Skip to content
2000
image of Advances in Molecular Photoswitches: From Azobenzenes to Azoquinolines

Abstract

Molecular photoswitches represent a dynamic and ever-growing research area based on the ability of molecules to convert (switch) between () and - () isomers. Azobenzenes are the most popular and widely employed - photoswitchable molecules in the development of photoresponsive, multifunctional smart materials for various applications. The promising avenues in this field include molecular fine-tuning of azobenzene-based photoswitches and the creation of single or dual-functional probes.

This short overview highlights recent advances in the design of molecular photoswitches, particularly the molecular design strategies of azobenzene-based photoswitches with their structural and electronic features. Particular attention is paid to azoquinolines, which seem to be a promising alternative to azobenzenes in the design of novel multifunctional photoswitches with improved photochromic properties. Here, we have also developed the novel star-shaped multiazoquinoline photoswitch comprising individual azoquinoline-based photochromes connected to a central trisubstituted 1,3,5-triformylphloroglucinol core by quantum chemical calculations. This unique structure is favorable for independent - isomerization of each azoquinoline-based photochrome within one macromolecule.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728344412241008083512
2024-10-21
2024-11-23
Loading full text...

Full text loading...

References

  1. Dattler D. Fuks G. Heiser J. Moulin E. Perrot A. Yao X. Giuseppone N. Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors. Chem. Rev. 2020 120 1 310 433 10.1021/acs.chemrev.9b00288 31869214
    [Google Scholar]
  2. Szymański W. Beierle J.M. Kistemaker H.A.V. Velema W.A. Feringa B.L. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem. Rev. 2013 113 8 6114 6178 10.1021/cr300179f 23614556
    [Google Scholar]
  3. Kobauri P. Dekker F.J. Szymanski W. Feringa B.L. Rational Design in Photopharmacology with Molecular Photoswitches. Angew. Chem. Int. Ed. 2023 62 30 e202300681 10.1002/anie.202300681 37026576
    [Google Scholar]
  4. Yu S.H. Hassan S.Z. So C. Kang M. Chung D.S. Molecular‐Switch‐Embedded Solution‐Processed Semiconductors. Adv. Mater. 2023 35 4 2203401 10.1002/adma.202203401 35929102
    [Google Scholar]
  5. Salthouse R.J. Moth-Poulsen K. Multichromophoric photoswitches for solar energy storage: from azobenzene to norbornadiene, and MOST things in between. J. Mater. Chem. A Mater. Energy Sustain. 2024 12 6 3180 3208 10.1039/D3TA05972C 38327567
    [Google Scholar]
  6. Schultz T. Quenneville J. Levine B. Toniolo A. Martínez T.J. Lochbrunner S. Schmitt M. Shaffer J.P. Zgierski M.Z. Stolow A. Mechanism and dynamics of azobenzene photoisomerization. J. Am. Chem. Soc. 2003 125 27 8098 8099 10.1021/ja021363x 12837068
    [Google Scholar]
  7. Verwilst P. Han J. Lee J. Mun S. Kang H.G. Kim J.S. Reconsidering azobenzene as a component of small-molecule hypoxia-mediated cancer drugs: A theranostic case study. Biomaterials 2017 115 104 114 10.1016/j.biomaterials.2016.11.023 27886551
    [Google Scholar]
  8. Huang C. Tan W. Zheng J. Zhu C. Huo J. Yang R. Azoreductase-Responsive Metal–Organic Framework-Based Nanodrug for Enhanced Cancer Therapy via Breaking Hypoxia-induced Chemoresistance. ACS Appl. Mater. Interfaces 2019 11 29 25740 25749 10.1021/acsami.9b08115 31251022
    [Google Scholar]
  9. Sun C. Yue L. Cheng Q. Wang Z. Wang R. Macrocycle-Based Polymer Nanocapsules for Hypoxia-Responsive Payload Delivery. ACS Mater Lett 2020 2 3 10.1021/acsmaterialslett.0c00002
    [Google Scholar]
  10. Wong P.T. Choi S.K. Mechanisms of drug release in nanotherapeutic delivery systems. Chem. Rev. 2015 115 9 3388 3432 10.1021/cr5004634 25914945
    [Google Scholar]
  11. Kamaly N. Yameen B. Wu J. Farokhzad O.C. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 2016 116 4 2602 2663 10.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  12. Hagen R. Bieringer T. Photoaddressable Polymers for Optical Data Storage. Adv. Mater. 2001 13 23 1805 1810 10.1002/1521‑4095(200112)13:23<1805::AID‑ADMA1805>3.0.CO;2‑V
    [Google Scholar]
