Skip to content
2000
image of Structural Metamorphosis: Rearranging Camphor-based Systems

Abstract

Natural compounds are pivotal sources for synthesizing a vast array of biologically active substances in chemistry. Camphor is one of these substances, and both enantiomers are readily obtainable and play significant roles in various synthetic and therapeutic applications. This mini-review provides information on a few synthetic routes for camphor production that have been documented over time. It presents several rearrangements that this chemical and its derivatives can undergo to showcase possible starting points for new compounds that may have biological activity.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728344503240927082154
2024-11-07
2025-01-18
Loading full text...

Full text loading...

References

  1. Chen W. Vermaak I. Viljoen A. Camphor--a fumigant during the black death and a coveted fragrant wood in ancient Egypt and Babylon--A review. Molecules 2013 18 5 5434 5454 10.3390/molecules18055434 23666009
    [Google Scholar]
  2. Malabadi1 R. B. Camphor tree, Cinnamomum camphora (L.); Ethnobotany and pharmacological updates. Biomedicine 2021 41 2 181 184
    [Google Scholar]
  3. Van Wyk B.E. van Oudtshoorn B. Gericke N. Medicinal plants of South Africa. 2nd ed Pretoria, South Africa Briza Publications 2009 92
    [Google Scholar]
  4. Natural Resources Conservation Service. Cinnamomum camphora (L.) J. Presl (camphor tree). 2024 Available from: http://plants.usda.gov/
  5. Oppolzer W. Camphor derivatives as chiral auxiliaries in asymmetric synthesis. Tetrahedron 1987 43 9 1969 2004 10.1016/S0040‑4020(01)86780‑6
    [Google Scholar]
  6. Hamidpour R. Hamidpour S. Hamidpour M. Shahlari M. Camphor ( Cinnamomum camphora ), a traditional remedy with the history of treating several diseases. Int. J. Case Rep. Imag. 2013 4 2 86 89 10.5348/ijcri‑2013‑02‑267‑RA‑1
    [Google Scholar]
  7. Juteau F. Masotti V. Bessière J.M. Dherbomez M. Viano J. Antibacterial and antioxidant activities of Artemisia annua essential oil. Fitoterapia 2002 73 6 532 535 10.1016/S0367‑326X(02)00175‑2 12385883
    [Google Scholar]
  8. Kamdem D. Gage D. Chemical composition of essential oil from the root bark of Sassafras albidum. Planta Med. 1995 61 6 574 575 10.1055/s‑2006‑959379 8824955
    [Google Scholar]
  9. Viljoen A. van Vuuren S. Ernst E. Klepser M. Demirci B. Başer H. van Wyk B.E. Osmitopsis asteriscoides (Asteraceae)-the antimicrobial activity and essential oil composition of a Cape-Dutch remedy. J. Ethnopharmacol. 2003 88 2-3 137 143 10.1016/S0378‑8741(03)00191‑0 12963133
    [Google Scholar]
  10. Hammerschmidt F. Clark A. Soliman F. El-Kashoury E.S. Abd El-Kawy M. El-Fishawy A. Chemical composition and antimicrobial activity of essential oils of Jasonia candicans and J. montana. Planta Med. 1993 59 1 68 70 10.1055/s‑2006‑959607 8441785
    [Google Scholar]
  11. Philpott N.W. Intramuscular Injections of camphor in the treatment of engorgement of the breasts. Can. Med. Assoc. J. 1929 20 5 494 495 20317326
    [Google Scholar]
  12. Croteau R. Shaskus J. Biosynthesis of monoterpenes: Demonstration of a geranyl pyrophosphate:(−)-bornyl pyrophosphate cyclase in soluble enzyme preparations from tansy (Tanacetum vulgare). Arch. Biochem. Biophys. 1985 236 2 535 543 10.1016/0003‑9861(85)90656‑3 3970524
    [Google Scholar]
  13. Komppa G. Ueber die synthese des camphers. Ber. Dtsch. Chem. Ges. 1903 36 2 2250 2259
    [Google Scholar]
  14. Elderfield R.C. Hinshelwood C.N. The synthesis of camphor. J. Chem. Soc. Trans. 1922 121 1353 1359
    [Google Scholar]
  15. Barbe C.R. A new synthesis of camphor from pinene. J. Am. Chem. Soc. 1927 49 9 2333 2337
    [Google Scholar]
  16. Robinson R. Williams J. M. Cyclic ketones. Part III. The stereoisomerism of ketocamphors and some derivatives. J. Chem. Soc. 1933 1483 1491
    [Google Scholar]
