601583
    [Google Scholar]
  47. Wang X.J. Li J. Li Q.Y. Li P.Z. Lu H. Lao Q. Ni R. Shi Y. Zhao Y. A urea decorated (3,24)-connected rht-type metal–organic framework exhibiting high gas uptake capability and catalytic activity. CrystEngComm 2015 17 25 4632 4636 10.1039/C5CE00625B
    [Google Scholar]
  48. Venkatanna K. Yeswanth Kumar S. Karthick M. Padmanaban R. Ramaraj Ramanathan C. A chiral bicyclic skeleton-tethered bipyridine–Zn(OTf) 2 complex as a Lewis acid: Enantioselective Friedel–Crafts alkylation of indoles with nitroalkenes. Org. Biomol. Chem. 2019 17 16 4077 4086 10.1039/C9OB00545E 30957819
    [Google Scholar]
  49. Kumar A. Shukla R.D. Yadav D. Gupta L.P. Friedel–Crafts alkylation of indoles in deep eutectic solvent. RSC Advances 2015 5 64 52062 52065 10.1039/C5RA08038J
    [Google Scholar]
  50. Tran P.H. Nguyen H.T. Hansen P.E. Le T.N. An efficient and green method for regio- and chemo-selective Friedel–Crafts acylations using a deep eutectic solvent ([CholineCl][ZnCl 2] 3). RSC Advances 2016 6 43 37031 37038 10.1039/C6RA03551E
    [Google Scholar]
  51. Vemula S. Kumar D. Cook G. pi-bond directed C-2 amination of indoles: Catalysis development, mechanistic investigation, and substrate scope. ChemRxiv 2022 10.26434/chemrxiv‑2022‑hmhrz
    [Google Scholar]
  52. Buchcic A. Zawisza A. Leśniak S. Rachwalski M. Asymmetric friedel–crafts alkylation of indoles catalyzed by chiral aziridine-phosphines. Catalysts 2020 10 9 971 10.3390/catal10090971
    [Google Scholar]
  53. Chen L.Y. Guillarme S. Saluzzo C. Dianhydrohexitols: New tools for organocatalysis. Application in enantioselective Friedel-Crafts alkylation of indoles with nitroalkenes. ARKIVOC 2013 2013 3 227 244 10.3998/ark.5550190.0014.318
    [Google Scholar]
  54. El-Aal H.A.K.A. Khalaf A.A. El-Emary T.I. Modern Friedel-Crafts chemistry. Part 35. New synthetic approach to substituted indolo[2,1-a][2]benzazepines and indolo[2,1-a]isoquinolines via Friedel-Crafts cyclialkylations. ARKIVOC 2012 2012 9 122 135 10.3998/ark.5550190.0013.911
    [Google Scholar]
  55. Zhu Yingjun Sustainable strategies for site-selective C–H functionalizations of N-heterocycles. Thesis, Georg August University of Göttingen 2015 10.53846/goediss‑4957
    [Google Scholar]
  56. Gao R.D. Xu Q.L. Dai L.X. You S.L. Pd-catalyzed cascade allylic alkylation and dearomatization reactions of indoles with vinyloxirane. Org. Biomol. Chem. 2016 14 34 8044 8046 10.1039/C6OB01523A 27511802
    [Google Scholar]
  57. Rose T.E. Curtin B.H. Lawson K.V. Simon A. Houk K.N. Harran P.G. On the prevalence of bridged macrocyclic pyrroloindolines formed in regiodivergent alkylations of tryptophan. Chem. Sci. (Camb.) 2016 7 7 4158 4166 10.1039/C5SC04612B 30155060
    [Google Scholar]
  58. Li L. Ren J. Zhou J. Wu X. Shao Z. Yang X. Qian D. Enantioselective synthesis of N-alkylindoles enabled by nickel-catalyzed C-C coupling. Nat. Commun. 2022 13 1 6861 10.1038/s41467‑022‑34615‑9 36369422
    [Google Scholar]
  59. Rose T.E. Lawson K.V. Harran P.G. Large ring-forming alkylations provide facile access to composite macrocycles. Chem. Sci. (Camb.) 2015 6 4 2219 2223 10.1039/C4SC03848G 28694951
    [Google Scholar]
  60. Povie G. Suravarapu S.R. Bircher M.P. Mojzes M.M. Rieder S. Renaud P. Radical chain repair: The hydroalkylation of polysubstituted unactivated alkenes. Sci. Adv. 2018 4 7 eaat6031 10.1126/sciadv.aat6031 30035230
    [Google Scholar]
