Skip to content
2000
image of Synthesis of Quinazoline Derivatives

Abstract

Efficient synthesis of heterocyclic has always been a very important task in drug discovery. Most of the drugs contain heterocycles to provide an interface between chemistry and biology. Among the various heterocyclic compounds, quinazoline, a heterocyclic compound, offers multiple advantages like pyrimidine, pyridine, piperidine, imidazole, morpholine, quinoline, purine, Many research groups have demonstrated numerous synthesis techniques to harvest the advantage of quinazoline. Therefore, it is necessary to understand the various aspects of the development techniques of quinazoline as industry-oriented application. Various methodologies have been recently developed for the formation of quinazoline moiety. In this review article, the synthetic methods of quinazoline derivatives are classified based on metal-catalysed and miscellaneous synthetic aspects.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728349742241115060532
2025-01-10
2025-05-05
Loading full text...

Full text loading...

References

  1. Hameed A. Al-Rashida M. Uroos M. Ali S.A. Arshia; Ishtiaq, M.; Khan, K.M. Quinazoline and quinazolinone as important medicinal scaffolds: A comparative patent review (2011–2016). Expert Opin. Ther. Pat. 2018 28 4 281 297 10.1080/13543776.2018.1432596 29368977
    [Google Scholar]
  2. Shafi S.S. Senthilkumar S. Synthesis and microbial activity of novel quinazoline derivatives. Int. J. Chemtech Res. 2015 8 1 164 169
    [Google Scholar]
  3. Dangi R. Chundawat N.S. Ameta K.L. Synthesis and biological evaluation of some quinazoline heterocyclic derivatives. Green Chem. 2014 393 412
    [Google Scholar]
  4. Ravez S. Castillo-Aguilera O. Depreux P. Goossens L. Quinazoline derivatives as anticancer drugs: A patent review (2011 – present). Expert Opin. Ther. Pat. 2015 25 7 789 804 10.1517/13543776.2015.1039512 25910402
    [Google Scholar]
  5. Jaiswal S. Devi M. Sharma N. Rathi K. Dwivedi J. Sharma S. Emerging approaches for synthesis of 1,2,3-triazole derivatives. A review. Org. Prep. Proced. Int. 2022 54 5 387 422 10.1080/00304948.2022.2069456
    [Google Scholar]
  6. Devi M. Jaiswal S. Dwivedi J. Kaur N. Synthetic aspects of condensed pyrimidine derivatives. Curr. Org. Chem. 2021 25 21 2625 2649 10.2174/1385272825666210706123734
    [Google Scholar]
  7. Devi M. Jaiswal S. Jain S. Kaur N. Dwivedi J. Synthetic and biological attributes of pyrimidine derivatives: A recent update. Curr. Org. Synth. 2021 18 8 790 825 10.2174/1570179418666210706152515 34886770
    [Google Scholar]
  8. Kaur N. Devi M. Grewal P. Ahlawat N. Bhardwaj P. Verma Y. Jangid N.K. Synthesis of five-membered nitrogen-containing heterocycles using copper J Iran Chem Soc 2021 1 49
    [Google Scholar]
  9. Kaur N. Bhardwaj P. Devi M. Verma Y. Ahlawat N. Grewal P. Ionic liquids for the synthesis of five-membered N,N-, N,N,N- and N,N,N,N-heterocycles. Curr. Org. Chem. 2019 23 11 1214 1238 10.2174/1385272823666190717101741
    [Google Scholar]
  10. Kaur N. Devi M. Verma Y. Grewal P. Jangid N.K. Dwivedi J. Seven and higher-membered oxygen heterocycles: Metal and non-metal. Synth. Commun. 2019 49 12 1508 1542 10.1080/00397911.2019.1579916
    [Google Scholar]
  11. Kaur N. Devi M. Verma Y. Grewal P. Bhardwaj P. Ahlawat N. Jangid N.K. Applications of metal and non-metal catalysts for the synthesis of oxygen containing five-membered polyheterocylces: A mini review. SN Applied Sciences 2019 1 9 963 10.1007/s42452‑019‑1007‑1
    [Google Scholar]
  12. Kaur N. Devi M. Verma Y. Grewal P. Bhardwaj P. Ahlawat N. Jangid N.K. Photochemical synthesis of fused five-membered O-heterocycles. Curr. Green Chem. 2019 6 3 155 183 10.2174/2213346106666190904145200
    [Google Scholar]
  13. Arora A. Kapoor A. Gill N.S. Rana A.C. Quinazoline: an overview. Int. J. Pharm. Sci. Rev. Res. 2011 2 22 28