  13. Weis P. Wu S. Light‐Switchable Azobenzene‐Containing Macromolecules: From UV to Near Infrared. Macromol. Rapid Commun. 2018 39 1 1700220 10.1002/marc.201700220 28643895
    [Google Scholar]
  14. Zhu J. Lin H. Kim Y. Yang M. Skakuj K. Du J.S. Lee B. Schatz G.C. Van Duyne R.P. Mirkin C.A. Light‐Responsive Colloidal Crystals Engineered with DNA. Adv. Mater. 2020 32 8 1906600 10.1002/adma.201906600 31944429
    [Google Scholar]
  15. Lahikainen M. Zeng H. Priimagi A. Zhang Z. Bao J. Zhang L. Yang H. Reconfigurable photoactuator through synergistic use of photochemical and photothermal effects. Nat. Commun. 2018 9 1 4148 10.1038/s41467‑018‑06647‑7 30297774
    [Google Scholar]
  16. Liu J. Shang Y. Liu J. Wang J. Ikeda T. Jiang L. Janus Photochemical/Photothermal Azobenzene Inverse Opal Actuator with Shape Self-Recovery toward Sophisticated Motion. ACS Appl. Mater. Interfaces 2022 14 1 1727 1739 10.1021/acsami.1c19826 34962760
    [Google Scholar]
  17. Wie J.J. Shankar M.R. White T.J. Photomotility of polymers. Nat. Commun. 2016 7 1 13260 10.1038/ncomms13260 27830707
    [Google Scholar]
  18. Martin N. Sharma K.P. Harniman R.L. Richardson R.M. Hutchings R.J. Alibhai D. Li M. Mann S. Light-induced dynamic shaping and self-division of multipodal polyelectrolyte-surfactant microarchitectures via azobenzene photomechanics. Sci. Rep. 2017 7 1 41327 10.1038/srep41327 28112266
    [Google Scholar]
  19. Jeon J. Choi J.C. Lee H. Cho W. Lee K. Kim J.G. Lee J-W. Joo K-I. Cho M. Kim H-R. Wie J.J. Continuous and programmable photomechanical jumping of polymer monoliths. Mater. Today 2021 49 97 106 10.1016/j.mattod.2021.04.014
    [Google Scholar]
  20. Mahimwalla Z. Yager K.G. Mamiya J. Shishido A. Priimagi A. Barrett C.J. Azobenzene photomechanics: prospects and potential applications. Polym. Bull. 2012 69 8 967 1006 10.1007/s00289‑012‑0792‑0
    [Google Scholar]
  21. Beharry A.A. Woolley G.A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 2011 40 8 4422 4437 10.1039/c1cs15023e 21483974
    [Google Scholar]
  22. Cheng H.B. Zhang S. Qi J. Liang X.J. Yoon J. Advances in Application of Azobenzene as a Trigger in Biomedicine: Molecular Design and Spontaneous Assembly. Adv. Mater. 2021 33 26 2007290 10.1002/adma.202007290 34028901
    [Google Scholar]
  23. Zhu J. Guo T. Wang Z. Zhao Y. Triggered azobenzene-based prodrugs and drug delivery systems. J. Control. Release 2022 345 475 493 10.1016/j.jconrel.2022.03.041 35339578
    [Google Scholar]
  24. Welleman I.M. Hoorens M.W.H. Feringa B.L. Boersma H.H. Szymański W. Photoresponsive molecular tools for emerging applications of light in medicine. Chem. Sci. (Camb.) 2020 11 43 11672 11691 10.1039/D0SC04187D 34094410
    [Google Scholar]
  25. Fedele C. Ruoko T.P. Kuntze K. Virkki M. Priimagi A. New tricks and emerging applications from contemporary azobenzene research. Photochem. Photobiol. Sci. 2022 21 10 1719 1734 10.1007/s43630‑022‑00262‑8 35896915
    [Google Scholar]
  26. Qu D.H. Wang Q.C. Zhang Q.W. Ma X. Tian H. Photoresponsive Host–Guest Functional Systems. Chem. Rev. 2015 115 15 7543 7588 10.1021/cr5006342 25697681
    [Google Scholar]
  27. Baroncini M. Bergamini G. Azobenzene: A Photoactive Building Block for Supramolecular Architectures. Chem. Rec. 2017 17 7 700 712 10.1002/tcr.201600112 28054435
    [Google Scholar]
  28. Ostroverkhova O. Organic Optoelectronic Materials: Mechanisms and Applications. Chem. Rev. 2016 116 22 13279 13412 10.1021/acs.chemrev.6b00127 27723323
    [Google Scholar]
  29. Zou J. Liao J. He Y. Zhang T. Xiao Y. Wang H. Shen M. Yu T. Huang W. Recent Development of Photochromic Polymer Systems: Mechanism, Materials, and Applications. Research (Wash D C) 2024 7 0392 10.34133/research.0392
    [Google Scholar]
  30. Gulati S. Singh R. Sangwan S. A Review on Green Synthesis and Biological Activities of Medicinally Important Nitrogen and Oxygen Containing Heterocycles. Curr. Org. Chem. 2023 26 20 1848 1894 10.2174/1385272827666221227114713
    [Google Scholar]
  31. Utreja D. Salotra R. Kaur G. Sharma S. Kaushal S. Chemistry of Quinolines and their Agrochemical Potential. Curr. Org. Chem. 2023 26 20 1895 1913 10.2174/1385272827666221219101902
    [Google Scholar]