  61. Weng J.Q. Fan R.J. Deng Q.M. Liu R.R. Gao J.R. Jia Y.X. ChemInform abstract: Enantioselective friedel—crafts alkylation reactions of 3‐substituted indoles with electron‐deficient alkenes. ChemInform 2016 47 32 chin.201632124 10.1002/chin.201632124
    [Google Scholar]
  62. Weng J.Q. Fan R.J. Deng Q.M. Liu R.R. Gao J.R. Jia Y.X. Enantioselective friedel–crafts alkylation reactions of 3-substituted indoles with electron-deficient alkenes. J. Org. Chem. 2016 81 7 3023 3030 10.1021/acs.joc.6b00123 26959867
    [Google Scholar]
  63. Villuendas P. Ruiz S. Urriolabeitia E.P. Functionalization of heteroaromatic substrates using groups 9 and 10 catalysts. Catalytic Hydroarylation of Carbon‐Carbon Multiple Bonds Wiley Ackermann L. 2017 5 47 10.1002/9783527697649.ch1
    [Google Scholar]
  64. Mohamadi F. Spees M.M. Staten G.S. Marder P. Kipka J.K. Johnson D.A. Boger D.L. Zarrinmayeh H. Total synthesis and biological properties of novel antineoplastic (chloromethyl)furanoindolines: An asymmetric hydroboration mediated synthesis of the alkylation subunits. J. Med. Chem. 1994 37 2 232 239 10.1021/jm00028a005 8295210
    [Google Scholar]
  65. Sunil D. Anil Kumar N.V. Chapter 6 - Use of supercritical carbon dioxide in alkylation reactions. Green Sustainable Process for Chemical and Environmental Engineering and Science: Supercritical Carbon Dioxide as Green Solvent. Elsevier 2019 105 131 10.1016/B978‑0‑12‑817388‑6.00006‑4
    [Google Scholar]
  66. Wright N.E. ElSohly A.M. Snyder S.A. Syntheses of cyclotriveratrylene analogues and their long elusive triketone congeners. Org. Lett. 2014 16 14 3644 3647 10.1021/ol501284s 24987807
    [Google Scholar]
  67. Cera G. Balestri D. Bazzoni M. Marchiò L. Secchi A. Arduini A. Trisulfonamide calix[6]arene-catalysed Michael addition to nitroalkenes. Org. Biomol. Chem. 2020 18 32 6241 6246 10.1039/D0OB01319F 32735000
    [Google Scholar]
  68. Jiang H. Zhao H. Zhang M. Liu H. Huang X. Theoretical investigation on mechanism of asymmetric Michael addition of trans-1-nitro-2-phenylethylene to 2-methylpropionaldehyde catalyzed by a Cinchona alkaloid-derived primary amine. Struct. Chem. 2014 25 5 1343 1357 10.1007/s11224‑014‑0409‑3
    [Google Scholar]
  69. Wang Z. Yue G. Ji X. Song H. Yan P. Zhao J. Jia X. Tandem Michael addition–cyclization of nitroalkenes with 1,3-dicarbonyl compounds accompanied by removal of nitro group. J. Org. Chem. 2021 86 20 14131 14143 10.1021/acs.joc.1c01586 34494850
    [Google Scholar]
  70. Patora-Komisarska K. Benohoud M. Ishikawa H. Seebach D. Hayashi Y. Organocatalyzed michael addition of aldehydes to nitro alkenes - Generally accepted mechanism revisited and revised. Helv. Chim. Acta 2011 94 5 719 745 10.1002/hlca.201100122
    [Google Scholar]
  71. Al Majid A.M.A. Islam M.S. Barakat A. Al-Agamy M.H.M. Naushad M. Facile and promising method for michael addition of indole and pyrrole to electron-deficient trans-β-nitroolefins catalyzed by a hydrogen bond donor catalyst Feist’s acid and preliminary study of antimicrobial activity. ScientificWorldJournal 2014 2014 1 15 10.1155/2014/649197 24574906
    [Google Scholar]
  72. Jiang Z.Y. Yang H.M. Ju Y.D. Li L. Luo M.X. Lai G.Q. Jiang J.X. Xu L.W. Organocatalytic Michael addition of 1,3-dicarbonyl indane compounds to nitrostyrenes. Molecules 2010 15 4 2551 2563 10.3390/molecules15042551 20428063
    [Google Scholar]
  73. Shim J.H. Cheun S.H. Kim H.S. Ha D.C. Organocatalysis for the asymmetric michael addition of aldehydes and α,β-unsaturated nitroalkenes. Catalysts 2022 12 2 121 10.3390/catal12020121
