Skip to content
2000
image of Synthesis of Pyridines/Dihydropyridines via Hantzsch Reaction, Structure-activity Relationship and Interactions with Targets: A Review

Abstract

Pyridines/Dihydropyridines is a basic 6-membered organic aza-heterocyclic compound that has garnered the attention of many researchers in recent times. These molecules have been reported with a diverse range of pharmacological activities like anti-coagulant, antileishmanial and anti-trypanosomal, antitubercular agents, anti-microbial, antioxidant, HIV-1 protease inhibitors, anti-cancer, cardiovascular disease, . This review article focuses on different protocols for the Hantzsch reaction using acid catalysts, metal catalysts, and no catalysts for the synthesis of pyridine derivatives. The structure-activity relationship in relation to other biological activities of various pyridine-containing drugs and their interaction with different targets (receptors) has also been highlighted to provide a good understanding to researchers for future research on pyridines.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728331961240918115757
2024-10-29
2025-01-18
Loading full text...

Full text loading...

References

  1. Altaf A.A. Shahzad A. Gul Z. Rasool N. Badshah A. Lal B. Khan E. A review on the medicinal importance of pyridine derivatives. J. Drug Des. Med. Chem 2015 1 1 1 10.11648/j.jddmc.20150101.11
    [Google Scholar]
  2. Hill M.D. Recent strategies for the synthesis of pyridine derivatives. Chemistry 2010 16 40 12052 12062 10.1002/chem.201001100 20827696
    [Google Scholar]
  3. Allahresani A. Mohammadpour Sangani M. Nasseri M.A. CoFe 2 O 4 @SiO 2 ‐NH 2 ‐Co II NPs catalyzed Hantzsch reaction as an efficient, reusable catalyst for the facile, green, one‐pot synthesis of novel functionalized 1,4‐dihydropyridine derivatives. Appl. Organomet. Chem. 2020 34 9 e5759 10.1002/aoc.5759
    [Google Scholar]
  4. Chatterjee R. Bhukta S. Angajala K.K. Dandela R. Copper catalysed oxidative cascade deamination/cyclization of vinyl azide and benzylamine for the synthesis of 2,4,6-triarylpyridines. Org. Biomol. Chem. 2023 21 26 5419 5423 10.1039/D3OB00625E 37334911
    [Google Scholar]
  5. Dhayalan V. Sharma D. Chatterjee R. Dandela R. Functionalization of pyridine and quinoline scaffolds by using organometallic Li‐, Mg‐ and Zn‐reagents. Eur. J. Org. Chem. 2023 26 30 e202300285 10.1002/ejoc.202300285
    [Google Scholar]
  6. Kumar R.S. Idhayadhulla A. Abdul Nasser A.J. Selvin J. Synthesis and anticoagulant activity of a new series of 1,4-dihydropyridine derivatives. Eur. J. Med. Chem. 2011 46 2 804 810 10.1016/j.ejmech.2010.12.006 21220179
    [Google Scholar]
  7. Reimão J.Q. Scotti M.T. Tempone A.G. Anti-leishmanial and anti-trypanosomal activities of 1,4-dihydropyridines: In vitro evaluation and structure–activity relationship study. Bioorg. Med. Chem. 2010 18 22 8044 8053 10.1016/j.bmc.2010.09.015 20934347
    [Google Scholar]
  8. Khoshneviszadeh M. Edraki N. Javidnia K. Alborzi A. Pourabbas B. Mardaneh J. Miri R. Synthesis and biological evaluation of some new 1,4-dihydropyridines containing different ester substitute and diethyl carbamoyl group as anti-tubercular agents. Bioorg. Med. Chem. 2009 17 4 1579 1586 10.1016/j.bmc.2008.12.070 19162489
    [Google Scholar]