  32. Reddy A.B. Avuthu V.S.R. Kishore P.V.V.N. Allaka T.R. Nagarajaiah H. New triazole based oxadiazolo/thiadiazolo–phthalazines as potent antimycobacterial agents: Design, synthesis, molecular modelling and in silico ADMET profiles. ChemistrySelect 2024 9 1 e202304020 10.1002/slct.202304020
    [Google Scholar]
  33. Mezgebe K. Mulugeta E. Synthesis and pharmacological activities of azo dye derivatives incorporating heterocyclic scaffolds: a review. RSC Advances 2022 12 40 25932 25946 10.1039/D2RA04934A 36199603
    [Google Scholar]
  34. Matada B.S. Pattanashettar R. Yernale N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem. 2021 32 115973 10.1016/j.bmc.2020.115973 33444846
    [Google Scholar]
  35. Snehi V. Verma H. Saha S. Kumar S. Pathak D. An Extensive Review on Biological Interest of Quinoline and Its Analogues. International Journal of Science and Healthcare Research 2023 8 1 45 66 10.52403/ijshr.20230105
    [Google Scholar]
  36. Kumar V. Chaudhary S. Mathur M. Swami A.K. Malakar C.C. Singh V. A Tandem Approach towards Diastereoselective Synthesis of Quinoline C‐3 Tethered γ‐Lactones. ChemistrySelect 2018 3 2 399 404 10.1002/slct.201702923
    [Google Scholar]
  37. Singh D. Kumar V. Malakar C.C. Singh V. Structural Diversity Attributed by Aza-Diels-Alder Reaction in Synthesis of Diverse Quinoline Scaffolds. Curr. Org. Chem. 2019 23 8 920 958 10.2174/1385272823666190423140805
    [Google Scholar]
  38. Kishore P.S. Gujjarappa R. Putta V.P.R.K. Polina S. Singh V. Malakar C.C. Pujar P.P. Potassium tert ‐Butoxide‐Mediated Synthesis of 2‐Aminoquinolines from Alkylnitriles and 2‐Aminobenzaldehyde Derivatives. ChemistrySelect 2022 7 46 e202204238 10.1002/slct.202204238
    [Google Scholar]
  39. O’Donnell F. Smyth T.J.P. Ramachandran V.N. Smyth W.F. A study of the antimicrobial activity of selected synthetic and naturally occurring quinolines. Int J Antimicrob Agents 2010 35 1 30 8 10.1016/j.ijantimicag.2009.06.031
    [Google Scholar]
  40. Paris D. Cottin M. Demonchaux P. Augert G. Dupassieux P. Lenoir P. Peck M.J. Jasserand D. Synthesis, structure-activity relationships, and pharmacological evaluation of pyrrolo[3,2,1-ij]quinoline derivatives: potent histamine and platelet activating factor antagonism and 5-lipoxygenase inhibitory properties. Potential therapeutic application in asthma. J. Med. Chem. 1995 38 4 669 685 10.1021/jm00004a013 7861415
    [Google Scholar]
  41. Fahrni C.J. O’Halloran T.V. Aqueous coordination chemistry of quinoline-based fluorescence probes for the biological chemistry of zinc. J. Am. Chem. Soc. 1999 121 49 11448 11458 10.1021/ja992709f
    [Google Scholar]
  42. Gladis M.J. Prasada Rao T. Quinoline-8-ol-immobilized Amberlite XAD-4: Synthesis, characterization, and uranyl ion uptake properties suitable for analytical applications. Anal. Bioanal. Chem. 2002 373 8 867 872 10.1007/s00216‑002‑1387‑7 12194052
    [Google Scholar]
  43. Wei L. Babich J.W. Ouellette W. Zubieta J. Developing the M(CO)3+ core for fluorescence applications: Rhenium tricarbonyl core complexes with benzimidazole, quinoline, and tryptophan derivatives. Inorg. Chem. 2006 45 7 3057 3066 10.1021/ic0517319 16562962
    [Google Scholar]
  44. Hassan K.M. ElKhabiery S.A.S. ElHaddad G.M. Shokair S.H. ElSayed I.E. Synthesis and applications of some new nitrogen-containing heterocyclic azo-disperse dyes bearing quinoline chromophore. J. Indian Chem. Soc. 2022 19 1 147 158 10.1007/s13738‑021‑02294‑w
    [Google Scholar]
  45. Lv Y. Ye H. You L. Multiple control of azoquinoline based molecular photoswitches. Chem. Sci. (Camb.) 2024 15 9 3290 3299 10.1039/D3SC05879D 38425524
    [Google Scholar]
  46. Crecca C.R. Roitberg A.E. Theoretical study of the isomerization mechanism of azobenzene and disubstituted azobenzene derivatives. J. Phys. Chem. A 2006 110 26 8188 8203 10.1021/jp057413c 16805507
    [Google Scholar]
  47. Bandara H.M.D. Burdette S.C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 2012 41 5 1809 1825 10.1039/C1CS15179G 22008710
    [Google Scholar]
  48. Hartley G.S. The Cis-form of Azobenzene. Nature 1937 140 3537 281 10.1038/140281a0
    [Google Scholar]
  49. Horspool W.M. Lenci F. CRC Handbook of Organic Photochemistry and Photobiology. Boca Rotan CRC Press 2003 10.1201/9780203495902.