    [Google Scholar]
  74. Roseli R.B. Keto A.B. Krenske E.H. Mechanistic aspects of thiol additions to Michael acceptors: Insights from computations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2023 13 2 e1636 10.1002/wcms.1636
    [Google Scholar]
  75. Guo C. Saifuddin M. Saravanan T. Sharifi M. Poelarends G.J. Biocatalytic asymmetric Michael additions of nitromethane to α,β-unsaturated aldehydes via enzyme-bound iminium ion intermediates. ACS Catal. 2019 9 5 4369 4373 10.1021/acscatal.9b00780 31080691
    [Google Scholar]
  76. Aycock R.A. Wang H. Jui N.T. A mild catalytic system for radical conjugate addition of nitrogen heterocycles. Chem. Sci. (Camb.) 2017 8 4 3121 3125 10.1039/C7SC00243B 28507687
    [Google Scholar]
  77. Martínez J.I. Uria U. Muñiz M. Reyes E. Carrillo L. Vicario J.L. Organocatalytic and enantioselective Michael reaction between α-nitroesters and nitroalkenes. Syn/anti- selectivity control using catalysts with the same absolute backbone chirality. Beilstein J. Org. Chem. 2015 11 2577 2583 10.3762/bjoc.11.277 26734103
    [Google Scholar]
  78. Fernandes T.A. Vizcaíno-Milla P. Ravasco J.M.J.M. Ortega-Martínez A. Sansano J.M. Nájera C. Costa P.R.R. Fiser B. Gómez-Bengoa E. Bifunctional primary amine 2-aminobenzimidazole organocatalyst anchored to trans-cyclohexane-1,2-diamine in enantioselective conjugate additions of aldehydes. Tetrahedron Asymmetry 2016 27 2-3 118 122 10.1016/j.tetasy.2015.12.004
    [Google Scholar]
  79. Lanza F. Pérez J. Jumde R. Harutyunyan S. Lewis acid promoted trapping of chiral aza-enolates. Synthesis 2019 51 5 1253 1262 10.1055/s‑0037‑1611657
    [Google Scholar]
  80. Benzi A. Lopes S.M.M. Nunes S.C.C. Giorgi G. Bianchi L. Tavani C. Pais A.A.C.C. Petrillo G. Pinho e Melo T.M.V.D. Reactivity of ethyl nitrosoacrylate toward pyrrole, indole and pyrrolo[3,2-c]carbazole: An experimental and theoretical study. Front Chem. 2023 11 1229669 10.3389/fchem.2023.1229669 37614704
    [Google Scholar]
  81. Dresler E. Wróblewska A. Jasiński R. Understanding the regioselectivity and the molecular mechanism of [3 + 2] cycloaddition reactions between nitrous oxide and conjugated nitroalkenes: A DFT computational study. Molecules 2022 27 23 8441 10.3390/molecules27238441 36500530
    [Google Scholar]
  82. Igushkina A.V. Golovanov A.A. Vasilyev A.V. Michael addition of 3-oxo-3-phenylpropanenitrile to linear conjugated enynones: Approach to polyfunctional δ-diketones as precursors for heterocycle synthesis. Molecules 2022 27 4 1256 10.3390/molecules27041256 35209045
    [Google Scholar]
  83. Quintavalla A. Lanza F. Montroni E. Lombardo M. Trombini C. Organocatalytic conjugate addition of nitroalkanes to 3-ylidene oxindoles: A stereocontrolled diversity oriented route to oxindole derivatives. J. Org. Chem. 2013 78 23 12049 12064 10.1021/jo402099p 24168398
    [Google Scholar]
  84. Jeganathan M. Kanagaraj K. Dhakshinamoorthy A. Pitchumani K. Michael addition of indoles to β-nitrostyrenes catalyzed by HY zeolite under solvent-free conditions. Tetrahedron Lett. 2014 55 13 2061 2064 10.1016/j.tetlet.2014.01.112
    [Google Scholar]
  85. Yang X.J. Jing Y. Cyanuric chloride‐catalyzed michael addition of indoles to nitroolefins under solvent‐free conditions. J. Chem. 2013 2013 1 429235 10.1155/2013/429235
    [Google Scholar]
  86. Zhu Y. Malerich J.P. Rawal V.H. Squaramide-catalyzed enantioselective Michael addition of diphenyl phosphite to nitroalkenes. Angew. Chem. Int. Ed. 2010 49 1 153 156 10.1002/anie.200904779 19950156
