Skip to content
2000
image of Metal-catalyzed Synthesis of Phenanthrene and its Derivatives: A Core Structure of various Natural Products

Abstract

Phenanthrenes and their dihydro derivatives have attracted considerable attention due to their widespread occurrence in natural products and pharmaceuticals with biological activities, which have led to their application in the treatment of microbial or viral infections, allergies, cancer, and malaria. Nowadays, the transitional metal-catalysed reactions are useful approaches for the synthetic transformation of organic compounds due to high yield and step economy. This approach, owing to the use of non-pre functionalized substrates, minimizes the chemical wastes. Among the various synthetic strategies, metal-catalyzed C-H bond activation and also Heck reactions have recently drawn a lot of interest in synthesizing decorated π-conjugated polycyclic aromatic hydrocarbon. In this review, we have focused on recent progress along with previous strategies to synthesize various phenanthrene and its derivatives by the use of metal-catalyzed reactions and also discussed the mechanistic details of the reaction.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728327237241006203431
2025-01-01
2025-05-20
Loading full text...

Full text loading...

References

  1. Tóth B. Hohmann J. Vasas A. Phenanthrenes: A promising group of plant secondary metabolites. J. Nat. Prod. 2018 81 3 661 678 10.1021/acs.jnatprod.7b00619 29280630
    [Google Scholar]
  2. Kovács A. Vasas A. Hohmann J. Natural phenanthrenes and their biological activity. Phytochemistry 2008 69 5 1084 1110 10.1016/j.phytochem.2007.12.005 18243254
    [Google Scholar]
  3. Li J. Feng W. Dai R. Li B. Recent progress on the identification of phenanthrene derivatives in traditional Chinese medicine and their biological activities. Pharmacol. Res. Mod. Chin. Med. 2022 3 100078 10.1016/j.prmcm.2022.100078
    [Google Scholar]
  4. Yang W. Chen D. Ji Q. Zheng J. Ma Y. Sun H. Zhang Q. Zhang J. He Y. Song T. Molecular mechanisms underlying the anticancer property of Dendrobium in various systems of the human body: A review. Biomed. Pharmacother. 2023 165 115223 10.1016/j.biopha.2023.115223 37523984
    [Google Scholar]
  5. Qi J. Zhou D. Chen G. Li N. Bioactive dihydrophenanthrenes from plants. Studies in Natural Products Chemistry ur-Rahman Atta. Elsevier 2022 74 117 164
    [Google Scholar]
  6. Lee C.L. Chang F.R. Yen M.H. Yu D. Liu Y.N. Bastow K.F. Morris-Natschke S.L. Wu Y.C. Lee K.H. Cytotoxic phenanthrenequinones and 9,10-dihydrophenanthrenes from Calanthe arisanensis . J. Nat. Prod. 2009 72 2 210 213 10.1021/np800622a 19193043
    [Google Scholar]
  7. Kuo C.Y. Schelz Z. Tóth B. Vasas A. Ocsovszki I. Chang F.R. Hohmann J. Zupkó I. Wang H.C. Investigation of natural phenanthrenes and the antiproliferative potential of juncusol in cervical cancer cell lines. Phytomedicine 2019 58 152770 10.1016/j.phymed.2018.11.030 31005716
    [Google Scholar]
  8. Nonpanya N. Prakhongcheep O. Petsri K. Jitjaicham C. Tungsukruthai S. Sritularak B. Chanvorachote P. Ephemeranthol A. Ephemeranthol A suppresses epithelial to mesenchymal transition and FAK-Akt signaling in lung cancer cells. Anticancer Res. 2020 40 9 4989 4999 10.21873/anticanres.14502 32878787
    [Google Scholar]
  9. Kanekar Y. Basha K. Duche S. Gupte R. Kapat A. Regioselective synthesis of phenanthrenes and evaluation of their anti-oxidant based anti-inflammatory potential. Eur. J. Med. Chem. 2013 67 454 463 10.1016/j.ejmech.2013.06.016 23933533