  9. Lentz F. Hemmer M. Reiling N. Hilgeroth A. Discovery of novel N- phenyl 1,4-dihydropyridines with a dual mode of antimycobacterial activity. Bioorg. Med. Chem. Lett. 2016 26 24 5896 5898 10.1016/j.bmcl.2016.11.010 27866817
    [Google Scholar]
  10. Vijesh A.M. Isloor A.M. Peethambar S.K. Shivananda K.N. Arulmoli T. Isloor N.A. Hantzsch reaction: Synthesis and characterization of some new 1,4-dihydropyridine derivatives as potent antimicrobial and antioxidant agents. Eur. J. Med. Chem. 2011 46 11 5591 5597 10.1016/j.ejmech.2011.09.026 21968373
    [Google Scholar]
  11. Hilgeroth A. Lilie H. Structure-activity relationships of first bishydroxymethyl-substituted cage dimeric 4-aryl-1,4-dihydropyridines as HIV-1 protease inhibitors. Eur. J. Med. Chem. 2003 38 5 495 499 10.1016/S0223‑5234(03)00060‑6 12767599
    [Google Scholar]
  12. Shekari F. Sadeghpour H. Javidnia K. Saso L. Nazari F. Firuzi O. Miri R. Cytotoxic and multidrug resistance reversal activities of novel 1,4-dihydropyridines against human cancer cells. Eur. J. Pharmacol. 2015 746 233 244 10.1016/j.ejphar.2014.10.058 25445037
    [Google Scholar]
  13. Chandra K.S. Ramesh G. The fourth-generation Calcium channel blocker: Cilnidipine. Indian Heart J. 2013 65 6 691 695 10.1016/j.ihj.2013.11.001 24407539
    [Google Scholar]
  14. Islam M.B. Islam M.I. Nath N. Emran T.B. Rahman M.R. Sharma R. Matin M.M. Recent advances in pyridine scaffold: focus on chemistry, synthesis, and antibacterial activities. BioMed Res. Int. 2023 2023 1 9967591 10.1155/2023/9967591 37250749
    [Google Scholar]
  15. Bohua Z. Amide derivatives and their medicinal uses. CN Patent 110016011-B 2023
  16. Yanping L. Zhuorong L. Zonggen P. Xinbei J. Yixuan W. Jianrui L. Jiali T. Benzylpiperazine compounds, their preparation methods, and their application in antiviral. CN Patent 110698432-B 2023
  17. Shuai M. Bo Y. Sanqi Z. Yiming C. Yahao Z. Xinyu W. Preparation method of Ir-OP type catalyst diboric acid/ester compound. CN Patent 113980044-B 2023
  18. Bouissou T. Gottschling D. Heine N. Keenan L.L.S. Rowe M.D. Razavi H. Serko C.R. Suprenant S. Takahashi H. Turner M.R. Wu X. Pyridine carbonyl derivatives and their therapeutic use as trpc6 inhibitors. JP Patent 7217273-B2 2023
  19. Gang R. Xu R. Yi Z. Zhaolun N. Zhong Z. A kind of preparation method of n-methyl-2-isopropyl-4-thiazolemethanamine. CN Patent 109485617-B 2023
  20. Weiguang Y. Yu Z. Jinyi X. Yongmei H. Li L. Hui L. A one-pot method for synthesizing nicotinamide amide derivatives. CN Patent 110483387-B 2023
  21. Mingxin C. Haodong G. Zitong W. A direct synthesis method of chiral secondary amine compounds. CN Patent 110862324-B 2023
  22. Bihai T. Qunying M. Wei C. Yongpan T. Zhuo Z. Yonglin Y. A kind of 4,7-diarylthieno[2,3-d] pyridazine cyclometal iridium complex and preparation method thereof. CN Patent 111377977-B 2023
  23. Xingzhong S. Peng G. Xiaochuang H. Zhanyuan Z. Green synthesis method of active pharmaceutical molecules gc-24 and fugrel acid. CN Patent 111646889-B 2023
  24. Guojun S. Sihao X. Qiuting L. Ya F. Yuxin L. A kind of nhpi catalyst grafted by imide bond and its preparation method and application. CN Patent 111790440-B 2023
  25. Ran Y. Yuanqiang S. An n-arylpyridinethiazolothiazole-cucurbituril complex and its preparation method and application. CN Patent 114230574-B 2023