    [Google Scholar]
  87. Angelini T. Ballerini E. Bonollo S. Curini M. Lanari D. A new sustainable protocol for the synthesis of nitroaldol derivatives via Henry reaction under solvent-free conditions. Green Chem. Lett. Rev. 2014 7 1 11 17 10.1080/17518253.2014.893028
    [Google Scholar]
  88. Azizi N. Khajeh-Amiri A. Ghafuri H. Bolourtchian M. A highly efficient, operationally simple and selective thia-Michael addition under solvent-free condition. Green Chem. Lett. Rev. 2009 2 1 43 46 10.1080/17518250902998103
    [Google Scholar]
  89. Méndez I. Rodríguez R. Polo V. Passarelli V. Lahoz F.J. García-Orduña P. Carmona D. Temperature dual enantioselective control in a rhodium‐catalyzed michael‐type friedel–crafts reaction: A mechanistic explanation. Chemistry 2016 22 31 11064 11083 10.1002/chem.201601301 27345293
    [Google Scholar]
  90. Castro-Alvarez A. Carneros H. Calafat J. Costa A.M. Marco C. Vilarrasa J. NMR and computational studies on the reactions of enamines with nitroalkenes that may pass through cyclobutanes. ACS Omega 2019 4 19 18167 18194 10.1021/acsomega.9b02074 31720519
    [Google Scholar]
  91. Moghaddam F.M. Saberi V. Karimi A. Highly diastereoselective cascade [5 + 1] double Michael reaction, a route for the synthesis of spiro(thio)oxindoles. Sci. Rep. 2021 11 1 22834 10.1038/s41598‑021‑01766‑6 34819540
    [Google Scholar]
  92. Mortezaei S. Catarineu N.R. Duan X. Hu C. Canary J.W. Redox-configurable ambidextrous catalysis: Structural and mechanistic insight. Chem. Sci. (Camb.) 2015 6 10 5904 5912 10.1039/C5SC02144H 29861915
    [Google Scholar]
  93. Antonova Y.A. Nelyubina Y.V. Ioffe S.L. Tabolin A.A. [3+3]-annulation of cyclic nitronates with vinyl diazoacetates: diastereoselective synthesis of partially saturated [1,2]oxazino[2,3-b][1,2]oxazines and their base-promoted ring contraction to pyrrolo[1,2-b][1,2]oxazine derivatives. Molecules 2023 28 7 3025 10.3390/molecules28073025 37049788
    [Google Scholar]
  94. Sun K. Liu S. Bec P.M. Driver T.G. Rhodium-catalyzed synthesis of 2,3-disubstituted indoles from β,β-disubstituted stryryl azides. Angew. Chem. Int. Ed. 2011 50 7 1702 1706 10.1002/anie.201006917 21308937
    [Google Scholar]
  95. Ballini R. Clemente R.R. Palmieri A. Petrini M. Conjugate addition of indoles to nitroalkenes promoted by basic alumina in solventless conditions. Adv. Synth. Catal. 2006 348 1-2 191 196 10.1002/adsc.200505339
    [Google Scholar]
  96. Huang H. Palmas J. Kang J.Y. A reagent-controlled phospha-michael addition reaction of nitroalkenes with bifunctional N-heterocyclic phosphine (NHP)-thioureas. J. Org. Chem. 2016 81 23 11932 11939 10.1021/acs.joc.6b02490 27934454
    [Google Scholar]
  97. Palmieri A. Gabrielli S. Ballini R. Michael reaction of nitroalkanes with β-nitroacrylates under a solid promoter: Advanced regio-and diastereoselective synthesis of nitro-functionalized ββ-unsaturated esters and 1,3-butadiene-2-carboxylates. Adv. Synth. Catal. 2010 352 9 1485 1492 10.1002/adsc.201000142
    [Google Scholar]
  98. Bartoli G. Bosco M. Giuli S. Giuliani A. Lucarelli L. Marcantoni E. Sambri L. Torregiani E. Efficient preparation of 2-indolyl-1-nitroalkane derivatives employing nitroalkenes as versatile Michael acceptors: New practical linear approach to alkyl 9h-β-carboline-4-carboxylate. J. Org. Chem. 2005 70 5 1941 1944 10.1021/jo048776w 15730329
    [Google Scholar]
