Skip to content
2000
Volume 29, Issue 14
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Phenanthrenes and their dihydro derivatives have attracted considerable attention due to their widespread occurrence in natural products and pharmaceuticals with biological activities, which have led to their application in the treatment of microbial or viral infections, allergies, cancer, and malaria. Nowadays, the transitional metal-catalysed reactions are useful approaches for the synthetic transformation of organic compounds due to high yield and step economy. This approach, owing to the use of non-pre functionalized substrates, minimizes the chemical wastes. Among the various synthetic strategies, metal-catalyzed C-H bond activation and also Heck reactions have recently drawn a lot of interest in synthesizing decorated π-conjugated polycyclic aromatic hydrocarbon. In this review, we have focused on recent progress along with previous strategies to synthesize various phenanthrene and its derivatives by the use of metal-catalyzed reactions and also discussed the mechanistic details of the reaction.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728327237241006203431
2025-01-01
2025-06-04
Loading full text...

Full text loading...

References

  1. TóthB. HohmannJ. VasasA. Phenanthrenes: A promising group of plant secondary metabolites.J. Nat. Prod.201881366167810.1021/acs.jnatprod.7b0061929280630
    [Google Scholar]
  2. KovácsA. VasasA. HohmannJ. Natural phenanthrenes and their biological activity.Phytochemistry20086951084111010.1016/j.phytochem.2007.12.00518243254
    [Google Scholar]
  3. LiJ. FengW. DaiR. LiB. Recent progress on the identification of phenanthrene derivatives in traditional Chinese medicine and their biological activities.Pharmacol. Res. Mod. Chin. Med.2022310007810.1016/j.prmcm.2022.100078
    [Google Scholar]
  4. YangW. ChenD. JiQ. ZhengJ. MaY. SunH. ZhangQ. ZhangJ. HeY. SongT. Molecular mechanisms underlying the anticancer property of Dendrobium in various systems of the human body: A review.Biomed. Pharmacother.202316511522310.1016/j.biopha.2023.11522337523984
    [Google Scholar]
  5. QiJ. ZhouD. ChenG. LiN. Bioactive dihydrophenanthrenes from plants.Studies in Natural Products Chemistry ur-RahmanAtta. Elsevier202274117164
    [Google Scholar]
  6. LeeC.L. ChangF.R. YenM.H. YuD. LiuY.N. BastowK.F. Morris-NatschkeS.L. WuY.C. LeeK.H. Cytotoxic phenanthrenequinones and 9,10-dihydrophenanthrenes from Calanthe arisanensis.J. Nat. Prod.200972221021310.1021/np800622a19193043
    [Google Scholar]
  7. KuoC.Y. SchelzZ. TóthB. VasasA. OcsovszkiI. ChangF.R. HohmannJ. ZupkóI. WangH.C. Investigation of natural phenanthrenes and the antiproliferative potential of juncusol in cervical cancer cell lines.Phytomedicine20195815277010.1016/j.phymed.2018.11.03031005716
    [Google Scholar]
  8. NonpanyaN. PrakhongcheepO. PetsriK. JitjaichamC. TungsukruthaiS. SritularakB. ChanvorachoteP. EphemerantholA. Ephemeranthol A suppresses epithelial to mesenchymal transition and FAK-Akt signaling in lung cancer cells.Anticancer Res.20204094989499910.21873/anticanres.1450232878787
    [Google Scholar]
  9. KanekarY. BashaK. DucheS. GupteR. KapatA. Regioselective synthesis of phenanthrenes and evaluation of their anti-oxidant based anti-inflammatory potential.Eur. J. Med. Chem.20136745446310.1016/j.ejmech.2013.06.01623933533
    [Google Scholar]
  10. BadalamentiN. RussiS. BrunoM. MarescaV. VaglicaA. IlardiV. ZanfardinoA. Di NapoliM. VarcamontiM. CianciulloP. CaliceG. LaurinoS. FalcoG. BasileA. Dihydrophenanthrenes from a sicilian accession of Himantoglossum robertianum (Loisel.) P. delforge showed antioxidant, antimicrobial, and antiproliferative activities.Plants20211012277610.3390/plants1012277634961247
    [Google Scholar]
  11. ChenC.C. WuL.G. KoF.N. TengC.M. Antiplatelet aggregation principles of Dendrobium loddigesii.J. Nat. Prod.19945791271127410.1021/np50111a0147798962
    [Google Scholar]
  12. AdamsM. PacherT. GregerH. BauerR. Inhibition of leukotriene biosynthesis by stilbenoids from Stemona species.J. Nat. Prod.2005681838510.1021/np049704315679323
    [Google Scholar]
  13. SaiaiA. JatisatienrA. PyneS.G. Chemical constituents and biological activity of the extracts from Stemona pierrei.Planta Med.200773943210.1055/s‑2007‑987212