    [Google Scholar]
  50. Tahara T. Advances in Multi-Photon Processes and Spectroscopy. Lin S.H. Villaeys A.A. Fujimura Y. Singapore World Scientific Publishing 2004 16 1 72 10.1142/9789812796585_0001
    [Google Scholar]
  51. Jerca F.A. Jerca V.V. Hoogenboom R. Advances and opportunities in the exciting world of azobenzenes. Nat. Rev. Chem. 2021 6 1 51 69 10.1038/s41570‑021‑00334‑w 37117615
    [Google Scholar]
  52. Staubitz A. Walther M. Kipke W. Schultzke S. Ghosh S. Modification of Azobenzenes by Cross-Coupling Reactions. Synthesis 2021 53 7 1213 1228 10.1055/s‑0040‑1705999
    [Google Scholar]
  53. Garcia-Amorós J. Nonell S. Velasco D. Photo-driven optical oscillators in the kHz range based on push–pull hydroxyazopyridines. Chem. Commun. (Camb.) 2011 47 13 4022 4024 10.1039/c1cc10302d 21350741
    [Google Scholar]
  54. Garcia-Amorós J. Nonell S. Velasco D. Light-controlled real time information transmitting systems based on nanosecond thermally-isomerising amino-azopyridinium salts. Chem. Commun. (Camb.) 2012 48 28 3421 3423 10.1039/c2cc17782j 22327562
    [Google Scholar]
  55. García-Amorós J. Diaz-Lobo M. Nonell S. Velasco D. Fastest thermal isomerization of an azobenzene for nanosecond photoswitching applications under physiological conditions. Angew Chem Int Ed Engl 2012 51 51 12820 3 10.1002/anie.201207602.
    [Google Scholar]
  56. Volarić J. Szymanski W. Simeth N.A. Feringa B.L. Molecular photoswitches in aqueous environments. Chem. Soc. Rev. 2021 50 22 12377 12449 10.1039/D0CS00547A 34590636
    [Google Scholar]
  57. Garcia-Amorós J. Sánchez-Ferrer A. Massad W.A. Nonell S. Velasco D. Kinetic study of the fast thermal cis-to-trans isomerisation of para-, ortho- and polyhydroxyazobenzenes. Phys. Chem. Chem. Phys. 2010 12 40 13238 13242 10.1039/c004340k 20820477
    [Google Scholar]
  58. Wang L. Yi C. Zou H. Xu J. Xu W. Theoretical study on the isomerization mechanisms of phenylazopyridine on S 0 and S 1 states. J. Phys. Org. Chem. 2009 22 9 888 896 10.1002/poc.1538
    [Google Scholar]
  59. Bujak K. Orlikowska H. Małecki J.G. Schab-Balcerzak E. Bartkiewicz S. Bogucki J. Sobolewska A. Konieczkowska J. Fast dark cis-trans isomerization of azopyridine derivatives in comparison to their azobenzene analogues: Experimental and computational study. Dyes Pigments 2019 160 654 662 10.1016/j.dyepig.2018.09.006
    [Google Scholar]
  60. Konieczkowska J. Wasiak A. Sobolewska A. Bartkiewicz S. Małecki J.G. Schab-Balcerzak E. Kinetics of the dark cis–trans isomerization of azobenzene and azo pyridine derivatives in ethanol and chloroform solutions. J. Photochem. Photobiol. Chem. 2023 444 114979 10.1016/j.jphotochem.2023.114979
    [Google Scholar]
  61. García-Amorós J. Velasco D. Recent advances towards azobenzene-based light-driven real-time information-transmitting materials. Beilstein J. Org. Chem. 2012 8 1003 1017 10.3762/bjoc.8.113 23019428
    [Google Scholar]
  62. Di Martino M. Sessa L. Di Matteo M. Panunzi B. Piotto S. Concilio S. Azobenzene as Antimicrobial Molecules. Molecules 2022 27 17 5643 10.3390/molecules27175643 36080413
    [Google Scholar]
  63. Wegener M. Hansen M.J. Driessen A.J.M. Szymanski W. Feringa B.L. Photocontrol of antibacterial activity: Shifting from UV to red light activation. J. Am. Chem. Soc. 2017 139 49 17979 17986 10.1021/jacs.7b09281 29136373
    [Google Scholar]
  64. Wendler T. Schütt C. Näther C. Herges R. Photoswitchable azoheterocycles via coupling of lithiated imidazoles with benzenediazonium salts. J. Org. Chem. 2012 77 7 3284 3287 10.1021/jo202688x 22401292