    [Google Scholar]
  10. Badalamenti N. Russi S. Bruno M. Maresca V. Vaglica A. Ilardi V. Zanfardino A. Di Napoli M. Varcamonti M. Cianciullo P. Calice G. Laurino S. Falco G. Basile A. Dihydrophenanthrenes from a sicilian accession of Himantoglossum robertianum (Loisel.) P. delforge showed antioxidant, antimicrobial, and antiproliferative activities. Plants 2021 10 12 2776 10.3390/plants10122776 34961247
    [Google Scholar]
  11. Chen C.C. Wu L.G. Ko F.N. Teng C.M. Antiplatelet aggregation principles of Dendrobium loddigesii . J. Nat. Prod. 1994 57 9 1271 1274 10.1021/np50111a014 7798962
    [Google Scholar]
  12. Adams M. Pacher T. Greger H. Bauer R. Inhibition of leukotriene biosynthesis by stilbenoids from Stemona species. J. Nat. Prod. 2005 68 1 83 85 10.1021/np0497043 15679323
    [Google Scholar]
  13. Saiai A. Jatisatienr A. Pyne S.G. Chemical constituents and biological activity of the extracts from Stemona pierrei . Planta Med. 2007 73 9 432 10.1055/s‑2007‑987212
    [Google Scholar]
  14. Bhummaphan N. Petpiroon N. Prakhongcheep O. Sritularak B. Chanvorachote P. Lusianthridin targeting of lung cancer stem cells via Src-STAT3 suppression. Phytomedicine 2019 62 152932 10.1016/j.phymed.2019.152932 31100681
    [Google Scholar]
  15. Tang X. Liao Q. Li Q. Jiang L. Li W. Xu J. Xiong A. Wang R. Zhao J. Wang Z. Ding L. Yang L. Lusianthridin ameliorates high fat diet-induced metabolic dysfunction-associated fatty liver disease via activation of FXR signaling pathway. Eur. J. Pharmacol. 2024 965 176196 10.1016/j.ejphar.2023.176196 38006926
    [Google Scholar]
  16. Ribarič S. The pharmacological properties and therapeutic use of apomorphine. Molecules 2012 17 5 5289 5309 10.3390/molecules17055289 22565480
    [Google Scholar]
  17. Rayanil K. Prempree C. Nimgirawath S. First total syntheses of natural phenanthrene alkaloids, uvariopsamine, noruvariopsamine, 8-hydroxystephenanthrine, 8-methoxyuvariopsine, thalihazine, and secophoebine, and their potential as antimalarial agents. Chem. Pharm. Bull. (Tokyo) 2022 70 7 483 491 10.1248/cpb.c22‑00140 35786567
    [Google Scholar]
  18. Di Sotto A. Valipour M. Azari A. Di Giacomo S. Irannejad H. Benzoindolizidine alkaloids tylophorine and lycorine and their analogues with antiviral, anti-inflammatory, and anticancer properties: promises and challenges. Biomedicines 2023 11 10 2619 10.3390/biomedicines11102619 37892993
    [Google Scholar]
  19. Chemler S. Phenanthroindolizidines and phenanthroquinolizidines: Promising alkaloids for anti-cancer therapy. Curr. Bioact. Compd. 2009 5 1 2 19 10.2174/157340709787580928 20160962
    [Google Scholar]
  20. Fu Y. Lee S.K. Min H.Y. Lee T. Lee J. Cheng M. Kim S. Synthesis and structure–activity studies of antofine analogues as potential anticancer agents. Bioorg. Med. Chem. Lett. 2007 17 1 97 100 10.1016/j.bmcl.2006.09.080 17049857
    [Google Scholar]
  21. Banwell M.G. Bezos A. Burns C. Kruszelnicki I. Parish C.R. Su S. Sydnes M.O. C8c–C15 monoseco-analogues of the phenanthroquinolizidine alkaloids julandine and cryptopleurine exhibiting potent anti-angiogenic properties. Bioorg. Med. Chem. Lett. 2006 16 1 181 185 10.1016/j.bmcl.2005.09.032 16236503
    [Google Scholar]
  22. Ain Q.U. Khan H. Mubarak M.S. Pervaiz A. Plant alkaloids as antiplatelet agent: drugs of the future in the light of recent developments. Front. Pharmacol. 2016 7 292 10.3389/fphar.2016.00292 27713699
    [Google Scholar]