  99. Mane V. Baiju T.V. Namboothiri I.N.N. Synthesis of functionalized thieno[2,3- b ]indoles via one-pot reaction of indoline-2-thiones with morita–baylis–hillman and rauhut–currier adducts of nitroalkenes. ACS Omega 2018 3 12 17617 17628 10.1021/acsomega.8b02147 31458362
    [Google Scholar]
  100. Woo S.B. Kim D.Y. Enantioselective Michael addition of 2-hydroxy-1,4-naphthoquinones to nitroalkenes catalyzed by binaphthyl-derived organocatalysts. Beilstein J. Org. Chem. 2012 8 699 704 10.3762/bjoc.8.78 23015816
    [Google Scholar]
  101. Rabalakos C. Wulff W.D. Enantioselective organocatalytic direct Michael addition of nitroalkanes to nitroalkenes promoted by a unique bifunctional DMAP-thiourea. J. Am. Chem. Soc. 2008 130 41 13524 13525 10.1021/ja805390k 18808117
    [Google Scholar]
  102. Wang B. Ren H. Cao H.J. Lu C. Yan H. A switchable redox annulation of 2-nitroarylethanols affording N -heterocycles: Photoexcited nitro as a multifunctional handle. Chem. Sci. (Camb.) 2022 13 37 11074 11082 10.1039/D2SC03590A 36320483
    [Google Scholar]
  103. Reznikov A.N. Sibiryakova A.E. Baimuratov M.R. Golovin E.V. Rybakov V.B. Klimochkin Y.N. Synthesis of non-racemic 4-nitro-2-sulfonylbutan-1-ones via Ni(II)-catalyzed asymmetric Michael reaction of β-ketosulfones. Beilstein J. Org. Chem. 2019 15 1289 1297 10.3762/bjoc.15.127 31293677
    [Google Scholar]
  104. Li L. Matsuo B. Levitre G. McClain E.J. Voight E.A. Crane E.A. Molander G.A. Dearomative intermolecular [2 + 2] photocycloaddition for construction of C(sp 3)-rich heterospirocycles on-DNA. Chem. Sci. (Camb.) 2023 14 10 2713 2720 10.1039/D3SC00144J 36908969
    [Google Scholar]
  105. Boyce G.R. Johnson J.S. Three-component coupling reactions of silyl glyoxylates, vinyl Grignard reagent, and nitroalkenes: An efficient, highly diastereoselective approach to nitrocyclopentanols. Angew. Chem. Int. Ed. 2010 49 47 8930 8933 10.1002/anie.201003470 20949578
    [Google Scholar]
  106. van der Meer J.Y. Poddar H. Baas B.J. Miao Y. Rahimi M. Kunzendorf A. van Merkerk R. Tepper P.G. Geertsema E.M. Thunnissen A.M.W.H. Quax W.J. Poelarends G.J. Using mutability landscapes of a promiscuous tautomerase to guide the engineering of enantioselective Michaelases. Nat. Commun. 2016 7 1 10911 10.1038/ncomms10911 26952338
    [Google Scholar]
  107. Chen J. Geng Z.C. Li N. Huang X.F. Pan F.F. Wang X.W. Organocatalytic asymmetric Michael addition of aliphatic aldehydes to indolylnitroalkenes: Access to contiguous stereogenic tryptamine precursors. J. Org. Chem. 2013 78 6 2362 2372 10.1021/jo3024945 23409784
    [Google Scholar]
  108. Wang C. Yang X. Enders D. Asymmetric Michael addition of N-boc-protected oxindoles to nitroalkenes catalyzed by a chiral secondary amine. Chemistry 2012 18 16 4832 4835 10.1002/chem.201200079 22434659
    [Google Scholar]
  109. Kwiatkowski J. Lu Y. ChemInform abstract: Highly enantioselective preparation of fluorinated phosphonates by Michael addition of α‐fluoro‐β‐ketophosphonates to nitroalkenes. ChemInform 2014 45 45 chin.201445030 10.1002/chin.201445030
    [Google Scholar]
  110. Yoshida M. Sato A. Hara S. Asymmetric Michael addition of aldehydes to nitroalkenes using a primary amino acid lithium salt. Org. Biomol. Chem. 8 2010 3031 3036 10.1039/C003940C
    [Google Scholar]
  111. Dong W. Xu D. Xie J. Aqueous-mediated michael addition of active methylene compounds with nitroalkenes. Chin. J. Chem. 2012 30 8 1771 1774 10.1002/cjoc.201200228
    [Google Scholar]