  26. Xiaogang T. Chengfeng X. Linlin R. Jiaying T. A kind of preparation method of indolecarbazole compound. CN Patent 114394971-B 2023
  27. Xiao L. Dong C. Yusheng X. Tingting C. Chao Q. A kind of synthesis method of quinoline compound intermediate. CN Patent 114524803-B 2023
  28. Santora V.J. Chen M. Chun D. Substituted benzoxazole and benzofuran compounds as Pde7 inhibitors. JP-7213863-B2 2023
  29. Xiaoan W. Enqin L. Luzhe Q. Preparation method of a kind of acetyl-CoA carboxylase inhibitor. CN Patent 107629069-B 2023
  30. Weiliang Z. Bo L. Susu X. A kind of oxazolopyridine quaternary ammonium salt compound, its preparation method and use. CN Patent 107759614-B 2023
  31. Otsuka S. Hashimoto N. Method for producing (meth)acrylate. JP Patent 7211357-B2 2023
  32. Yang B. Wang K. Wang Z. White C.D. Lu Y. Yellow O.T. Li X. Zhang Y. Tomoharu Allowances O.T. Emodin succinyl ester compounds and their preparation and use. JP Patent 7210605-B2 2023
  33. Rohle T. Bernat H. Hoenel D. Bruder F.K. Kintruf J. Method for preparing triaryl organoborates. KR Patent 102489807-B1 2023
  34. Chen F. Jiang M. Cheng D. Liu M. Huang H. Micro-reaction system and method for preparing 2-methyl-4-amino-5-aminomethyl pyrimidine. US PAtent 11554354-B2 2023
  35. Hantzsch Schmitt Wislicenus Widman O. Werner A. Bamberger E. Arthur Rudolph Hantzsch (1857-1935) and the synthesis of nitrogen heterocycles. Available from: https://www.thieme.de/statics/dokumente/thieme/final/en/dokumente/tw_chemistry/CFZ-Synform-Hantzsch-NRBio.pdf
  36. Kiasat A. Nazari S. Davarpanah J. β-cyclodextrin-polyurethane polymer: A neutral and eco-friendly heterogeneous catalyst for the one-pot synthesis of 1,4-dihydropyridine and polyhydroquinolien derivatives via Hantzsch reaction under solvent-free conditions. J. Serb. Chem. Soc. 2014 79 4 401 409 10.2298/JSC130112130K
    [Google Scholar]
  37. Safari J. Azizi F. Sadeghi M. Chitosan nanoparticles as a green and renewable catalyst in the synthesis of 1,4-dihydropyridine under solvent-free conditions. New J. Chem. 2015 39 3 1905 1909 10.1039/C4NJ01730G
    [Google Scholar]
  38. Dekamin M.G. Azimoshan M. Ramezani L. Chitosan: A highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions. Green Chem. 2013 15 3 811 820 10.1039/c3gc36901c
    [Google Scholar]
  39. Hajipour A.R. Rafiee F. Acidic bronsted ionic liquids. Org. Prep. Proced. Int. 2010 42 4 285 362 10.1080/00304948.2010.490177
    [Google Scholar]
  40. Wang Y. Zhi H. Luo J. A facile and efficient protocol for esterification and acetalization in a PEG1000-D(A)IL/toluene thermoregulated catalyst–media combined systems. J. Mol. Catal. Chem. 2013 379 46 52 10.1016/j.molcata.2013.07.013
    [Google Scholar]
  41. Ren Y. Cai C. Molecular iodine in ionic liquid: A green catalytic system for esterification and transesterification. Synth. Commun. 2010 40 11 1670 1676 10.1080/00397910903161660
    [Google Scholar]
  42. Ren Y.M. Shao J.J. Wu Z.C. Xu M.D. PEG1000-based dicationic acidic ionic liquid catalyzed one-pot synthesis of 1, 4-dihydropyridines via the Hantzsch reaction. Org. Prep. Proced. Int. 2014 46 6 545 550 10.1080/00304948.2014.963455
    [Google Scholar]
  43. Khodja I.A. Ghalem W. Dehimat Z.I. Boulcina R. Carboni B. Debache A. Solvent-free synthesis of dihydropyridines and acridinediones via a salicylic acid–catalyzed hantzsch multicomponent reaction. Synth. Commun. 2014 44 7 959 967 10.1080/00397911.2013.838791