  23. Śliwiński T. Kowalczyk T. Sitarek P. Kolanowska M. Orchidaceae-derived anticancer agents: A review. Cancers (Basel) 2022 14 3 754 10.3390/cancers14030754 35159021
    [Google Scholar]
  24. Majumder P.L. Pal S. Rotundatin, a new 9,10-didydrophenanthrene derivative from Dendrobium rotundatum . Phytochemistry 1992 31 3225 3228 10.1016/0031‑9422(92)83480‑M
    [Google Scholar]
  25. Majumder P.L. Datta N. Sarkar A.K. Chakraborti J. Flavidin. A Novel 9,10-dihydrophenanthrene derivative of the orchids Coelogyne flavida, Pholidota articulata and Otochilus fusca . J. Nat. Prod. 1982 45 6 730 732 10.1021/np50024a016
    [Google Scholar]
  26. Majumder P.L. Lahiri S. Lusianthrin and lusianthridin, two stilbenoids from the orchid Lusia indivisa . Phytochemistry 1990 29 2 621 624 10.1016/0031‑9422(90)85129‑4
    [Google Scholar]
  27. Majumder P. Bandyopadhyay D. Joardar S. Coelogin and coeloginin: Two novel 9,10-dihydrophenanthrene derivatives from the orchid Coelogyne cristata . J. Chem. Soc., Perkin Trans. 1 1982 1 1131 10.1039/p19820001131
    [Google Scholar]
  28. Majumder P.L. Banerjee S. Structure of flavanthrin, the first dimeric 9,10-dihydrophenanthrene derivative from the orchid. Tetrahedron 1988 44 23 7303 7308 10.1016/S0040‑4020(01)86102‑0
    [Google Scholar]
  29. Majumder P.L. Banerjee S. Two stilbenoids from the orchid Eria flava . Phytochemistry 1990 29 3052 3055 10.1016/0031‑9422(90)87141‑G
    [Google Scholar]
  30. Majumder P.L. Kar A. Confusarin and confusaridin two phenanthrene derivatives of the orchid Eria confusa . Phytochemistry 1987 26 4 1127 1129 10.1016/S0031‑9422(00)82363‑8
    [Google Scholar]
  31. Li J. Li C. Sun L. Zhang X. Cheng S. Hu W. Phenanthrene derivatives combined charge transport properties and strong solid-state emission. Sci. China Chem. 2019 62 7 916 920 10.1007/s11426‑019‑9451‑x
    [Google Scholar]
  32. Tian H. Shi J. Dong S. Yan D. Wang L. Geng Y. Wang F. Novel highly stable semiconductors based on phenanthrene for organic field-effect transistors. Chem. Commun. (Camb.) 2006 33 3498 3500 10.1039/b606759j 16921424
    [Google Scholar]
  33. Raouafi S. Aloui F. Raouafi A. Hassine B.B. Synthesis and characterization of phenanthrene derivatives for optoelectronic applications. C. R. Chim. 2017 20 7 697 703 10.1016/j.crci.2017.03.004
    [Google Scholar]
  34. Wang C. Dong H. Hu W. Liu Y. Zhu D. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem. Rev. 2012 112 4 2208 2267 10.1021/cr100380z 22111507
    [Google Scholar]
  35. Kubozono Y. Hyodo K. Hamao S. Shimo Y. Mori H. Nishihara Y. Transistor properties of 2,7-dialkyl-substituted phenanthro[2,1-b:7,8-b′]dithiophene. Sci. Rep. 2016 6 1 38535 10.1038/srep38535 27922104
    [Google Scholar]
  36. Pschorr R. New synthesis of phenanthrene and its derivatives. Ber. Dtsch. Chem. Ges. 1896 29 1 496 501 10.1002/cber.18960290198
    [Google Scholar]
  37. Leake P.H. The Pschorr Synthesis. Chem. Rev. 1956 56 1 27 48 10.1021/cr50007a002
    [Google Scholar]
  38. Harvey R. Advances in the synthesis of polycyclic aromatic compounds. Curr. Org. Chem. 2004 8 4 303 323 10.2174/1385272043485918
    [Google Scholar]
  39. Floyd A.J. Dyke S.F. Ward S.E. The synthesis of phenanthrenes. Chem. Rev. 1976 76 5 509 562 10.1021/cr60303a001
    [Google Scholar]
  40. Bera K. Sarkar S. Jalal S. Jana U. Synthesis of substituted phenanthrene by iron(III)-catalyzed intramolecular alkyne-carbonyl metathesis. J. Org. Chem. 2012 77 19 8780 8786 10.1021/jo301371n 22954237
    [Google Scholar]
