Skip to content
2000
image of Theoretical Study of Methylaluminoxane Formation

Abstract

This work is devoted to the theoretical study of methylaluminoxanes formed by the interaction of trimethylaluminum with water. The main goal of this work is to identify the most likely molecular form of methylaluminoxane formed in the reaction mixture. Quantum chemical calculations were carried out within the framework of density functional theory, at the PBE0/def2-TZVP level. The work analyzes the thermodynamic parameters of the reactions of the formation of various structures of methylaluminoxanes. On the base of the obtained results, it was concluded that the most probable structure formed in the reaction mixture under real synthesis conditions should be considered AlO(CH).

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728343117241003175500
2024-12-26
2025-01-29
Loading full text...

Full text loading...

References

  1. Ziegler K. Holzkamp E. Breil H. Martin H. Polymerisation von Äthylen und anderen Olefinen. Angew. Chem. 1955 67 16 426 426 10.1002/ange.19550671610
    [Google Scholar]
  2. Natta G. Stereospezifische katalysen und isotaktische polymere. Angew. Chem. 1956 68 12 393 403 10.1002/ange.19560681202
    [Google Scholar]
  3. Sinn H. Kaminsky W. Ziegler-Natta Catalysis. Adv. Organomet. Chem. 1980 18 99 149 10.1016/S0065‑3055(08)60307‑X
    [Google Scholar]
  4. Ziegler K. Breil H. Martin H. High molecular polyethylenes. Patent GB799392, 1957.
  5. Natta G. Pino P. Mazzanti G. Isotactic Polypropylene. U.S. Patent 3112300, 1963.
  6. Tornqvist E.G. The stereo rubbers Wiley 1978 10.1002/pol.1978.130160112
    [Google Scholar]
  7. Dolgoplosk B.A. Tinyakova E.I. The role of Ziegler-Natta catalysts in the synthesis of stereoregular polymers of conjugated dienes. Polymer sci. 1994 36 10 1380 1403
    [Google Scholar]
  8. Galli P. Forty years of industrial developments in the field of isotactic polyolefins. Macromol. Symp. 1995 89 1 13 26 10.1002/masy.19950890105
    [Google Scholar]
  9. Sauter D. Taoufik M. Boisson C. Polyolefins, a success story. Polymers (Basel) 2017 9 6 185 10.3390/polym9060185 30970864
    [Google Scholar]
  10. Sinha A.S.K. Ojha U. Evolution of Ziegler-Natta catalysts for polymerization of olefins. Catalysis for Clean Energy and Environmental Sustainability: Petrochemicals and Refining Processes-Volume 2021 2 675 705 10.1007/978‑3‑030‑65021‑6_21
    [Google Scholar]
  11. Masliy A.N. Akhmetov I.G. Kuznetsov A.M. Davletbaeva I.M. DFT and ONIOM Simulation of 1,3-Butadiene Polymerization Catalyzed by Neodymium-Based Ziegler–Natta System. Polymers (Basel) 2023 15 5 1166 10.3390/polym15051166 36904407
    [Google Scholar]
  12. Glaser R. Sun X. Thermochemistry of the initial steps of methylaluminoxane formation. Aluminoxanes and cycloaluminoxanes by methane elimination from dimethylaluminum hydroxide and its dimeric aggregates. J. Am. Chem. Soc. 2011 133 34 13323 13336 10.1021/ja109457j 21819106
    [Google Scholar]
  13. Kaminsky W. Discovery of Methylaluminoxane as Cocatalyst for Olefin Polymerization. Macromolecules 2012 45 8 3289 3297 10.1021/ma202453u
    [Google Scholar]
  14. Kaminsky W. Sinn H. Polyolefins 50 Years After Ziegler And Natta Ii Polyolefins By Metallocenes And Other Single Site Catalysts Advances In Polymer Science. Springer 2013 10.1007/12_2013_226
    [Google Scholar]
  15. Zijlstra H.S. Harder S. Methylalumoxane–history, production, properties, and applications. Eur. J. Inorg. Chem. 2015 2015 1 19 43 10.1002/ejic.201402978
    [Google Scholar]
  16. Linnolahti M. Collins S. Formation, structure, and composition of methylaluminoxane. ChemPhysChem 2017 18 23 3369 3374 10.1002/cphc.201700827 28857416
    [Google Scholar]
  17. Zijlstra H.S. Mysterious MAO: Towards a better structural understanding of Methylalumoxane and the development of well-defined Alumoxanes. PhD thesis, University of Groningen, 2016.
    [Google Scholar]
  18. Joshi A. Zijlstra H.S. Liles E. Concepcion C. Linnolahti M. McIndoe J.S. Real-time analysis of methylalumoxane formation. Chem. Sci. (Camb.) 2021 12 2 546 551 10.1039/D0SC05075J 34163784
    [Google Scholar]
  19. Neese F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012 2 1 73 78 10.1002/wcms.81
    [Google Scholar]
  20. Neese F. Software update: The ORCA program system—Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022 12 5 e1606 10.1002/wcms.1606
    [Google Scholar]
  21. Adamo C. Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999 110 13 6158 6170 10.1063/1.478522
    [Google Scholar]
  22. Weigend F. Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005 7 18 3297 3305 10.1039/b508541a 16240044
    [Google Scholar]
  23. Stoychev G.L. Auer A.A. Neese F. Automatic generation of auxiliary basis sets. J. Chem. Theory Comput. 2017 13 2 554 562 10.1021/acs.jctc.6b01041 28005364
    [Google Scholar]
  24. Masliy A.N. Kuznetsov A.M. Influence of Dispersion Interactions in the Diels-Alder Reaction of Cyclopentadiene, Anthracene and Tetracene with C60: A DFT Examination. Curr. Org. Chem. 2023 27 21 1909 1915 10.2174/0113852728278635231127111522
    [Google Scholar]
  25. Barone V. Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 1998 102 11 1995 2001 10.1021/jp9716997
    [Google Scholar]
  26. Cammi R. Mennucci B. Tomasi J. Fast evaluation of geometries and properties of excited molecules in solution: a Tamm-Dancoff model with application to 4-dimethylaminobenzonitrile. J. Phys. Chem. A 2000 104 23 5631 5637 10.1021/jp000156l
    [Google Scholar]
/content/journals/coc/10.2174/0113852728343117241003175500
Loading
/content/journals/coc/10.2174/0113852728343117241003175500
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test