    [Google Scholar]
  44. Cherkupally S.R. Mekala R. P-TSA catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through hantzsch multi-component condensation. Chem. Pharm. Bull. (Tokyo) 2008 56 7 1002 1004 10.1248/cpb.56.1002 18591819
    [Google Scholar]
  45. Nasr-Esfahani M. Montazerozohori M. Raeatikia R. An efficient Hantzsch synthesis of 1, 4-dihydropyridines using p-toluenesulfonic acid under solvent-free condition. Maejo Int. J. Sci. 2014 8 32
    [Google Scholar]
  46. Lee K.Y. Mooney D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012 37 1 106 126 10.1016/j.progpolymsci.2011.06.003 22125349
    [Google Scholar]
  47. Dekamin M.G. Ilkhanizadeh S. Latifidoost Z. Daemi H. Karimi Z. Barikani M. Alginic acid: A highly efficient renewable and heterogeneous biopolymeric catalyst for one-pot synthesis of the Hantzsch 1,4-dihydropyridines. RSC Advances 2014 4 100 56658 56664 10.1039/C4RA11801D
    [Google Scholar]
  48. Rekunge D.S. Khatri C.K. Chaturbhuj G.U. Sulfated polyborate: An efficient and reusable catalyst for one pot synthesis of Hantzsch 1,4-dihydropyridines derivatives using ammonium carbonate under solvent free conditions. Tetrahedron Lett. 2017 58 12 1240 1244 10.1016/j.tetlet.2017.02.038
    [Google Scholar]
  49. Sharma M.G. Rajani D.P. Patel H.M. Green approach for synthesis of bioactive Hantzsch 1,4-dihydropyridine derivatives based on thiophene moiety via multicomponent reaction. R. Soc. Open Sci. 2017 4 6 170006 10.1098/rsos.170006 28680664
    [Google Scholar]
  50. Srinivasan V.V. Pachamuthu M.P. Maheswari R. Lewis acidic mesoporous Fe-TUD-1 as catalysts for synthesis of Hantzsch 1,4-dihydropyridine derivatives. J. Porous Mater. 2015 22 5 1187 1194 10.1007/s10934‑015‑9995‑8
    [Google Scholar]
  51. Göksu H. Recyclable aluminium oxy-hydroxide supported Pd nanoparticles for selective hydrogenation of nitro compounds via sodium borohydride hydrolysis. New J. Chem. 2015 39 11 8498 8504 10.1039/C5NJ01492A
    [Google Scholar]
  52. Demirci T. Çelik B. Yıldız Y. Eriş S. Arslan M. Sen F. Kilbas B. One-pot synthesis of Hantzsch dihydropyridines using a highly efficient and stable PdRuNi@GO catalyst. RSC Advances 2016 6 80 76948 76956 10.1039/C6RA13142E
    [Google Scholar]
  53. Kusampally U. Dhachapally N. Kola R. Kamatala C.R. Zeolite anchored Zr-ZSM-5 as an eco-friendly, green, and reusable catalyst in Hantzsch synthesis of dihydropyridine derivatives. Mater. Chem. Phys. 2020 242 122497 10.1016/j.matchemphys.2019.122497
    [Google Scholar]
  54. Liu J. Chen L. Cui H. Zhang J. Zhang L. Su C.Y. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014 43 16 6011 6061 10.1039/C4CS00094C 24871268
    [Google Scholar]
  55. Devarajan N. Suresh P. Framework‐copper‐catalyzed c−n cross‐coupling of arylboronic acids with imidazole: Convenient and ligand‐free synthesis of N‐arylimidazoles. ChemCatChem 2016 8 18 2953 2960 10.1002/cctc.201600480
    [Google Scholar]
  56. Jiang J. Yaghi O.M. Brønsted acidity in metal-organic frameworks. Chem. Rev. 2015 115 14 6966 6997 10.1021/acs.chemrev.5b00221 26088535
    [Google Scholar]
  57. Lin Y. Kong C. Chen L. Amine-functionalized metal–organic frameworks: Structure, synthesis and applications. RSC Advances 2016 6 39 32598 32614 10.1039/C6RA01536K