  17. Birch A. J. Barbour J. F. Studies on camphor and related substances. Part X. The formation of camphor from the isobornylketone. J. Chem. Soc. 1945 387 392
    [Google Scholar]
  18. Woodward R.B. The total synthesis of camphor. J. Am. Chem. Soc. 1949 71 6 2148 2154
    [Google Scholar]
  19. Corey E.J. A new synthesis of camphor. J. Am. Chem. Soc. 1952 74 17 4224 4225
    [Google Scholar]
  20. Ireland R.E. Schuster D.I. A stereoselective total synthesis of (±)-camphor. J. Am. Chem. Soc. 1976 98 12 3478 3487
    [Google Scholar]
  21. Stork G. Schonholzer P. Cogan D.A. Chênevert R. A total synthesis of (-)-camphor. J. Am. Chem. Soc. 1979 101 24 7088 7090
    [Google Scholar]
  22. Noyori R. Kitamura S. Asymmetric hydrogenation of alpha,beta-unsaturated carboxylic esters. A practical, purely chemical access to beta-hydroxycarboxylic esters, alcohols, and acids. J. Am. Chem. Soc. 1984 106 3 670 671
    [Google Scholar]
  23. Wender P.A. Basak A. Rajski S.R. A practical stereoselective synthesis of (−)-camphor. J. Am. Chem. Soc. 1985 107 23 7116 7118
    [Google Scholar]
  24. Evans D.A. Rarig K.L. A stereocontrolled total synthesis of (-)-camphor. J. Am. Chem. Soc. 1989 111 22 8137 8138
    [Google Scholar]
  25. Murakami M. Nakada M. Ito Y. Yanagi T. Takahashi Y. A concise enantiospecific synthesis of (+)-camphor. Angew. Chem. Int. Ed. 2000 39 3 559 561
    [Google Scholar]
  26. Grošelj U. Bevk D. Jakše R. Rečnik S. Meden A. Stanovnik B. Svete J. Cyclocondensations of (+)-camphor derived enaminones with hydrazine derivatives. Tetrahedron 2005 61 16 3991 3998 10.1016/j.tet.2005.02.048
    [Google Scholar]
  27. Meerwein H. On the reaction mechanism of the conversion of borneol into camphene; [Third communication on pinacolin rearrangements.]. Justus Liebigs Ann. Chem. 1914 405 2 129 175 10.1002/jlac.19144050202
    [Google Scholar]
  28. Kovalev V. Shokova E. Chertkov V. Tafeenko V. Unknown camphor: Regioselective rearrangement under acylation in a CF 3 SO 3 H/(CF 3 CO) 2 O system. Eur. J. Org. Chem. 2016 2016 8 1508 1512 10.1002/ejoc.201501581
    [Google Scholar]
  29. Arbuzov B.A. Isaeva Z.G. Molecular rearrangements in the series of carane derivatives. Russ. Chem. Rev. 1976 45 8 673 683 10.1070/RC1976v045n08ABEH002703
    [Google Scholar]
  30. Noyce D.S. A rearrangement of camphenilone. J. Am. Chem. Soc. 1950 72 2 924 925 10.1021/ja01158a074
    [Google Scholar]
  31. Lutz R.P. Roberts J.D. The mechanism of the rearrangement of fenchone. J. Am. Chem. Soc. 1962 84 19 3715 3721 10.1021/ja00878a024
    [Google Scholar]
  32. Rodig O.R. Sysko R.J. Acid-catalyzed rearrangement of camphor to 3,4-dimethylacetophenone. J. Am. Chem. Soc. 1972 94 18 6475 6479 10.1021/ja00773a034
    [Google Scholar]
  33. Doering W.E. Beringer F.M. Sulfonic acids in the rearrangement and aromatization of some cyclic ketones. J. Am. Chem. Soc. 1949 71 6 2221 2226 10.1021/ja01174a084
    [Google Scholar]
  34. Wang F. Tong Z. Dehydro-aromatization of cyclohexene-carboxylic acids by sulfuric acid: Critical route for bio-based terephthalic acid synthesis. RSC Advances 2014 4 12 6314 6317 10.1039/c3ra46670a
    [Google Scholar]
  35. Khanvilkar A.N. Gupta R. Bedekar A.V. An unexpected reaction of camphor with sodium metal. Indian J. Chem. 2015 54B 1327 1331
    [Google Scholar]
  36. Evans M.D. Kaye P.T. Formation and structure elucidation of two novel spiroterpenoid systems. S. Afr. Chem. 1998 51 4 160 161
    [Google Scholar]
  37. Blatt A.H. The beckmann rearrangement. Chem. Rev. 1933 12 2 215 260 10.1021/cr60042a002
    [Google Scholar]
  38. Krow G.R. Szczepanski S. Unusual regiochemistry in a beckmann-like rearrangement of camphor. α-Camphidone via methylene migration. Tetrahedron Lett. 1980 21 48 4593 4596 10.1016/0040‑4039(80)80082‑7
    [Google Scholar]
  39. Barton D.H.R. Day M.J. Hesse R.H. Pechet M.M. A new rearrangement of ketonic nitrones; A convenient alternative to the Beckmann rearrangement. J. Chem. Soc., Perkin Trans. 1 1975 1 18 1764 1767 10.1039/p19750001764