  41. Bhojgude S.S. Bhunia A. Gonnade R.G. Biju A.T. Efficient synthesis of 9-aryldihydrophenanthrenes by a cascade reaction involving arynes and styrenes. Org. Lett. 2014 16 3 676 679 10.1021/ol4033094 24405077
    [Google Scholar]
  42. Kubo T. Fujita T. Ichikawa J. Nickel-catalyzed [4 + 2] cycloaddition of styrenes with arynes via 1:1 cross-coupling: Synthesis of 9,10-dihydrophenanthrenes. Chem. Lett. 2020 49 3 264 266 10.1246/cl.190906
    [Google Scholar]
  43. Lin S. You T. An efficient one-pot approach to phenanthrene derivatives using a catalyzed tandem Ullmann-pinacol coupling reaction. Tetrahedron 2008 64 42 9906 9910 10.1016/j.tet.2008.08.004
    [Google Scholar]
  44. Lin S-Z. Chen Q-A. You T-P. A novel nickel(0)-catalyzed cascade ullmann–pinacol coupling: From o-bromobenzaldehyde to trans-9,10-dihydroxy-9,10-dihydrophenanthrene. Synlett 2007 13 2101 2105
    [Google Scholar]
  45. Quintana I. Boersma A.J. Peña D. Pérez D. Guitián E. Metal-catalyzed cotrimerization of arynes and alkenes. Org. Lett. 2006 8 15 3347 3349 10.1021/ol0611954 16836402
    [Google Scholar]
  46. Sambaiah T. Li L.P. Huang D.J. Lin C.H. Rayabarapu D.K. Cheng C.H. Highly regio- and stereoselective cocyclotrimerization and linear cotrimerization of α,β-unsaturated carbonyl compounds with alkynes catalyzed by nickel complexes. J. Org. Chem. 1999 64 10 3663 3670 10.1021/jo9900580 11674495
    [Google Scholar]
  47. Hsieh J.C. Rayabarapu D.K. Cheng C.H. Nickel-catalyzed highly chemoselective cocyclotrimerization of arynes with allenes: A novel method for 10-methylene-9,10-dihydrophenanthrenes. Chem. Commun. (Camb.) 2004 5 532 533 10.1039/b315795d 14973593
    [Google Scholar]
  48. Suzuki Y. Nemoto T. Kakugawa K. Hamajima A. Hamada Y. Asymmetric synthesis of chiral 9,10-dihydrophenanthrenes using Pd-catalyzed asymmetric intramolecular Friedel-Crafts allylic alkylation of phenols. Org. Lett. 2012 14 9 2350 2353 10.1021/ol300770w 22509956
    [Google Scholar]
  49. Helmchen G. Pfaltz A. Phosphinooxazolines A. Phosphinooxazolines--A new class of versatile, modular P,N-ligands for asymmetric catalysis. Acc. Chem. Res. 2000 33 6 336 345 10.1021/ar9900865 10891051
    [Google Scholar]
  50. Trost B.M. Schäffner B. Osipov M. Wilton D.A.A. Palladium-catalyzed decarboxylative asymmetric allylic alkylation of β-ketoesters: An unusual counterion effect. Angew. Chem. Int. Ed. 2011 50 15 3548 3551 10.1002/anie.201007803 21452369
    [Google Scholar]
  51. Trost B.M. Lehr K. Michaelis D.J. Xu J. Buckl A.K. Palladium-catalyzed asymmetric allylic alkylation of 2-acylimidazoles as ester enolate equivalents. J. Am. Chem. Soc. 2010 132 26 8915 8917 10.1021/ja103771w 20550121
    [Google Scholar]
  52. Jana R. Chatterjee I. Samanta S. Ray J.K. Novel and rapid palladium-assisted 6π electrocyclic reaction affording 9,10-dihydrophenanthrene and its analogues. Org. Lett. 2008 10 21 4795 4797 10.1021/ol801882t 18828592
    [Google Scholar]
  53. Lan Y. Wang C. Sowa J.R. Jr Wu Y.D. A theoretical investigation on the mechanism of a palladium-mediated formal 6π electrocyclic synthesis of 9,10-dihydrophenanthrenes. J. Org. Chem. 2010 75 3 951 954 10.1021/jo902163v 20039689
    [Google Scholar]
  54. Peña D. Escudero S. Pérez D. Guitián E. Castedo L. Efficient palladium-catalyzed cyclotrimerization of arynes: Synthesis of triphenylenes. Angew. Chem. Int. Ed. 1998 37 19 2659 2661 29711619
    [Google Scholar]
  55. Peña D. Pérez D. Guitián E. Castedo L. Palladium-catalyzed cocyclization of arynes with alkynes: Selective synthesis of phenanthrenes and naphthalenes. J. Am. Chem. Soc. 1999 121 24 5827 5828 10.1021/ja9907111