    [Google Scholar]
  14. Kaur N. Bhardwaj P. Devi M. Verma Y. Grewal P. Synthesis of five-membered O, N -heterocycles using metal and nonmetal. Synth. Commun. 2019 49 11 1345 1384 10.1080/00397911.2019.1594308 33093687
    [Google Scholar]
  15. Zhao J. Zhang Y. Wang M. Liu Q. Lei X. Wu M. Guo S. Yi D. Li Q. Ma L. Liu Z. Guo F. Wang J. Li X. Wang Y. Cen S. Quinoline and quinazoline derivatives inhibit viral RNA synthesis by SARS-CoV-2 RdRp. ACS Infect. Dis. 2021 7 6 1535 1544 10.1021/acsinfecdis.1c00083 34038639
    [Google Scholar]
  16. Alossaimi M.A. Riadi Y. Geesi M.H. Anouar E.H. Aldhafiri M.K. Alanazi A.I. Dehbi O. Ibnouf E.O. Azzallou R. Characterization, biological evaluation and molecular docking of a synthesised quinazolinone-based derivative. J. Mol. Struct. 2022 1266133519 10.1016/j.molstruc.2022.133519
    [Google Scholar]
  17. Kaur N. Grewal P. Bhardwaj P. Devi M. Ahlawat N. Verma Y. Synthesis of five-membered N -heterocycles using silver metal. Synth. Commun. 2019 49 22 3058 3100 10.1080/00397911.2019.1655767
    [Google Scholar]
  18. Kaur N. Bhardwaj P. Devi M. Verma Y. Grewal P. Gold-catalyzed C–O bond forming reactions for the synthesis of six-membered O-heterocycles. SN Applied Sciences 2019 1 8 903 10.1007/s42452‑019‑0920‑7
    [Google Scholar]
  19. Long S. Duarte D. Carvalho C. Oliveira R. Santarém N. Palmeira A. Resende D.I.S.P. Silva A.M.S. Moreira R. Kijjoa A. Cordeiro da Silva A. Nogueira F. Sousa E. Pinto M.M.M. Indole-Containing Pyrazino[2,1- b]quinazoline-3,6-diones Active against Plasmodium and Trypanosomatids. ACS Med. Chem. Lett. 2022 13 2 225 235 10.1021/acsmedchemlett.1c00589 35178179
    [Google Scholar]
  20. Jain S. Dhall E. Devi M. Sharma S. Dwivedi J. Sahu S.K. Phenyl substituted thiazole linked 1,2,4-triazole derivatives: synthesis and their biological evaluation. Lett. Org. Chem. 2021 18 9 727 734 10.2174/1570178617999201106113641
    [Google Scholar]
  21. Kumar K.S. Ganguly S. Veerasamy R. De Clercq E. Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones. Eur. J. Med. Chem. 2010 45 11 5474 5479 10.1016/j.ejmech.2010.07.058 20724039
    [Google Scholar]
  22. Dai H. Si X. Wang H. Chi L. Gao C. Wang Z. Liu L. Qian Z. Ke Y. Zhang Q. Liu H. Design, synthesis and anti-tumor activity evaluation of 4,6,7-substitute quinazoline derivatives. Med. Chem. Res. 2022 31 8 1351 1368 10.1007/s00044‑022‑02897‑9
    [Google Scholar]
  23. Vashi R.T. Shelat C.D. Patel H. Synthesis and antifungal activity of quinazoline-4-one derivatives containing 8-hydroxy quinazoline ligand and its transition metal chelates. Pharma Chem. 2010 2 216 222
    [Google Scholar]
  24. Khan I. Ibrar A. Ahmed W. Saeed A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. Eur. J. Med. Chem. 2015 90 124 169 10.1016/j.ejmech.2014.10.084 25461317
    [Google Scholar]
  25. Abuelizz H.A. Marzouk M. Ghabbour H. Al-Salahi R. Synthesis and anticancer activity of new quinazoline derivatives. Saudi Pharm. J. 2017 25 7 1047 1054 10.1016/j.jsps.2017.04.022 29158714
    [Google Scholar]
  26. Shiba S.A. el-Khamry A.A. Shaban M.E. Atia K.S. Synthesis and antimicrobial activity of some bis-quinazoline derivatives. Pharmazie 1997 52 3 189 194 9109167
    [Google Scholar]
  27. Modh R.P. De Clercq E. Pannecouque C. Chikhalia K.H. Design, synthesis, antimicrobial activity and anti-HIV activity evaluation of novel hybrid quinazoline–triazine derivatives. J. Enzyme Inhib. Med. Chem. 2014 29 1 100 108 10.3109/14756366.2012.755622 23327639
    [Google Scholar]
  28. Boshta N.M. El-Essawy F.A. Alshammari M.B. Noreldein S.G. Darwesh O.M. Discovery of quinazoline-2,4(1H,3H)-dione derivatives as potential antibacterial agent: Design, synthesis, and their antibacterial activity. Molecules 2022 27 12 3853 10.3390/molecules27123853 35744976
    [Google Scholar]