    [Google Scholar]
  65. Weston C.E. Richardson R.D. Haycock P.R. White A.J.P. Fuchter M.J. Arylazopyrazoles: azoheteroarene photoswitches offering quantitative isomerization and long thermal half-lives. J. Am. Chem. Soc. 2014 136 34 11878 11881 10.1021/ja505444d 25099917
    [Google Scholar]
  66. Calbo J. Weston C.E. White A.J.P. Rzepa H.S. Contreras-García J. Fuchter M.J. Tuning azoheteroarene photoswitch performance through heteroaryl design. J. Am. Chem. Soc. 2017 139 3 1261 1274 10.1021/jacs.6b11626 28009517
    [Google Scholar]
  67. Heindl A.H. Wegner H.A. Rational design of azothiophenes-substitution effects on the switching properties. Chemistry 2020 26 60 13730 13737 10.1002/chem.202001148 32330338
    [Google Scholar]
  68. Rusu A. Moga I.M. Uncu L. Hancu G. The Role of Five-Membered Heterocycles in the Molecular Structure of Antibacterial Drugs Used in Therapy. Pharmaceutics 2023 15 11 2554 10.3390/pharmaceutics15112554 38004534
    [Google Scholar]
  69. Axelrod S. Shakhnovich E. Gómez-Bombarelli R. Thermal Half-Lives of Azobenzene Derivatives: Virtual Screening Based on Intersystem Crossing Using a Machine Learning Potential. ACS Cent. Sci. 2023 9 2 166 176 10.1021/acscentsci.2c00897 36844486
    [Google Scholar]
  70. Reuter R. Wegner H.A. Oligoazobenzenophanes—synthesis, photochemistry and properties. Chem. Commun. (Camb.) 2011 47 45 12267 12276 10.1039/c1cc13773e 21829825
    [Google Scholar]
  71. Heindl A.H. Becker J. Wegner H.A. Selective switching of multiple azobenzenes. Chem. Sci. (Camb.) 2019 10 31 7418 7425 10.1039/C9SC02347J 31489164
    [Google Scholar]
  72. Moreno M. Lluch J.M. Gelabert R. On the Computational Design of Azobenzene-Based Multi-State Photoswitches. Int. J. Mol. Sci. 2022 23 15 8690 10.3390/ijms23158690 35955820
    [Google Scholar]
  73. Yang C. Slavov C. Wegner H.A. Wachtveitl J. Dreuw A. Computational design of a molecular triple photoswitch for wavelength-selective control. Chem. Sci. (Camb.) 2018 9 46 8665 8672 10.1039/C8SC03379J 30627390
    [Google Scholar]
  74. Galanti A. Santoro J. Mannancherry R. Duez Q. Diez-Cabanes V. Valášek M. De Winter J. Cornil J. Gerbaux P. Mayor M. Samorì P. A New Class of Rigid Multi(azobenzene) Switches Featuring Electronic Decoupling: Unravelling the Isomerization in Individual Photochromes. J. Am. Chem. Soc. 2019 141 23 9273 9283 10.1021/jacs.9b02544 31091876
    [Google Scholar]
  75. Koch M. Saphiannikova M. Guskova O. Columnar Aggregates of Azobenzene Stars: Exploring Intermolecular Interactions, Structure, and Stability in Atomistic Simulations. Molecules 2021 26 24 7598 10.3390/molecules26247598 34946680
    [Google Scholar]
  76. Schulze B. Schubert U.S. Beyond click chemistry – supramolecular interactions of 1,2,3-triazoles. Chem. Soc. Rev. 2014 43 8 2522 2571 10.1039/c3cs60386e 24492745
    [Google Scholar]
  77. Goulet-Hanssens A. Barrett C.J. Modular assembly of azo photo-switches using click chemistry allows for predictable photo-behaviour. J. Photochem. Photobiol. Chem. 2014 294 62 67 10.1016/j.jphotochem.2014.07.013
    [Google Scholar]
  78. Fang D. Zhang Z.Y. Shangguan Z. He Y. Yu C. Li T. Arylazo-1,2,3-triazoles: “clicked” photoswitches for versatile functionalization and electronic decoupling. J. Am. Chem. Soc. 2021 143 36 14502 14510 10.1021/jacs.1c08704 34476949
    [Google Scholar]