    [Google Scholar]
  58. Devarajan N. Suresh P. MIL-101-SO 3 H metal–organic framework as a Brønsted acid catalyst in Hantzsch reaction: An efficient and sustainable methodology for one-pot synthesis of 1,4-dihydropyridine. New J. Chem. 2019 43 17 6806 6814 10.1039/C9NJ00990F
    [Google Scholar]
  59. Maddila S. Pagadala R. Rana S. Kankala S. Jonnalagadda S.B. Mg–V/CO3 hydrotalcite: An efficient and reusable catalyst for one-pot synthesis of multisubstituted pyridines. Res. Chem. Intermed. 2015 41 11 8269 8278 10.1007/s11164‑014‑1890‑4
    [Google Scholar]
  60. Agrwal A. Kasana V. [Fesipmim]Cl as highly efficient and reusable catalyst for solventless synthesis of dihydropyridine derivatives through Hantzsch reaction. J. Chem. Sci. 2020 132 1 67 10.1007/s12039‑020‑01770‑9
    [Google Scholar]
  61. Bosica G. Demanuele K. Padrón J.M. Puerta A. One-pot multicomponent green Hantzsch synthesis of 1,2-dihydropyridine derivatives with antiproliferative activity. Beilstein J. Org. Chem. 2020 16 2862 2869 10.3762/bjoc.16.235 33299484
    [Google Scholar]
  62. Rahman A. Nehemia P.N. Nyambe M.M. An efficient method for the synthesis of dihydropyridine by Hantzsch reaction with Fe/SiO2 nano heterogeneous catalysts. Bull. Chem. React. Eng. Catal. 2020 15 3 617 630 10.9767/bcrec.15.3.7669.617‑630
    [Google Scholar]
  63. Aghajeri M. Kiasat A.R. Sanaeishoar H. MCM-BP as a novel nanomagnetic reusable basic catalyst for the one pot solvent-free synthesis of dihydropyridine, polyhydroquinoline and polyhydroacridine derivatives via hantzsch multicomponent condensation reaction. Iran. J. Chem. Chem. Eng. 2020 39 35 48 10.30492/ijcce.2020.34298
    [Google Scholar]
  64. Ghosh A. Kavitha C.S. Keri R.S. Fe3O4@cysteine nanocomposite: An efficient and reusable catalyst for the facile, green, one-pot synthesis of 1,4-dihydropyridine via Hantzsch reaction. Chemical Data Collections 2021 33 100688 10.1016/j.cdc.2021.100688
    [Google Scholar]
  65. Sunkara P. Keshavulu M. Puppala V. Kumar P.V. Basude M. Hantzsch synthesis of 1, 4-dihydropyridine derivatives over ZnO/ZrO2 catalyst under solvent free condition. Indian J. Chem. 2021 60 1055 1063
    [Google Scholar]
  66. Rahimi J. Niksefat M. Heidari M. Naderi M. Abbasi H. Tajik Ijdani M. Maleki A. Ammonium metavanadate (NH4VO3): A highly efficient and eco-friendly catalyst for one-pot synthesis of pyridines and 1,4-dihydropyridines. Sci. Rep. 2022 12 1 13687 10.1038/s41598‑022‑17378‑7 35953520
    [Google Scholar]
  67. Sohal H.S. Goyal A. Sharma R. Khare R. One-pot, multicomponent synthesis of symmetrical Hantzsch 1,4-dihydropyridine derivatives using glycerol as clean and green solvent. Eur. J. Chem. 2014 5 1 171 175 10.5155/eurjchem.5.1.171‑175.943
    [Google Scholar]
  68. Xue L. Cheng G. Zhu R. Cui X. Acid-promoted oxidative methylenation of 1,3-dicarbonyl compounds with DMSO: Application to the three-component synthesis of Hantzsch-type pyridines. RSC Advances 2017 7 69 44009 44012 10.1039/C7RA07442E
    [Google Scholar]
  69. Perli M. Govindarajan R. piperazine derivatives: a review of biological activities. World J. Pharm. Res. 2020 9 194 204 10.20959/wjpr202014‑19021
    [Google Scholar]