  29. Pan J. Ma L. Tang Y.X. Tian Y. Lin Y.H. Zhang L.J. Gao F. Lu G.M. Design, synthesis and biological evaluation of novel quinazoline derivatives as potential NF-κb inhibitors. Arab. J. Chem. 2022 15 7 103908 10.1016/j.arabjc.2022.103908
    [Google Scholar]
  30. Wang D. Gao F. Quinazoline derivatives: Synthesis and bioactivities. Chem. Cent. J. 2013 7 1 95 10.1186/1752‑153X‑7‑95 23731671
    [Google Scholar]
  31. Selvam T.P. Kumar P.V. Quinazoline marketed drugs - A review. Res. Pharm. 2011 1 1 1 21
    [Google Scholar]
  32. Kaur N. Grewal P. Bhardwaj P. Devi M. Verma Y. Nickel-catalyzed synthesis of five-membered heterocycles. Synth. Commun. 2019 49 12 1543 1577 10.1080/00397911.2019.1594306
    [Google Scholar]
  33. Manivannan E. Chaturvedi S.C. Analogue-based design, synthesis and molecular docking analysis of 2,3-diaryl quinazolinones as non-ulcerogenic anti-inflammatory agents. Bioorg. Med. Chem. 2011 19 15 4520 4528 10.1016/j.bmc.2011.06.019 21724403
    [Google Scholar]
  34. Kaur N. Bhardwaj P. Devi M. Verma Y. Grewal P. Photochemical reactions in five and six-membered polyheterocycles synthesis. Synth. Commun. 2019 49 18 2281 2318 10.1080/00397911.2019.1622732
    [Google Scholar]
  35. Noolvi M.N. Patel H.M. Synthesis, method optimization, anticancer activity of 2,3,7-trisubstituted Quinazoline derivatives and targeting EGFR-tyrosine kinase by rational approach. Arab. J. Chem. 2013 6 1 35 48 10.1016/j.arabjc.2010.12.031
    [Google Scholar]
  36. Peter B. Robert H.B. Craig S.H. Laurent F.A.H. Mark H. Jason G.K. Jane K. Teresa K. Donald J.O. Stuart E.P. Emma J.W. Design, synthesis and in vitro antitumor activity of 4-amino quinoline and 4-amino quinazoline derivatives targeting EGFR tyrosine kinase. Bioorg. Med. Chem. Lett. 2006 16 4908
    [Google Scholar]
  37. Kaur N. Verma Y. Grewal P. Bhardwaj P. Devi M. Application of titanium catalysts for the syntheses of heterocycles. Synth. Commun. 2019 49 15 1847 1894 10.1080/00397911.2019.1606922
    [Google Scholar]
  38. Malasala S. Ahmad M.N. Akunuri R. Shukla M. Kaul G. Dasgupta A. Madhavi Y.V. Chopra S. Nanduri S. Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Eur. J. Med. Chem. 2021 212112996 10.1016/j.ejmech.2020.112996 33190958
    [Google Scholar]
  39. Liu T. Peng F. Cao X. Liu F. Wang Q. Liu L. Xue W. Design, synthesis, antibacterial activity, antiviral activity, and mechanism of myricetin derivatives containing a quinazolinone moiety. ACS Omega 2021 6 45 30826 30833 10.1021/acsomega.1c05256 34805711
    [Google Scholar]
  40. Conconi M.T. Marzaro G. Guiotto A. Urbani L. Zanusso I. Tonus F. Tommasini M. Parnigotto P.P. Chilin A. New Vandetanib analogs: Fused tricyclic quinazolines with antiangiogenic potential. Invest. New Drugs 2012 30 2 594 603 10.1007/s10637‑010‑9621‑1 21184131
    [Google Scholar]
  41. Al-Rashood S.T. Aboldahab I.A. Nagi M.N. Abouzeid L.A. Abdel-Aziz A.A.M. Abdel-hamide S.G. Youssef K.M. Al-Obaid A.M. El-Subbagh H.I. Synthesis, dihydrofolate reductase inhibition, antitumor testing, and molecular modeling study of some new 4(3H)-quinazolinone analogs. Bioorg. Med. Chem. 2006 14 24 8608 8621 10.1016/j.bmc.2006.08.030 16971132
    [Google Scholar]
  42. Kabri Y. Gellis A. Vanelle P. Microwave-assisted synthesis in aqueous medium of new quinazoline derivatives as anticancer agent precursors. Green Chem. 2009 11 2 201 208 10.1039/B816723K
    [Google Scholar]
  43. a Barghi L. Aghanejad A. Valizadeh H. Barar J. Asgari D. Modified synthesis of erlotinib hydrochloride. Adv. Pharm. Bull. 2012 2 1 119 122 24312780
    [Google Scholar]
  44. Kumar A. Devi M. Kumar M. Shrivastava A. Sharma R. Dixit T. Singh V. Shehzad K. Xu Y. Singh K. Hu H. Silicon nanostructures and nanocomposites for antibacterial and theranostic applications; Sens. Actuator A Phys 2022 113912
    [Google Scholar]