  79. Chen H. Tang Z. Yang Y. Hao Y. Chen W. Recent Advances in Photoswitchable Fluorescent and Colorimetric Probes. Molecules 2024 29 11 2521 10.3390/molecules29112521 38893396
    [Google Scholar]
  80. Sankar R. Vijayalakshmi S. Subramanian S. Rajagopan S. Kaliyappan T. Synthesis and chelation properties of new polymeric ligand derived from 8-hydroxy-5-azoquinoline hydroxy benzene. Eur. Polym. J. 2007 43 11 4639 4646 10.1016/j.eurpolymj.2007.08.015
    [Google Scholar]
  81. Saylam A. Seferoğlu Z. Ertan N. Azo-8-hydroxyquinoline dyes: The synthesis, characterizations and determination of tautomeric properties of some new phenyl- and heteroarylazo-8-hydroxyquinolines. J. Mol. Liq. 2014 195 267 276 10.1016/j.molliq.2014.02.027
    [Google Scholar]
  82. Szala M. Nycz J.E. Malecki G.J. Sokolova R. Ramesova S. Switlicka-Olszewska A. Strzelczyk R. Podsiadly R. Machura B. Synthesis of 5-azo-8-hydroxy-2-methylquinoline dyes and relevant spectroscopic, electrochemical and computational studies. Dyes Pigments 2017 142 277 292 10.1016/j.dyepig.2017.03.043
    [Google Scholar]
  83. Smokal V. Krupka A. Kharchenko O. Krupka O. Derkowska-Zielinska B. Kolendo A. Synthesis and photophysical properties of new styrylquinoline-containing polymers. Mol. Cryst. Liq. Cryst. (Phila. Pa.) 2018 661 1 38 44 10.1080/15421406.2018.1460236
    [Google Scholar]
  84. Derkowska-Zielinska B. Matczyszyn K. Dudek M. Samoc M. Czaplicki R. Kaczmarek-Kedziera A. Smokal V. Biitseva A. Krupka O. All-Optical Poling and Two-Photon Absorption in Heterocyclic Azo Dyes with Different Side Groups. J. Phys. Chem. C 2019 123 1 725 734 10.1021/acs.jpcc.8b10621
    [Google Scholar]
  85. Chomicki D. Kharchenko O. Skowronski L. Kowalonek J. Kozanecka-Szmigiel A. Szmigiel D. Smokal V. Krupka O. Derkowska-Zielinska B. Physico-Chemical and Light-Induced Properties of Quinoline Azo-dyes Polymers. Int. J. Mol. Sci. 2020 21 16 5755 10.3390/ijms21165755 32796673
    [Google Scholar]
  86. Shaala L.A. Youssef D.T.A. Pseudoceratonic Acid and Moloka’iamine Derivatives from the Red Sea Verongiid Sponge Pseudoceratina arabica. Mar. Drugs 2020 18 11 525 10.3390/md18110525 33114230
    [Google Scholar]
  87. Kraszewski A. Stawinski J. H-Phosphonates: Versatile synthetic precursors to biologically active phosphorus compounds. Pure Appl. Chem. 2007 79 12 2217 2227 10.1351/pac200779122217
    [Google Scholar]
  88. Mucha A. Kafarski P. Berlicki Ł. Remarkable potential of the α-aminophosphonate/phosphinate structural motif in medicinal chemistry. J. Med. Chem. 2011 54 17 5955 5980 10.1021/jm200587f 21780776
    [Google Scholar]
  89. Van der Jeught S. Stevens C.V. Direct phosphonylation of aromatic azaheterocycles. Chem. Rev. 2009 109 6 2672 2702 10.1021/cr800315j 19449857
    [Google Scholar]
  90. Habraken E.R.M. van der Zee L.J.C. van de Vrande K.N.A. Jupp A.R. Nieger M. Ehlers A.W. Slootweg J.C. Facile Synthesis of Tuneable Azophosphonium Salts. Eur. J. Inorg. Chem. 2019 2019 11-12 1594 1603 10.1002/ejic.201801546
    [Google Scholar]
  91. Waked A.E. Ostadsharif Memar R. Stephan D.W. Nitrogen‐Based Lewis Acids Derived from Phosphonium Diazo Cations. Angew. Chem. Int. Ed. 2018 57 37 11934 11938 10.1002/anie.201804183 29806886
    [Google Scholar]
  92. Alder M.J. Cross W.I. Flower K.R. Pritchard R.G. Azo-containing tertiary phosphines: synthesis, reactivity and structural characterisation. J. Chem. Soc., Dalton Trans. 1999 15 2563 2574 10.1039/a902885d
    [Google Scholar]