    [Google Scholar]
  40. DiMaio G. Permutti V. Ring enlargements-II - The schmidt reaction on cis-8-methylhydrindan-l-one. Tetrahedron 1966 22 2059 2067
    [Google Scholar]
  41. Grošelj U. Sevšek A. Ričko S. Golobič A. Svete J. Stanovnik B. Synthesis and structural characterization of novel camphor-derived amines. Chirality 2012 24 10 778 788 10.1002/chir.22069 22740342
    [Google Scholar]
  42. McIntosh J.M. Cassidy K.C. An unexpected acyloin rearrangement and oxidation of a camphor derivative. Can. J. Chem. 1991 69 8 1315 1319 10.1139/v91‑195
    [Google Scholar]
  43. Rao H.S.P. Saha A. Vijjapu S. Studies in the rearrangement reactions involving camphorquinone. RSC Advances 2021 11 13 7180 7186 10.1039/D0RA09839F 35423248
    [Google Scholar]
  44. Lara L. Rocha M.G. Menezes L.R. Correr A.B. Sinhoreti M.A.C. Oliveira D. Effect of combining photoinitiators on cure efficiency of dental resin-based composites. J. Appl. Oral Sci. 2021 29 e20200467 10.1590/1678‑7757‑2020‑0467 34320117
    [Google Scholar]
  45. Chai W. Hamada H. Suhara J. Akira Horiuchi C. Biotransformation of (+)- and (−)-camphorquinones by plant cultured cells. Phytochemistry 2001 57 5 669 673 10.1016/S0031‑9422(01)00133‑9 11397432
    [Google Scholar]
  46. White J. D. Sundermann K. T. Champhoquinone and camphorquinone monoxide. Org. Synth. 2004 10 204
    [Google Scholar]
  47. Wang J. Li P. Ni C. Yan H. Zhong R. Efficient synthesis of camphorquinone from camphor. Synth. Commun. 2013 43 11 1543 1548 10.1080/00397911.2011.645988
    [Google Scholar]
  48. Hattori K. Yoshida T. Rikuta K. Miyakoshi T. A new oxidation of 3-bromocamphor to camphorquinone. Chem. Lett. 1994 23 10 1885 1888 10.1246/cl.1994.1885
    [Google Scholar]
  49. Kannappan J. Bedekar A.V. An environment friendly preparation of 3-bromocamphor and camphorquinone. J. Chem. Res. 2012 36 3 141 143 10.3184/174751912X13295761942437
    [Google Scholar]
  50. Yang D.T.C. Zhang C.J. Fu P.P. Kabalka G.W. Oxidation of a-substituted carbonyl compounds to carboxylic acids in aqueous media using ultrasound. Synth. Commun. 1997 27 9 1601 1605 10.1080/00397919708006098
    [Google Scholar]
  51. San Filippo J. Jr Chern C.I. Valentine J.S. Oxidative cleavage of. α.-keto. α.-hydroxy, and. α.-halo ketones, esters, and carboxylic acids by superoxide. J. Org. Chem. 1976 41 6 1077 1078 10.1021/jo00868a037
    [Google Scholar]
  52. Nowicka-Scheibe J. Easy access to cis-3-(benzoxazol-2-yl)cyclopentanecarboxylic acids from camphorquinone and o-aminophenols via an unexpected opening of camphor ring. Synth. Commun. 2013 43 16 2198 2207 10.1080/00397911.2012.696302
    [Google Scholar]
  53. Ji S.J. Lu J. Lang J.P. Horiuchi C.A. Synthesis of camphoric anhydride via unsensitized photo-oxidation of camphorquinone. Synth. Commun. 2002 32 11 1659 1663 10.1081/SCC‑120004256
    [Google Scholar]
  54. Meinwald J. Klingele H.O. Photochemical reactions of camphorquinone. J. Am. Chem. Soc. 1966 88 9 2071 2073 10.1021/ja00961a056
    [Google Scholar]
  55. Mosnáček J. Lukáč I. Irradiation of camphorquinone in glassy polymer matrices in the absence and presence of molecular oxygen. J. Photochem. Photobiol. Chem. 2002 151 1-3 95 104 10.1016/S1010‑6030(02)00024‑2
    [Google Scholar]
  56. Rao H.S.P. Satish V. Kanniyappan S. Kumari P. Studies towards iodine-catalyzed dehydrative-cycloisomerization of pent-4-yne-1,2-diols to di- and tri-substituted furans. Tetrahedron 2018 74 41 6047 6056 10.1016/j.tet.2018.08.032
    [Google Scholar]
/content/journals/coc/10.2174/0113852728344503240927082154
Loading
/content/journals/coc/10.2174/0113852728344503240927082154
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: synthesis ; rearrangement ; camphor quinone ; structural modifications ; Camphor ; mechanism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test