  45. Yang Y. Expedient synthesis of 4-aryl quinazoline analogues via direct nucleophilic arylation of 2-chloroquinazoline. Synthesis 2016 48 14 2255 2262 10.1055/s‑0035‑1561587
    [Google Scholar]
  46. a Mohiuddin M.D. Kasahara K. The Mechanisms of the growth inhibitory effects of paclitaxel on gefitinib-resistant non-small cell lung cancer cells. Cancer Genomics Proteomics 2021 18 5 661 673 10.21873/cgp.20288 34479918
    [Google Scholar]
  47. b Kikuchi H. Horoiwa S. Kasahara R. Hariguchi N. Matsumoto M. Oshima Y. Synthesis of febrifugine derivatives and development of an effective and safe tetrahydroquinazoline-type antimalarial. Eur. J. Med. Chem. 2014 76 9 10 19 10.1016/j.ejmech.2014.01.036 24565569
    [Google Scholar]
  48. c Tamatam R. Kim S.H. Shin D. Transition-metal-catalyzed synthesis of quinazolines: A review. Front Chem. 2023 111140562 10.3389/fchem.2023.1140562 37007059
    [Google Scholar]
  49. a Priecel P. Lopez-Sanchez J.A. Advantages and limitations of microwave reactors: from chemical synthesis to the catalytic valorization of biobased chemicals. ACS Sustain. Chem.& Eng. 2019 7 1 3 21 10.1021/acssuschemeng.8b03286
    [Google Scholar]
  50. b Surati M.A. Jauhari S. Desai K.R. A brief review: Microwave assisted organic reaction. Arch. Appl. Sci. Res. 2012 4 1 645 661
    [Google Scholar]
  51. Chen Z. Chen J. Liu M. Ding J. Gao W. Huang X. Wu H. Unexpected copper-catalyzed cascade synthesis of quinazoline derivatives. J. Org. Chem. 2013 78 22 11342 11348 10.1021/jo401908g 24134489
    [Google Scholar]
  52. a Hu F.P. Cui X.F. Lu G.Q. Huang G.S. Base-promoted Lewis acid catalyzed synthesis of quinazoline derivatives. Org. Biomol. Chem. 2020 18 23 4376 4380 10.1039/D0OB00225A 32458847
    [Google Scholar]
  53. b Abe T. Takahashi Y. Matsubara Y. Yamada K. An Ullmann N-arylation/2-amidation cascade by self-relay copper catalysis: one-pot synthesis of indolo[1,2-a]quinazolinones. Org. Chem. Front. 2017 4 11 2124 2127 10.1039/C7QO00549K
    [Google Scholar]
  54. c Abe T. Kida K. Yamada K. A copper-catalyzed Ritter-type cascade via iminoketene for the synthesis of quinazolin-4(3H)-ones and diazocines. Chem. Commun. (Camb.) 2017 53 31 4362 4365 10.1039/C7CC01406F 28374023
    [Google Scholar]
  55. d Brendel M. Sakhare P.R. Dahiya G. Subramanian P. Kaliappan K.P. Serendipitous synthesis of pyridoquinazolinones via an oxidative C-C bond cleavage. J. Org. Chem. 2020 85 12 8102 8110 10.1021/acs.joc.0c00982 32456430
    [Google Scholar]
  56. e Dutta N. Dutta B. Dutta A. Sarma B. Sarma D. Room temperature ligand-free Cu 2 O–H 2 O 2 catalyzed tandem oxidative synthesis of quinazoline-4(3 H)-one and quinazoline derivatives. Org. Biomol. Chem. 2023 21 4 748 753 10.1039/D2OB02085H 36602007
    [Google Scholar]
  57. f Zhou X. Qian F. Zhou W. Wang A. Hou T. Tian X. Ji S. He M. Qian J. Cooperation between the Cu + and Cu 2+ species in CuCoAl layered double hydroxide and the substrate promoting effect afford a really simple protocol for the efficient synthesis of quinazolines. Org. Biomol. Chem. 2024 22 22 4494 4501 10.1039/D4OB00481G 38742377
    [Google Scholar]
  58. a Hao Z. Zhou X. Ma Z. Zhang C. Han Z. Lin J. Lu G.L. Dehydrogenative synthesis of quinolines and quinazolines via ligand-free cobalt-catalyzed cyclization of 2-aminoaryl alcohols with ketones or nitriles. J. Org. Chem. 2022 87 19 12596 12607 10.1021/acs.joc.2c00734 36162131
    [Google Scholar]
  59. b Pal D. Mondal A. Sarmah R. Srimani D. Srimani, D. Designing cobalt(II) complexes for tandem dehydrogenative synthesis of quinoline and quinazoline derivatives. Org. Lett. 2024 26 2 514 518 10.1021/acs.orglett.3c03944 38194364
    [Google Scholar]
  60. a Mondal A. Sahoo M.K. Subaramanian M. Balaraman E. Manganese(I)-catalyzed sustainable synthesis of quinoxaline and quinazoline derivatives with the liberation of dihydrogen. J. Org. Chem. 2020 85 11 7181 7191 10.1021/acs.joc.0c00561 32400155
    [Google Scholar]