  112. Park S. Arginine- or lysine-catalyzed Michael addition of nitromethane to α,β-unsaturated ketones in aqueous media. Bull. Korean Chem. Soc. 2014 35 12 3671 3674 10.5012/bkcs.2014.35.12.3671
    [Google Scholar]
  113. Caruso L. Puglisi A. Gillon E. Benaglia M. Organocatalytic Michael addition to (D)-mannitol-derived enantiopure nitroalkenes: A valuable strategy for the synthesis of densely functionalized chiral molecules. Molecules 2019 24 24 4588 10.3390/molecules24244588 31847419
    [Google Scholar]
  114. Vieira D.P.P. Bruna G.N.V. Vera Lúcia P.P. Non-racemic diastereoselective synthesis of gamma-lactams via Michael addition of 1, 3-dicarbonyl compounds to chiral nitroalkenes. Blucher Chem. Proc. 2013 1 1 138 138
    [Google Scholar]
  115. García-Monzón I. Borges-González J. Martín T. Solid‐supported tetrahydropyran‐based hybrid dipeptide catalysts for Michael addition of aldehydes to nitrostyrenes. Adv. Synth. Catal. 2022 364 16 2822 2829 10.1002/adsc.202200477
    [Google Scholar]
  116. Jiang X. Ye W. Song X. Ma W. Lao X. Shen R. Novel ionic liquid with both Lewis and Brønsted acid sites for Michael addition. Int. J. Mol. Sci. 2011 12 11 7438 7444 10.3390/ijms12117438 22174608
    [Google Scholar]
  117. Reisenbauer J.C. Green O. Franchino A. Finkelstein P. Morandi B. Late-stage diversification of indole skeletons through nitrogen atom insertion. Science 1979 377 6610 10.3929/ethz‑b‑000568748
    [Google Scholar]
  118. Reddy R.J. Kuan H.H. Chou T.Y. Chen K. Novel prolinamide-camphor-containing organocatalysts for direct asymmetric Michael addition of unmodified aldehydes to nitroalkenes. Chemistry 2009 15 37 9294 9298 10.1002/chem.200901254 19681077
    [Google Scholar]
  119. Bartoli G. Bartolacci M. Bosco M. Foglia G. Giuliani A. Marcantoni E. Sambri L. Torregiani E. The Michael addition of indoles to α,β-unsaturated ketones catalyzed by CeCl3.7H2O-NaI combination supported on silica gel. J. Org. Chem. 2003 68 11 4594 4597 10.1021/jo034303y 12762781
    [Google Scholar]
  120. Ametsetor E. Farthing S. Bunce R.A. Domino aza-michael-SNAr-heteroaromatization route to C5-substituted 1-alkyl-1H-indole-3-carboxylic esters. Molecules 2022 27 20 6998 10.3390/molecules27206998 36296590
    [Google Scholar]
  121. Kunzendorf A. Xu G. van der Velde J.J.H. Rozeboom H.J. Thunnissen A.M.W.H. Poelarends G.J. Unlocking asymmetric michael additions in an archetypical class I aldolase by directed evolution. ACS Catal. 2021 11 21 13236 13243 10.1021/acscatal.1c03911 34765282
    [Google Scholar]
  122. Olah G.A. Friedel-crafts chemistry. Across Conventional Lines. World Scientific Publishing Olah G.O. Prakash G.K.S. 2003 1 119 121 10.1142/9789812791405_0030
    [Google Scholar]
  123. Wróbel Z. Ma̧kosza M. Synthesis of 1-hydroxyindoles and indoles from ortho-nitroarylethanes. Tetrahedron 1997 53 15 5501 5514 10.1016/S0040‑4020(97)00208‑1
    [Google Scholar]
  124. Bagley M.C. Dale J.W. Bower J. A new one-pot three-component condensation reaction for the synthesis of 2,3,4,6-tetrasubstituted pyridines. Chem. Commun. (Camb.) 2002 2 16 1682 1683 10.1039/b203900a 12196948
    [Google Scholar]
  125. Connon R. Carroll L. Guiry P.J. A base-promoted one-pot asymmetric Friedel–Crafts alkylation/michael addition of 4-substituted indoles. Synthesis 2020 52 8 1215 1222 10.1055/s‑0039‑1690241
    [Google Scholar]
  126. Gambaro S. De Rosa M. Soriente A. Talotta C. Floresta G. Rescifina A. Gaeta C. Neri P. A hexameric resorcinarene capsule as a hydrogen bonding catalyst in the conjugate addition of pyrroles and indoles to nitroalkenes. Org. Chem. Front. 2019 6 14 2339 2347 10.1039/C9QO00224C