    [Google Scholar]
  56. Yoshikawa E. Radhakrishnan K.V. Yamamoto Y. Palladium-catalyzed controlled carbopalladation of benzyne. J. Am. Chem. Soc. 2000 122 30 7280 7286 10.1021/ja001205a
    [Google Scholar]
  57. Yoshikawa E. Yamamoto Y. Palladium-catalyzed intermolecular controlled insertion of benzyne-benzyne-alkene and benzyne-alkyne-alkene—Synthesis of phenanthrene and naphthalene derivatives. Angew. Chem. Int. Ed. 2000 39 1 173 175 10649365
    [Google Scholar]
  58. Liu Y.L. Liang Y. Pi S.F. Huang X.C. Li J.H. Palladium-catalyzed cocyclotrimerization of allenes with arynes: Selective synthesis of phenanthrenes. J. Org. Chem. 2009 74 8 3199 3202 10.1021/jo900117c 19296667
    [Google Scholar]
  59. Hwu J.R. Swain S.P. Silicon-induced phenanthrene formation from benzynes and allenylsilanes. Chemistry 2013 19 21 6556 6560 10.1002/chem.201203738 23576185
    [Google Scholar]
  60. Westmijze H. Vermeer P. A new and general route to 1-Trimethylsilyl-1,2-alkadienes. Synthesis 1979 1979 5 390 392 10.1055/s‑1979‑28697
    [Google Scholar]
  61. Carroll L. Pacheco M.C. Garcia L. Gouverneur V. Synthesis of propargylic fluorides from allenylsilanes. Chem. Commun. (Camb.) 2006 39 4113 4115 10.1039/b610013a 17024266
    [Google Scholar]
  62. Marshall J.A. Chiral allylic and allenic metal reagents for organic synthesis. J. Org. Chem. 2007 72 22 8153 8166 10.1021/jo070787c 17595141
    [Google Scholar]
  63. Colvin E. Silicon in Organic Synthesis. Perlmutter P. Buckommgham A.D. Danishefsky S. London Elsevier, Butterworths 1981 165 10.1016/B978‑0‑408‑10831‑7.50019‑6
    [Google Scholar]
  64. Tadross P.M. Stoltz B.M. A comprehensive history of arynes in natural product total synthesis. Chem. Rev. 2012 112 6 3550 3577 10.1021/cr200478h 22443517
    [Google Scholar]
  65. Wenk H.H. Winkler M. Sander W. One century of aryne chemistry. Angew. Chem. Int. Ed. 2003 42 5 502 528 10.1002/anie.200390151 12569480
    [Google Scholar]
  66. Hwu J.R. Chang Hsu Y. Stereospecific benzyne-induced olefination from β-amino alcohols and its application to the total synthesis of (-)-1-deoxy-D-fructose. Chemistry 2011 17 17 4727 4731 10.1002/chem.201001735 21365692
    [Google Scholar]
  67. Chang Hsu Y. Hwu J.R. Deoxygenative olefination reaction as the key step in the syntheses of deoxy and iminosugars. Chemistry 2012 18 25 7686 7690 10.1002/chem.201201060 22615220
    [Google Scholar]
  68. Wasserman H.H. Keller L.S. The reactions of benzyne with allenes. J. Chem. Soc. D 1970 22 1483b 1484 10.1039/c2970001483b
    [Google Scholar]
  69. Gu Y. Sun X. Wan B. Lu Z. Zhang Y. C(sp 3 )–H activation-enabled cross-coupling of two aryl halides: An approach to 9,10-dihydrophenanthrenes. Chem. Commun. (Camb.) 2020 56 74 10942 10945 10.1039/D0CC04602G 32940283
    [Google Scholar]
  70. Amatore C. Azzabi M. Jutand A. Role and effects of halide ions on the rates and mechanisms of oxidative addition of iodobenzene to low-ligated zerovalent palladium complexes Pd0(PPh3)2. J. Am. Chem. Soc. 1991 113 22 8375 8384 10.1021/ja00022a026
    [Google Scholar]
  71. Piber M. Jensen A.E. Rottländer M. Knochel P. New efficient nickel- and palladium-catalyzed cross-coupling reactions mediated by tetrabutylammonium iodide. Org. Lett. 1999 1 9 1323 1326 10.1021/ol9907872
    [Google Scholar]
  72. Zhao Q. Fu W.C. Kwong F.Y. Palladium‐catalyzed regioselective aromatic extension of internal alkynes through a norbornene‐controlled reaction sequence. Angew. Chem. Int. Ed. 2018 57 13 3381 3385 10.1002/anie.201713207 29385308