  61. b Mondal S. Chakraborty S. Khanra S. Chakraborty S. Pal S. Brandão P. Paul N.D. A Phosphine-free air-stable Mn(II)-catalyst for sustainable synthesis of quinazolin-4(3H)-ones, quinolines, and quinoxalines in water. J. Org. Chem. 2024 89 8 5250 5265 10.1021/acs.joc.3c02579 38554095
    [Google Scholar]
  62. Xing H. Chen J. Shi Y. Huang T. Hai L. Wu Y. Synthesis of 4-ethenyl quinazolines via rhodium(III)-catalyzed [5 + 1] annulation reaction of N -arylamidines with cyclopropenones. Org. Chem. Front. 2020 7 4 672 677 10.1039/C9QO01372E
    [Google Scholar]
  63. Wang J. Zha S. Chen K. Zhang F. Song C. Zhu J. Quinazoline synthesis via Rh(III)-catalyzed intermolecular C-H functionalization of benzimidates with dioxazolones. Org. Lett. 2016 18 9 2062 2065 10.1021/acs.orglett.6b00691 27058735
    [Google Scholar]
  64. a Bhattacharyya D. Adhikari P. Deori K. Das A. Ruthenium pincer complex catalyzed efficient synthesis of quinoline, 2-styrylquinoline and quinazoline derivatives via acceptorless dehydrogenative coupling reactions. Catal. Sci. Technol. 2022 12 18 5695 5702 10.1039/D2CY01030E
    [Google Scholar]
  65. b Sundar S. Veerappan T. Pennamuthiriyan A. Rengan R. Arene ruthenium(II)-catalyzed sustainable synthesis of 2,4-disubstituted quinazolines via acceptorless dual dehydrogenative coupling of alcohols. J. Org. Chem. 2023 88 24 16967 16977 10.1021/acs.joc.3c01808 38029325
    [Google Scholar]
  66. Hou J. Wan S. Wang G. Zhang T. Li Z. Tian Y. Yu Y. Wu X. Zhang J. Design, synthesis, anti-tumor activity, and molecular modeling of quinazoline and pyrido[2,3-d]pyrimidine derivatives targeting epidermal growth factor receptor. Eur. J. Med. Chem. 2016 118 276 289 10.1016/j.ejmech.2016.04.026 27132165
    [Google Scholar]
  67. Zhang D. Ai J. Liang Z. Li C. Peng X. Ji Y. Jiang H. Geng M. Luo C. Liu H. Discovery of novel 2-aminopyridine-3-carboxamides as c-Met kinase inhibitors. Bioorg. Med. Chem. 2012 20 17 5169 5180 10.1016/j.bmc.2012.07.007 22863529
    [Google Scholar]
  68. Chen W.M. Wan S.H. New Straightforward Synthesis of2‐Amino‐6‐methyl‐5‐(pyridin‐4‐ylsulfanyl)‐3 H ‐quinazolin‐4‐one. Synth. Commun. 2007 37 1 53 61 10.1080/00397910600978085
    [Google Scholar]
  69. Mahdavi M. Pedrood K. Safavi M. Saeedi M. Pordeli M. Ardestani S.K. Emami S. Adib M. Foroumadi A. Shafiee A. Synthesis and anticancer activity of N-substituted 2-arylquinazolinones bearing trans-stilbene scaffold. Eur. J. Med. Chem. 2015 95 492 499 10.1016/j.ejmech.2015.03.057 25847767
    [Google Scholar]
  70. Han W. Liu N. Liu C. Jin Z.L. A ligand-free Heck reaction catalyzed by the in situ-generated palladium nanoparticles in PEG-400. Chin. Chem. Lett. 2010 21 12 1411 1414 10.1016/j.cclet.2010.06.019
    [Google Scholar]
  71. Mahdavi M. Foroughi N. Saeedi M. Karimi M. Alinezhad H. Foroumadi A. Shafiee A. Akbarzadeh T. Synthesis of novel benzo[6,7][1,4]oxazepino[4,5-a] quinazolinone derivatives via transition-metal-free intramolecular hydroamination. Synlett 2014 25 03 385 388
    [Google Scholar]
  72. Syed T. Asiri Y.I. Shaheen S. Gangarapu K. Design, synthesis and anticancer evaluation of structurally modified substituted aryl-quinazoline derivatives as anticancer agents. Synth. Commun. 2021 51 18 2782 2795 10.1080/00397911.2021.1941113
    [Google Scholar]
  73. Yaduvanshi N. Tewari S. Jaiswal S. Devi M. Shukla S. Dwivedi J. Sharma S. Biogenic synthesis of Pd-Fe@LLR nanocomposites as magnetically recyclable catalysts for C C and C N bond formation. Inorg. Chem. Commun. 2024 161111927 10.1016/j.inoche.2023.111927
    [Google Scholar]
  74. Hei Y.Y. Xin M. Zhang H. Xie X.X. Mao S. Zhang S.Q. Synthesis and antitumor activity evaluation of 4,6-disubstituted quinazoline derivatives as novel PI3K inhibitors. Bioorg. Med. Chem. Lett. 2016 26 18 4408 4413 10.1016/j.bmcl.2016.08.015 27544401
    [Google Scholar]