    [Google Scholar]
  127. Jung E. Jeong Y. Kim H. Kim I. C3 functionalization of indolizines via HFIP-promoted Friedel–Crafts reactions with (hetero)arylglyoxals. ACS Omega 2023 8 18 16131 16144 10.1021/acsomega.3c00236 37179639
    [Google Scholar]
  128. Ciber L. Ričko S. Gregorc J. Požgan F. Svete J. Brodnik H. Štefane B. Grošelj U. Mechanistic insights into annulation of arylidene‐Δ 2‐pyrrolin‐4‐ones by cinchona squaramide‐based organocatalysts. Adv. Synth. Catal. 2022 364 5 980 993 10.1002/adsc.202101369
    [Google Scholar]
  129. Islam M.S. Ali M. Al-Majid A.M. Alamary A.S. Alshahrani S. Yousuf S. Choudhary M.I. Barakat A. Bimetallic iron–palladium catalyst system as a lewis-acid for the synthesis of novel pharmacophores based indole scaffold as anticancer agents. Molecules 2021 26 8 2212 10.3390/molecules26082212 33921334
    [Google Scholar]
  130. Kallitsakis M.G. Tancini P.D. Dixit M. Mpourmpakis G. Lykakis I.N. Mechanistic studies on the michael addition of amines and hydrazines to nitrostyrenes: Nitroalkane elimination via a retro-aza-henry-type process. J. Org. Chem. 2018 83 3 1176 1184 10.1021/acs.joc.7b02637 29272119
    [Google Scholar]
  131. Kolagkis P.X. Galathri E.M. Kokotos C.G. Light-driven Michael addition of indoles to β-nitroolefins in aqueous medium. Catal. Today 2024 441 114868 10.1016/j.cattod.2024.114868
    [Google Scholar]
  132. Kolagkis P.X. Galathri E.M. Kokotos C.G. Green and sustainable approaches for the Friedel–Crafts reaction between aldehydes and indoles. Beilstein J. Org. Chem. 2024 20 379 426 10.3762/bjoc.20.36 38410780
    [Google Scholar]
  133. Adam D.H. Elvina Hasibuan M.N.S. Syahputra R. Pasaribu L.H. Suriyani Green chemistry: The economic impact perspective. J. Sci. Tech. Res. 9 4 2020 471 473 10.31219/osf.io/gqe63
    [Google Scholar]
  134. Tan L. Rahman A. An economical, sustainable pathway to indole-containing oxindoles: Iron-catalyzed 1,6-conjugate addition in glycerol. Sustainability (Basel) 2018 10 8 2922 10.3390/su10082922
    [Google Scholar]
  135. Çınar İ.T. Korkmaz İ. Şişman M.Y. Green complexity, economic fitness, and environmental degradation: evidence from US state-level data. Environ. Sci. Pollut. Res. Int. 2022 30 15 43013 43023 10.1007/s11356‑022‑19859‑8 35352225
    [Google Scholar]
  136. Matus K.J.M. Clark W.C. Anastas P.T. Zimmerman J.B. Barriers to the implementation of green chemistry in the United States. Environ. Sci. Technol. 2012 46 20 10892 10899 10.1021/es3021777 22963612
    [Google Scholar]
  137. Edmunds S. Environmental impacts. Calif. Manage. Rev. 1977 19 3 5 11 10.2307/41164706
    [Google Scholar]
  138. Iles A. Mulvihill M.J. Collaboration across disciplines for sustainability: Green chemistry as an emerging multistakeholder community. Environ. Sci. Technol. 2012 46 11 5643 5649 10.1021/es300803t 22574828
    [Google Scholar]
  139. Matsev O.V. Beletskaya I.P. Zlotin S.G. Organocatalytic Michael and Friedel–Crafts reactions in enantioselective synthesis of biologically active compounds. Russ. Chem. Rev. 2011 80 11 1067 1113 10.1070/RC2011v080n11ABEH004249
    [Google Scholar]
  140. Rekha K. Thiruvengadam M. Production and biomedical applications of bioactive compounds. Processes (Basel) 2022 10 9 1830 10.3390/pr10091830
    [Google Scholar]
  141. Mudunuru S. Gurubilli C.S.R. G V.R.S. G S.R. Synthesis of biologically active compounds derived from natural products. Int. J. Pharm. Chem. 2023 May 1 6 10.46796/ijpc.v4i2.444