  93. Cao F. Si L. Xu S. Zhu L. Liu Y. Xu W. Tang K.W. Xiong B. Wong W.Y. Pyridine-promoted diazotization of P H bonds with aryl diazonium tetrafluoroborates: Synthesis of azo organophosphorus compounds. Tetrahedron Lett. 2022 111 154207 10.1016/j.tetlet.2022.154207
    [Google Scholar]
  94. Suckfüll F. Haubrich H. Über Azophosphonsäureester. Angew. Chem. 1958 70 8 238 240 10.1002/ange.19580700808
    [Google Scholar]
  95. Shen B-R. Annamalai P. Bai R. Singh. S.; Badsara, Lee, C.-F. Blue LED-Mediated Syntheses of Arylazo Phosphine Oxides and Phosphonates via N−P Bond Formation. Org. Lett. 2022 24 5988 5993 10.1021/acs.orglett.2c02251 35926085
    [Google Scholar]
  96. Ghanadzadeh Gilani A. Moghadam M. Zakerhamidi M.S. Moradi E. Solvatochromism, tautomerism and dichroism of some azoquinoline dyes in liquids and liquid crystals. Dyes Pigments 2012 92 3 1320 1330 10.1016/j.dyepig.2011.09.021
    [Google Scholar]
  97. Yan Z. Guang S. Xu H. Liu X.Y. Quinoline-based azo derivative assembly: Optical limiting property and enhancement mechanism. Dyes Pigments 2013 99 3 720 726 10.1016/j.dyepig.2013.07.007
    [Google Scholar]
  98. Sarkar R. Mondal P. Rajak K.K. Synthesis, structure and spectroscopic properties of Re(I) complexes incorporating 5-arylazo-8-hydroxyquinoline: A density functional theory/time-dependent density functional theory investigation. Dalton Trans. 2014 43 7 2859 2877 10.1039/C3DT52630E 24343365
    [Google Scholar]
  99. El-Ghamaz N.A. El-Bindary A.A. El-Sonbati A.Z. Beshry N.M. Geometrical structures, thermal, optical and electrical properties of azo quinoline derivatives. J. Mol. Liq. 2015 211 628 639 10.1016/j.molliq.2015.07.050
    [Google Scholar]
  100. Arslan Ö. Aydıner B. Yalçın E. Babür B. Seferoğlu N. Seferoğlu Z. 8-Hydroxyquinoline based push-pull azo dye: Novel colorimetric chemosensor for anion detection. J. Mol. Struct. 2017 1149 499 509 10.1016/j.molstruc.2017.08.001
    [Google Scholar]
  101. Lygo O.N. Shvydkii V.O. Khodot E.N. Ogurtsov V.A. Kurkovskaya L.N. Levina I.I. Nekipelova T.D. Spectral and time-resolved properties of novel hetarylazo dyes containing hydrogenated quinolines and triazole moieties. High Energy Chem. 2014 48 4 260 265 10.1134/S0018143914040080
    [Google Scholar]
  102. Ghanadzadeh Gilani A. Taghvaei V. Moradi Rufchahi E. Mirzaei M. Photo-physical and structural studies of some synthesized arylazoquinoline dyes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017 185 111 124 10.1016/j.saa.2017.05.035 28551448
    [Google Scholar]
  103. Bujak K. Wasiak A. Sobolewska A. Bartkiewicz S. Malecki J.G. Nycz J.E. Schab-Balcerzak E. Konieczkowska J. A family of azoquinoline derivatives: Effect of the substituent at azo linkage on thermal cis-trans isomerization based on an experimental and computational approach. Dyes Pigments 2020 175 108151 10.1016/j.dyepig.2019.108151
    [Google Scholar]
  104. Nekipelova T.D. Khodot E.N. Deeva Y.S. Levina I.I. Timokhina E.N. Kostyukov A.A. Kuzmin V.A. Dihydroquinolylazotetrazole dyes: Effect of a substituent at the tetrazole fragment on spectral properties and thermal ‒ isomerization in organic solvents. Dyes Pigments 2021 195 109675 10.1016/j.dyepig.2021.109675
    [Google Scholar]
  105. Bléger D. Dokić J. Peters M.V. Grubert L. Saalfrank P. Hecht S. Electronic decoupling approach to quantitative photoswitching in linear multiazobenzene architectures. J. Phys. Chem. B 2011 115 33 9930 9940 10.1021/jp2044114 21749103
    [Google Scholar]
  106. Singh V. Jang S. Vishwakarma N.K. Kim D.P. Intensified synthesis and post-synthetic modification of covalent organic frameworks using a continuous flow of microdroplets technique. NPG Asia Mater. 2018 10 1 e456 10.1038/am.2017.209