  75. Yaduvanshi N. Devi M. Tewari S. Jaiswal S. Hashmi S.Z. Shukla S. Dwivedi J. Sharma S. Exploration of catalytic activity of newly developed Pd/KLR and Pd-Cu/KLR nanocomposites (NCs) for synthesis of biologically active novel heterocycles via Suzuki cross-coupling reaction. J. Mol. Struct. 2023 1294136395 10.1016/j.molstruc.2023.136395
    [Google Scholar]
  76. Sajadi M.S. Kazemi E. Darehkordi A. Palladium-catalyzed synthesis of novel trifluoromethylated quinazolinone, N-arylquinazoline and N-benzylquinazoline derivatives. Tetrahedron Lett. 2021 71153053 10.1016/j.tetlet.2021.153053
    [Google Scholar]
  77. a Mendoza-Martínez C. Correa-Basurto J. Nieto-Meneses R. Márquez-Navarro A. Aguilar-Suárez R. Montero-Cortes M.D. Nogueda-Torres B. Suárez-Contreras E. Galindo-Sevilla N. Rojas-Rojas Á. Rodriguez-Lezama A. Hernández-Luis F. Design, synthesis and biological evaluation of quinazoline derivatives as anti-trypanosomatid and anti-plasmodial agents. Eur. J. Med. Chem. 2015 96 296 307 10.1016/j.ejmech.2015.04.028 25899334
    [Google Scholar]
  78. b Balaji S. Balamurugan G. Ramesh R. Semeril D. Palladium(II) N^O chelating complexes catalyzed one-pot approach for synthesis of quinazolin-4(3H)-ones via acceptorless dehydrogenative coupling of benzyl alcohols and 2-aminobenzamide. Organometallics 2021 40 6 725 734 10.1021/acs.organomet.0c00814
    [Google Scholar]
  79. c Sundarraman B. Rengan R. Semeril D. NNO pincer ligand-supported palladium (II) complexes: Direct synthesis of quinazolines via acceptorless double dehydrogenative coupling of alcohols. Organometallics 2022 41 11 1314 1324 10.1021/acs.organomet.2c00062
    [Google Scholar]
  80. Madhavi S. Sreenivasulu R. Yazala J.P. Raju R.R. Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents. Saudi Pharm. J. 2017 25 2 275 279 10.1016/j.jsps.2016.06.005 28344479
    [Google Scholar]
  81. Malasala S. Gour J. Ahmad M.N. Gatadi S. Shukla M. Kaul G. Dasgupta A. Madhavi Y.V. Chopra S. Nanduri S. Copper mediated one-pot synthesis of quinazolinones and exploration of piperazine linked quinazoline derivatives as anti-mycobacterial agents. RSC Advances 2020 10 71 43533 43538 10.1039/D0RA08644D 35519697
    [Google Scholar]
  82. Zhang Y. Yang C.R. Tang X. Cao S.L. Ren T.T. Gao M. Liao J. Xu X. Synthesis and antitumor activity evaluation of quinazoline derivatives bearing piperazine-1-carbodithioate moiety at C4-position. Bioorg. Med. Chem. Lett. 2016 26 19 4666 4670 10.1016/j.bmcl.2016.08.060 27575478
    [Google Scholar]
  83. Jaiswal S. Arya N. Yaduvanshi N. Devi M. Jain S. Jain S. Dwivedi J. Sharma S. Current updates on green synthesis and biological properties of 4-quinolone derivatives. J. Mol. Struct. 2023 1294136565 10.1016/j.molstruc.2023.136565
    [Google Scholar]
  84. Le-Nhat-Thuy G. Nguyen Thi N. Pham-The H. Dang Thi T.A. Nguyen Thi H. Nguyen Thi T.H. Nguyen Hoang S. Nguyen T.V. Synthesis and biological evaluation of novel quinazoline-triazole hybrid compounds with potential use in alzheimer’s disease. Bioorg. Med. Chem. Lett. 2020 30 18 127404 10.1016/j.bmcl.2020.127404 32717612
    [Google Scholar]
  85. Alafeefy A.M. Kadi A.A. Al-Deeb O.A. El-Tahir K.E.H. Al-jaber N.A. Synthesis, analgesic and anti-inflammatory evaluation of some novel quinazoline derivatives. Eur. J. Med. Chem. 2010 45 11 4947 4952 10.1016/j.ejmech.2010.07.067 20817329
    [Google Scholar]
  86. Khodair A.I. Alsafi M.A. Nafie M.S. Synthesis, molecular modeling and anti-cancer evaluation of a series of quinazoline derivatives. Carbohydr. Res. 2019 486107832 10.1016/j.carres.2019.107832 31622868
    [Google Scholar]
  87. Zhang B. Liu Z. Xia S. Liu Q. Gou S. Design, synthesis and biological evaluation of sulfamoylphenyl-quinazoline derivatives as potential EGFR/CAIX dual inhibitors. Eur. J. Med. Chem. 2021 216113300 10.1016/j.ejmech.2021.113300 33640672
    [Google Scholar]