    [Google Scholar]
  73. Cai S.L. Li Y. Yang C. Sheng J. Wang X.S. NHC ligand-enabled, palladium-catalyzed non-directed C(sp 3 )–H carbonylation to access indanone cores. ACS Catal. 2019 9 11 10299 10304 10.1021/acscatal.9b03426
    [Google Scholar]
  74. Gutiérrez-Bonet Á. Juliá-Hernández F. de Luis B. Martin R. Pd-catalyzed C(sp 3 )–H functionalization/carbenoid insertion: All-carbon quaternary centers via multiple C–C bond formation. J. Am. Chem. Soc. 2016 138 20 6384 6387 10.1021/jacs.6b02867 27145029
    [Google Scholar]
  75. Tan B. Bai L. Ding P. Liu J. Wang Y. Luan X. Palladium‐catalyzed intermolecular [4+1] spiroannulation by C(sp 3 )−H activation and naphthol dearomatization. Angew. Chem. Int. Ed. 2019 58 5 1474 1478 10.1002/anie.201813202 30537202
    [Google Scholar]
  76. Sun X. Wu Z. Qi W. Ji X. Cheng C. Zhang Y. Synthesis of indolines by palladium-catalyzed intermolecular amination of unactivated C(sp 3 )–H bonds. Org. Lett. 2019 21 16 6508 6512 10.1021/acs.orglett.9b02386 31380645
    [Google Scholar]
  77. Barder T.E. Walker S.D. Martinelli J.R. Buchwald S.L. Catalysts for Suzuki-Miyaura coupling processes: Scope and studies of the effect of ligand structure. J. Am. Chem. Soc. 2005 127 13 4685 4696 10.1021/ja042491j 15796535
    [Google Scholar]
  78. Dyker G. Palladium‐catalyzed C-H activation of tert ‐butyl groups: A simple synthesis of 1,2‐dihydrocyclobutabenzene derivatives. Angew. Chem. Int. Ed. Engl. 1994 33 1 103 105 10.1002/anie.199401031
    [Google Scholar]
  79. Gou B.B. Yang H. Sun H.R. Chen J. Wu J. Zhou L. Phenanthrene synthesis by palladium(II)-catalyzed γ-C(sp 2 )–H arylation, cyclization, and migration Tandem reaction. Org. Lett. 2019 21 1 80 84 10.1021/acs.orglett.8b03511 30543434
    [Google Scholar]
  80. Carey F.A. Sunberg R.J. Reactions involving transition metals. Advanced Organic Chemistry. Advanced Organic Chemistry. Boston Springer Reactions involving transition metals. 2007 10.1007/978‑0‑387‑71481‑3_8.
    [Google Scholar]
  81. Jones S.B. He L. Castle S.L. Total synthesis of (+/-)-hasubanonine. Org. Lett. 2006 8 17 3757 3760 10.1021/ol0613564 16898810
    [Google Scholar]
  82. Iuliano A. Piccioli P. Fabbri D. Ring-closing olefin metathesis of 2,2′-divinylbiphenyls: A novel and general approach to phenanthrenes. Org. Lett. 2004 6 21 3711 3714 10.1021/ol048668w 15469330
    [Google Scholar]
  83. Katz T.J. Rothchild R. Mechanism of the olefin metathesis of 2,2′-divinylbiphenyl. J. Am. Chem. Soc. 1976 98 9 2519 2526 10.1021/ja00425a021
    [Google Scholar]
  84. Grubbs R.H. Olefin metathesis. Tetrahedron 2004 60 34 7117 7140 10.1016/j.tet.2004.05.124
    [Google Scholar]
  85. Walker E.R. Leung S.Y. Barrett A.G.M. Studies towards the total synthesis of Sch 56036; isoquinolinone synthesis and the synthesis of phenanthrenes. Tetrahedron Lett. 2005 46 38 6537 6540 10.1016/j.tetlet.2005.07.084
    [Google Scholar]
  86. Samanta K. Kar G.K. Sarkar A.K. Intramolecular gold(III) catalysed Diels–Alder reaction of 1-(2-furyl)-hex-1-en-5-yn-3-ol derivatives: A short and generalised route for the synthesis of hydroxyphenanthrene derivatives. Tetrahedron Lett. 2012 53 11 1376 1379 10.1016/j.tetlet.2012.01.018
    [Google Scholar]
/content/journals/coc/10.2174/0113852728327237241006203431
Loading
/content/journals/coc/10.2174/0113852728327237241006203431
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: natural products ; aromatic hydrocarbon ; phenanthrene ; polycyclic ; Metal-catalyzed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test