    [Google Scholar]
  107. Troschke E. Oschatz M. Ilic I.K. Schiff‐bases for sustainable battery and supercapacitor electrodes. Exploration 2021 1 3 20210128 10.1002/EXP.20210128 37323689
    [Google Scholar]
  108. Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993 98 7 5648 5652 10.1063/1.464913
    [Google Scholar]
  109. Lee C. Yang W. Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 1988 37 2 785 789 10.1103/PhysRevB.37.785 9944570
    [Google Scholar]
  110. Frisch M.J. Trucks G.W. Schlegel H.B. Scuseria G.E. Robb M.A. Cheeseman J.R. Scalmani G. Barone V. Mennucci B. Petersson G.A. Gaussian 09, Revision B.01. Wallingford Gaussian Inc. 2009
    [Google Scholar]
  111. Crespi S. Simeth N.A. König B. Heteroaryl azo dyes as molecular photoswitches. Nat. Rev. Chem. 2019 3 3 133 146 10.1038/s41570‑019‑0074‑6
    [Google Scholar]
  112. Siewertsen R. Neumann H. Buchheim-Stehn B. Herges R. Näther C. Renth F. Temps F. Highly efficient reversible Z-E photoisomerization of a bridged azobenzene with visible light through resolved S(1)(n π*) absorption bands. J. Am. Chem. Soc. 2009 131 43 15594 15595 10.1021/ja906547d 19827776
    [Google Scholar]
  113. Beharry A.A. Sadovski O. Woolley G.A. Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc. 2011 133 49 19684 19687 10.1021/ja209239m 22082305
    [Google Scholar]
  114. Knie C. Utecht M. Zhao F. Kulla H. Kovalenko S. Brouwer A.M. Saalfrank P. Hecht S. Bléger D. ortho-Fluoroazobenzenes: visible light switches with very long-Lived Z isomers. Chemistry 2014 20 50 16492 16501 10.1002/chem.201404649 25352421
    [Google Scholar]
  115. Gavkus D.N. Maiorova O.A. Borisov M.Y. Egorova A.Y. Azo coupling of 5-substituted furan-2(3H)-ones and 1H-pyrrol-2(3H)-ones with arene(hetarene)diazonium salts. Russ. J. Org. Chem. 2012 48 9 1229 1232 10.1134/S107042801209014X
    [Google Scholar]
  116. Sherif S. Ekladious L. Abd Elmalek G. The Synthesis of some Azo Dyes containing the quinoxaline nucleus. I. J. Prakt. Chem. 1970 312 5 759 766 10.1002/prac.19703120505
    [Google Scholar]
  117. Rangnekar D.W. Tagdiwala P.V. Synthesis of azo dyes from 6-amino-2-methoxy-quinoxaline and their use as disperse dyes for polyester fibres. Dyes Pigments 1987 8 2 151 156 10.1016/0143‑7208(87)85013‑1
    [Google Scholar]
  118. Hamama W.S. Ibrahim M.E. Zoorob H.H. Synthesis and biological evaluation of some novel isoxazole derivatives: isoxazole with basic side chain. J. Heterocycl. Chem. 2017 54 1 341 346 10.1002/jhet.2589
    [Google Scholar]
  119. Zhou H. Xue C. Weis P. Suzuki Y. Huang S. Koynov K. Auernhammer G.K. Berger R. Butt H.J. Wu S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem. 2017 9 2 145 151 10.1038/nchem.2625 28282043
    [Google Scholar]
  120. Akiyama H. Fukata T. Yamashita A. Yoshida M. Kihara H. Reworkable adhesives composed of photoresponsive azobenzene polymer for glass substrates. J. Adhes. 2017 93 10 823 830 10.1080/00218464.2016.1219255
    [Google Scholar]
  121. Imato K. Kaneda N. Ooyama Y. Recent progress in photoinduced transitions between the solid, glass, and liquid states based on molecular photoswitches. Polym. J. 2024 56 4 269 282 10.1038/s41428‑023‑00873‑7
    [Google Scholar]
/content/journals/coc/10.2174/0113852728344412241008083512
Loading
/content/journals/coc/10.2174/0113852728344412241008083512
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test