  88. Ju Y. Wu J. Yuan X. Zhao L. Zhang G. Li C. Qiao R. Design and evaluation of potent EGFR inhibitors through the incorporation of macrocyclic polyamine moieties into the 4-anilinoquinazoline scaffold. J. Med. Chem. 2018 61 24 11372 11383 10.1021/acs.jmedchem.8b01612 30508379
    [Google Scholar]
  89. Li R.D. Zhang X. Li Q.Y. Ge Z.M. Li R.T. Novel EGFR inhibitors prepared by combination of dithiocarbamic acid esters and 4-anilinoquinazolines. Bioorg. Med. Chem. Lett. 2011 21 12 3637 3640 10.1016/j.bmcl.2011.04.096 21570843
    [Google Scholar]
  90. McKee R.L. Bost R.W. para-Substituted phenyl isothiocyanates and some related thioureas. J. Am. Chem. Soc. 1946 68 12 2506 2507 10.1021/ja01216a022 20282387
    [Google Scholar]
  91. Banerji B. Chandrasekhar K. Sreenath K. Roy S. Nag S. Saha K.D. Synthesis of triazole-substituted quinazoline hybrids for anticancer activity and a lead compound as the EGFR blocker and ROS inducer agent. ACS Omega 2018 3 11 16134 16142 10.1021/acsomega.8b01960 30556027
    [Google Scholar]
  92. Honglin D. Chao G. Xiaojie S. Yutong Z. Zhengjie W. Limin L. Tao W. Luye Z. Yang Z. Qin Y. Peirong Z. Synthesis and antitumor activity evaluation of 2,4,6-trisubstituted quinazoline derivatives containing acrylamide Russ J Bioorg Chem 2022 1 12
    [Google Scholar]
  93. Al-Suwaidan I.A. Abdel-Aziz A.A.M. Shawer T.Z. Ayyad R.R. Alanazi A.M. El-Morsy A.M. Mohamed M.A. Abdel-Aziz N.I. El-Sayed M.A.A. El-Azab A.S. Synthesis, antitumor activity and molecular docking study of some novel 3-benzyl-4(3H)quinazolinone analogues. J. Enzyme Inhib. Med. Chem. 2016 31 1 78 89 10.3109/14756366.2015.1004059 25815668
    [Google Scholar]
  94. Shao L.H. Fan S.L. Meng Y.F. Gan Y.Y. Shao W.B. Wang Z.C. Chen D.P. Ouyang G.P. Design, synthesis, biological activities and 3D-QSAR studies of quinazolinone derivatives containing hydrazone structural units. New J. Chem. 2021 45 10 4626 4631 10.1039/D0NJ05450J
    [Google Scholar]
  95. Zayed M.F. Ahmed H.E.A. Ihmaid S. Omar A.S.M. Abdelrahim A.S. Synthesis and screening of some new fluorinated quinazolinone–sulphonamide hybrids as anticancer agents. J. Taibah Univ. Med. Sci. 2015 10 3 333 339 10.1016/j.jtumed.2015.02.007
    [Google Scholar]
  96. El-Shershaby M.H. Ghiaty A. Bayoumi A.H. Ahmed H.E.A. El-Zoghbi M.S. El-Adl K. Abulkhair H.S. 1,2,4-Triazolo[4,3- c]quinazolines: A bioisosterism-guided approach towards the development of novel PCAF inhibitors with potential anticancer activity. New J. Chem. 2021 45 25 11136 11152 10.1039/D1NJ00710F
    [Google Scholar]
  97. Babu S.K. Prabhakar V. Ravindranath L.K. Prasad S.S. Latha J. Synthesis, characterization and biological evaluation of some novel quinazoline derivatives as potential antimicrobial agents. J. Chem. Chem. Sci. 2016 6 648 664
    [Google Scholar]
  98. Abul-Khair H. Elmeligie S. Bayoumi A. Ghiaty A. El-Morsy A. Hassan M.H. Synthesis and evaluation of some new (1,2,4)triazolo(4,3‐a)quinoxalin‐4(5H)‐one derivatives as AMPA receptor antagonists. J. Heterocycl. Chem. 2013 50 5 1202 1208 10.1002/jhet.714
    [Google Scholar]
  99. Pathak P. Rimac H. Grishina M. Verma A. Potemkin V. Design, synthesis, and computational study of hybrid quinazoline 1,3,5-triazines as epidermal growth factor receptor (EGFR) inhibitors with anticancer activity. ChemMedChem 2020 16 5 822 838 10.1002/cmdc.202000646 33155373
    [Google Scholar]
  100. Abbas S.Y. El-Bayouki K.A.M. Basyouni W.M. Mostafa E.A. New series of 4(3H)-quinazolinone derivatives: Syntheses and evaluation of antitumor and antiviral activities. Med. Chem. Res. 2018 27 2 571 582 10.1007/s00044‑017‑2083‑7
    [Google Scholar]
  101. Wu T. Qin Q. Lv R. Liu N. Yin W. Hao C. Sun Y. Zhang C. Sun Y. Zhao D. Cheng M. Discovery of quinazoline derivatives CZw-124 as a pan-TRK inhibitor with potent anticancer effects in vitro and in vivo. Eur. J. Med. Chem. 2022 238114451 10.1016/j.ejmech.2022.114451 35617855