  70. Ahmad G. Rasool N. Rizwan K. Imran I. Zahoor A.F. Zubair M. Sadiq A. Rashid U. Synthesis, in-vitro cholinesterase inhibition, in-vivo anticonvulsant activity and in-silico exploration of N-(4-methylpyridin-2-yl)thiophene-2-carboxamide analogs. Bioorg. Chem. 2019 92 103216 10.1016/j.bioorg.2019.103216 31491567
    [Google Scholar]
  71. Pradhan J. Goyal A. Synthesis, anticonvulsant activity and QSAR studies of some new pyrazolyl pyridines. Med. Chem. Res. 2016 25 8 1639 1656 10.1007/s00044‑016‑1597‑8
    [Google Scholar]
  72. Yadav R.K. Kumar R. Singh H. Mazumdar A. Salahuddin Chauhan B. Abdullah M.M. Recent insights on synthetic methods and pharmacological potential in relation with structure of benzothiazoles. Med. Chem. 2023 19 4 325 360 10.2174/1573406418666220820110551 35993459
    [Google Scholar]
  73. Ravula S. Bobbala R.R. Kolli B. Synthesis of novel isoxazole functionalized pyrazolo[3,4‐ b ]pyridine derivatives; Their anticancer activity. J. Heterocycl. Chem. 2020 57 6 2535 2538 10.1002/jhet.3968
    [Google Scholar]
  74. Viradiya D. Mirza S. Shaikh F. Kakadiya R. Rathod A. Jain N. Rawal R. Shah A. Design and synthesis of 1, 4-dihydropyridine derivatives as anti-cancer agent. Anticancer. Agents Med. Chem. 2017 17 7 1003 1013 10.2174/1871520616666161206143251 27924733
    [Google Scholar]
  75. Wang X. Chen M. Li Q. Zhang J. Ruan X. Xie Y. Xue W. Synthesis and antiviral activities of novel penta-1,4-diene-3-one oxime derivatives bearing a pyridine moiety. Chem. Pap. 2017 71 7 1225 1233 10.1007/s11696‑016‑0116‑1
    [Google Scholar]
  76. Liu M. Xu Q. Guo S. Zuo R. Hong Y. Luo Y. Li Y. Gong P. Liu Y. Design, synthesis, and structure-activity relationships of novel imidazo[4,5-c]pyridine derivatives as potent non-nucleoside inhibitors of hepatitis C virus NS5B. Bioorg. Med. Chem. 2018 26 9 2621 2631 10.1016/j.bmc.2018.04.029 29681484
    [Google Scholar]
  77. Desai N.C. Patel B.Y. Dave B.P. Synthesis and antimicrobial activity of novel quinoline derivatives bearing pyrazoline and pyridine analogues. Med. Chem. Res. 2017 26 1 109 119 10.1007/s00044‑016‑1732‑6
    [Google Scholar]
  78. Khidre R.E. El-Gogary S.R. Mostafa M.S. Design, synthesis, and antimicrobial evaluation of some novel pyridine, coumarin, and thiazole derivatives. J. Heterocycl. Chem. 2017 54 4 2511 2519 10.1002/jhet.2854
    [Google Scholar]
  79. Ahamed A. Arif I.A. Mateen M. Surendra Kumar R. Idhayadhulla A. Antimicrobial, anticoagulant, and cytotoxic evaluation of multidrug resistance of new 1,4-dihydropyridine derivatives. Saudi J. Biol. Sci. 2018 25 6 1227 1235 10.1016/j.sjbs.2018.03.001 30174527
    [Google Scholar]
  80. Madaiah M. Prashanth M.K. Revanasiddappa H.D. Veeresh B. Synthesis and evaluation of novel imidazo[4,5-c]pyridine derivatives as antimycobacterial agents against Mycobacterium tuberculosis. New J. Chem. 2016 40 11 9194 9204 10.1039/C6NJ02069K
    [Google Scholar]
  81. Lu X. Tang J. Cui S. Wan B. Franzblauc S.G. Zhang T. Zhang X. Ding K. Pyrazolo[1,5-a]pyridine-3-carboxamide hybrids: Design, synthesis and evaluation of anti-tubercular activity. Eur. J. Med. Chem. 2017 125 41 48 10.1016/j.ejmech.2016.09.030 27654393
    [Google Scholar]
  82. Parsons M.E. Ganellin C.R. Histamine and its receptors. Br. J. Pharmacol. 2006 147 S1 S127 S135 10.1038/sj.bjp.0706440 16402096
    [Google Scholar]