    [Google Scholar]
  142. Harel O. Jbara M. Chemical synthesis of bioactive proteins. Angew. Chem. Int. Ed. 2023 62 13 e202217716 10.1002/anie.202217716 36661212
    [Google Scholar]
  143. Wu S. Snajdrova R. Moore J.C. Baldenius K. Bornscheuer U.T. Biocatalysis: Enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 2021 60 1 88 119 10.1002/anie.202006648 32558088
    [Google Scholar]
  144. Li Y. Liu T. Sun J. Recent advances in N-heterocyclic small molecules for synthesis and application in direct fluorescence cell imaging. Molecules 2023 28 2 733 10.3390/molecules28020733 36677792
    [Google Scholar]
  145. Lan P. Ye S. Banwell M.G. The application of dioxygenase‐based chemoenzymatic processes to the total synthesis of natural products. Chem. Asian J. 2019 14 22 4001 4012 10.1002/asia.201900988 31609526
    [Google Scholar]
  146. Zhang C. Sultan S.A. T R. Chen X. Biotechnological applications of S-adenosyl-methionine-dependent methyltransferases for natural products biosynthesis and diversification. Bioresour. Bioprocess. 2021 8 1 72 10.1186/s40643‑021‑00425‑y 38650197
    [Google Scholar]
  147. Nakayama A. Studies on comprehensive total synthesis of natural and pseudo-natural products for drug discovery. Chem. Pharm. Bull. (Tokyo) 2024 72 5 422 431 10.1248/cpb.c24‑00056 38692857
    [Google Scholar]
  148. Fuwa H. Pursuing step economy in total synthesis of complex marine macrolide natural products. Modern Natural Product Synthesis Springer Singapore Nakada M. Tanino K. Nagasawa K. Yokoshima S. 2024 319 343 10.1007/978‑981‑97‑1619‑7_15
    [Google Scholar]
  149. Winand L. Sester A. Nett M. Bioengineering of anti‐inflammatory natural products. ChemMedChem 2021 16 5 767 776 10.1002/cmdc.202000771 33210441
    [Google Scholar]
  150. Liu M. Wang Y. Jiang H. Han Y. Xia J. Synthetic multienzyme assemblies for natural product biosynthesis. ChemBioChem 2023 24 6 e202200518 10.1002/cbic.202200518 36625563
    [Google Scholar]
  151. Watanabe K. Discovery and investigation of natural Diels–Alderases. J. Nat. Med. 2021 75 3 434 447 10.1007/s11418‑021‑01502‑4 33683566
    [Google Scholar]
  152. Vanable E.P. Habgood L.G. Patrone J.D. Current progress in the chemoenzymatic synthesis of natural products. Molecules 2022 27 19 6373 10.3390/molecules27196373 36234909
    [Google Scholar]
  153. Kim T. Ha M.W. Kim J. Recent advances in divergent synthetic strategies for indole-based natural product libraries. Molecules 2022 27 7 2171 10.3390/molecules27072171 35408569
    [Google Scholar]
  154. Tomohara K. Ohashi N. Uchida T. Nose T. Synthesis of natural product hybrids by the Ugi reaction in complex media containing plant extracts. Sci. Rep. 2022 12 1 15568 10.1038/s41598‑022‑19579‑6 36114212
    [Google Scholar]
  155. Imran Qayyum F. Kim D.H. Bong S.J. Chi S.Y. Choi Y.H. A survey of datasets, preprocessing, modeling mechanisms, and simulation tools based on AI for material analysis and discovery. Materials (Basel) 2022 15 4 1428 10.3390/ma15041428 35207968
    [Google Scholar]
  156. Choudhury R. Aykol M. Gratzl S. Montoya J. Hummelshøj J. MaterialNet: A web-based graph explorer for materials science data. J. Open Source Softw. 2020 5 47 2105 10.21105/joss.02105
    [Google Scholar]
/content/journals/coc/10.2174/0113852728352142241007074507
Loading
/content/journals/coc/10.2174/0113852728352142241007074507
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test