    [Google Scholar]
  102. Hao C. Zhao F. Song H. Guo J. Li X. Jiang X. Huan R. Song S. Zhang Q. Wang R. Wang K. Pang Y. Liu T. Lu T. Huang W. Wang J. Lin B. He Z. Li H. Li F. Zhao D. Cheng M. Structure-based design of 6-chloro-4-aminoquinazoline-2-carboxamide derivatives as potent and selective p21-activated kinase 4(PAK4) inhibitors. J. Med. Chem. 2018 61 1 265 285 10.1021/acs.jmedchem.7b01342 29190083
    [Google Scholar]
  103. Cuartas V. Aragón-Muriel A. Liscano Y. Polo-Cerón D. Crespo-Ortiz M.P. Quiroga J. Abonia R. Insuasty B. Anticancer activity of pyrimidodiazepines based on 2-chloro-4-anilinoquinazoline: Synthesis, DNA binding and molecular docking. RSC Advances 2021 11 38 23310 23329 10.1039/D1RA03509F 35479808
    [Google Scholar]
  104. Liu F. Chen X. Allali-Hassani A. Quinn A.M. Wigle T.J. Wasney G.A. Dong A. Senisterra G. Chau I. Siarheyeva A. Norris J.L. Kireev D.B. Jadhav A. Herold J.M. Janzen W.P. Arrowsmith C.H. Frye S.V. Brown P.J. Simeonov A. Vedadi M. Jin J. Protein lysine methyltransferase G9a inhibitors: Design, synthesis, and structure activity relationships of 2,4-diamino-7-aminoalkoxy-quinazolines. J. Med. Chem. 2010 53 15 5844 5857 10.1021/jm100478y 20614940
    [Google Scholar]
  105. Hu X. Zhao H. Wang Y. Liu Z. Feng B. Tang C. Synthesis and biological evaluation of novel 5,6-dihydropyrimido[4,5-f]quinazoline derivatives as potent CDK2 inhibitors. Bioorg. Med. Chem. Lett. 2018 28 20 3385 3390 10.1016/j.bmcl.2018.08.035 30197029
    [Google Scholar]
  106. Devi M. Jaiswal S. Yaduvanshi N. Jain S. Jain S. Verma K. Verma R. Kishore D. Dwivedi J. Sharma S. Design, synthesis, molecular docking, and antibacterial study of aminomethyl triazolo substituted analogues of benzimidazolo [1,4]-benzodiazepine. J. Mol. Struct. 2023 1286135571 10.1016/j.molstruc.2023.135571
    [Google Scholar]
  107. a Devi M. Jaiswal S. Yaduvanshi N. Kaur N. Kishore D. Dwivedi J. Sharma S. Design, synthesis, antibacterial evaluation and docking studies of triazole and tetrazole linked 1,4-benzodiazepine nucleus via click approach. ChemistrySelect 2023 8 6 e202204710 10.1002/slct.202204710
    [Google Scholar]
  108. b Jaiswal S. Devi M. Yaduvanshi N. Jain S. Dwivedi J. Kishore D. Kuznetsov A.E. Sharma S. Identification of new triazolo annulated dipyridodiazepine derivatives as HIV-1 reverse transcriptase inhibitors: Design, synthesis, DFT, molecular modelling and in silico studies. J. Mol. Struct. 2024 1314138734 10.1016/j.molstruc.2024.138734
    [Google Scholar]
  109. Itoh T. Chiba Y. Kawaguchi S. Koitaya Y. Yoneta Y. Yamada K. Abe T. Total synthesis of pyrano[3,2- e]indole alkaloid fontanesine B by a double cyclization strategy. RSC Advances 2019 9 18 10420 10424 10.1039/C9RA02321F 35520921
    [Google Scholar]
  110. Abe T. Yamada K. Amination/cyclization cascade by acid-catalyzed activation of indolenine for the one-pot synthesis of phaitanthrin E. Org. Lett. 2016 18 24 6504 6507 10.1021/acs.orglett.6b03466 27978673
    [Google Scholar]
  111. Srivastava A. Palanivel L. Baskaran S. One‐pot synthesis of 2‐aminoindole through SET oxidative cyclization: concise synthesis of Tryptanthrin and Phaitanthrin E. Chemistry 2023 29 34 e202300828 10.1002/chem.202300828 36989236
    [Google Scholar]
  112. Vaidya S.D. Argade N.P. A biomimetic synthesis of Phaitanthrin E involving a fragmentation of sp3 carbon-carbon bond: synthesis and rearrangement of Phaitanthrin D to Phaitanthrin E. Org. Lett. 2015 17 24 6218 6221 10.1021/acs.orglett.5b03203 26650567
    [Google Scholar]
/content/journals/coc/10.2174/0113852728349742241115060532
Loading
/content/journals/coc/10.2174/0113852728349742241115060532
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: synthesis ; Heterocycles ; quinazoline ; nitrogen ; metals ; catalysis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test