  83. Gobinath M. Subramanian N. Alagarsamy V. Nivedhitha S. Solomon V.R. Synthesis of 1-substituted-4-(pyridin-4-yl) [1, 2, 4] triazolo [4, 3-a] quinazolin-5 (4H)-ones as a new class of H1-antihistaminic agents. Trop. J. Pharm. Res. 2015 14 2 271 277 10.4314/tjpr.v14i2.12
    [Google Scholar]
  84. Sajja Y. Vulupala H.R. Bantu R. Nagarapu L. Vasamsetti S.B. Kotamraju S. Nanubolu J.B. Three-component, one-pot synthesis of benzo[6,7]cyclohepta[1,2- b ]pyridine derivatives under catalyst free conditions and evaluation of their anti-inflammatory activity. Bioorg. Med. Chem. Lett. 2016 26 3 858 863 10.1016/j.bmcl.2015.12.078 26748696
    [Google Scholar]
  85. Sadawarte G. Jagatap S. Patil M. Jagrut V. Rajput J.D. Synthesis of substituted pyridine based sulphonamides as an antidiabetic agent. Eur. J. Chem. 2021 12 3 279 283 10.5155/eurjchem.12.3.279‑283.2118
    [Google Scholar]
  86. Adib M. Peytam F. Rahmanian-Jazi M. Mohammadi-Khanaposhtanib M. Mahernia S. Bijanzadeh H.R. Jahani M. Imanparast S. Faramarzi M.A. Mahdavi M. Larijanig B. Design, synthesis, in vitro α-glucosidase inhibition, molecular modeling, and kinetic study of novel coumarin fused pyridine derivatives as potent antidiabetic agents. New J. Chem. 2018 42 17268 17278 10.1039/C8NJ02495B
    [Google Scholar]
  87. Praveenkumar E. Gurrapu N. Kumar Kolluri P. Yerragunta V. Reddy Kunduru B. Subhashini N.J.P. Synthesis, anti-diabetic evaluation and molecular docking studies of 4-(1-aryl-1H-1, 2, 3-triazol-4-yl)-1,4-dihydropyridine derivatives as novel 11-β hydroxysteroid dehydrogenase-1 (11β-HSD1) inhibitors. Bioorg. Chem. 2019 90 103056 10.1016/j.bioorg.2019.103056 31276952
    [Google Scholar]
  88. Ayehunie S. Snell M. Child M. Klausner M. A plasmacytoid dendritic cell (CD123+/CD11c−) based assay system to predict contact allergenicity of chemicals. Toxicology 2009 264 1-2 1 9 10.1016/j.tox.2009.07.021 19665512
    [Google Scholar]
  89. Iba M.M. Nguyen T. Fung J. CYP1A1 induction by pyridine and its metabolites in HepG2 cells. Arch. Biochem. Biophys. 2002 404 2 326 334 10.1016/S0003‑9861(02)00332‑6 12147272
    [Google Scholar]
  90. Lewis D.F.V. Essential requirements for substrate binding affinity and selectivity toward human CYP2 family enzymes. Arch. Biochem. Biophys. 2003 409 1 32 44 10.1016/S0003‑9861(02)00349‑1 12464242
    [Google Scholar]
  91. Katoh M. Nakajima M. Shimada N. Yamazaki H. Yokoi T. Inhibition of human cytochrome P450 enzymes by 1,4-dihydropyridine calcium antagonists: Pediction of in vivo drug-drug interactions. Eur. J. Clin. Pharmacol. 2000 55 11-12 843 852 10.1007/s002280050706 10805063
    [Google Scholar]
  92. Cervantes P.W. Corton J.C. A gene expression biomarker predicts heat shock factor 1 activation in a gene expression compendium. Chem. Res. Toxicol. 2021 34 7 1721 1737 10.1021/acs.chemrestox.0c00510 34170685
    [Google Scholar]
  93. Kawai M. Nakamura H. Sakurada I. Shimokawa H. Tanaka H. Matsumizu M. Ando K. Hattori K. Ohta A. Nukui S. Omura A. Kawamura M. Discovery of novel and orally active NR2B-selective N-methyl-d-aspartate (NMDA) antagonists, pyridinol derivatives with reduced HERG binding affinity. Bioorg. Med. Chem. Lett. 2007 17 20 5533 5536 10.1016/j.bmcl.2007.08.039 17768047
    [Google Scholar]
/content/journals/coc/10.2174/0113852728331961240918115757
Loading
/content/journals/coc/10.2174/0113852728331961240918115757
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test