    [Google Scholar]
  14. BhummaphanN. PetpiroonN. PrakhongcheepO. SritularakB. ChanvorachoteP. Lusianthridin targeting of lung cancer stem cells via Src-STAT3 suppression.Phytomedicine20196215293210.1016/j.phymed.2019.15293231100681
    [Google Scholar]
  15. TangX. LiaoQ. LiQ. JiangL. LiW. XuJ. XiongA. WangR. ZhaoJ. WangZ. DingL. YangL. Lusianthridin ameliorates high fat diet-induced metabolic dysfunction-associated fatty liver disease via activation of FXR signaling pathway.Eur. J. Pharmacol.202496517619610.1016/j.ejphar.2023.17619638006926
    [Google Scholar]
  16. RibaričS. The pharmacological properties and therapeutic use of apomorphine.Molecules20121755289530910.3390/molecules1705528922565480
    [Google Scholar]
  17. RayanilK. PrempreeC. NimgirawathS. First total syntheses of natural phenanthrene alkaloids, uvariopsamine, noruvariopsamine, 8-hydroxystephenanthrine, 8-methoxyuvariopsine, thalihazine, and secophoebine, and their potential as antimalarial agents.Chem. Pharm. Bull. (Tokyo)202270748349110.1248/cpb.c22‑0014035786567
    [Google Scholar]
  18. Di SottoA. ValipourM. AzariA. Di GiacomoS. IrannejadH. Benzoindolizidine alkaloids tylophorine and lycorine and their analogues with antiviral, anti-inflammatory, and anticancer properties: promises and challenges.Biomedicines20231110261910.3390/biomedicines1110261937892993
    [Google Scholar]
  19. ChemlerS. Phenanthroindolizidines and phenanthroquinolizidines: Promising alkaloids for anti-cancer therapy.Curr. Bioact. Compd.20095121910.2174/15734070978758092820160962
    [Google Scholar]
  20. FuY. LeeS.K. MinH.Y. LeeT. LeeJ. ChengM. KimS. Synthesis and structure–activity studies of antofine analogues as potential anticancer agents.Bioorg. Med. Chem. Lett.20071719710010.1016/j.bmcl.2006.09.08017049857
    [Google Scholar]
  21. BanwellM.G. BezosA. BurnsC. KruszelnickiI. ParishC.R. SuS. SydnesM.O. C8c–C15 monoseco-analogues of the phenanthroquinolizidine alkaloids julandine and cryptopleurine exhibiting potent anti-angiogenic properties.Bioorg. Med. Chem. Lett.200616118118510.1016/j.bmcl.2005.09.03216236503
    [Google Scholar]
  22. AinQ.U. KhanH. MubarakM.S. PervaizA. Plant alkaloids as antiplatelet agent: Drugs of the future in the light of recent developments.Front. Pharmacol.2016729210.3389/fphar.2016.0029227713699
    [Google Scholar]
  23. ŚliwińskiT. KowalczykT. SitarekP. KolanowskaM. Orchidaceae-derived anticancer agents: A review.Cancers (Basel)202214375410.3390/cancers1403075435159021
    [Google Scholar]
  24. MajumderP.L. PalS. Rotundatin, a new 9,10-didydrophenanthrene derivative from Dendrobium rotundatum.Phytochemistry1992313225322810.1016/0031‑9422(92)83480‑M
    [Google Scholar]
  25. MajumderP.L. DattaN. SarkarA.K. ChakrabortiJ. Flavidin. A novel 9,10-dihydrophenanthrene derivative of the orchids Coelogyne flavida, Pholidota articulata and Otochilus fusca.J. Nat. Prod.198245673073210.1021/np50024a016
    [Google Scholar]
  26. MajumderP.L. LahiriS. Lusianthrin and lusianthridin, two stilbenoids from the orchid Lusia indivisa.Phytochemistry199029262162410.1016/0031‑9422(90)85129‑4
    [Google Scholar]
  27. MajumderP. BandyopadhyayD. JoardarS. Coelogin and coeloginin: Two novel 9,10-dihydrophenanthrene derivatives from the orchid Coelogyne cristata.J. Chem. Soc., Perkin Trans. 119821113110.1039/p19820001131
    [Google Scholar]
  28. MajumderP.L. BanerjeeS. Structure of flavanthrin, the first dimeric 9,10-dihydrophenanthrene derivative from the orchid.Tetrahedron198844237303730810.1016/S0040‑4020(01)86102‑0
    [Google Scholar]
  29. MajumderP.L. BanerjeeS. Two stilbenoids from the orchid Eria flava.Phytochemistry1990293052305510.1016/0031‑9422(90)87141‑G
    [Google Scholar]
  30. MajumderP.L. KarA. Confusarin and confusaridin two phenanthrene derivatives of the orchid Eria confusa.Phytochemistry19872641127112910.1016/S0031‑9422(00)82363‑8
    [Google Scholar]
  31. LiJ. LiC. SunL. ZhangX. ChengS. HuW. Phenanthrene derivatives combined charge transport properties and strong solid-state emission.Sci. China Chem.201962791692010.1007/s11426‑019‑9451‑x
    [Google Scholar]
  32. TianH. ShiJ. DongS. YanD. WangL. GengY. WangF. Novel highly stable semiconductors based on phenanthrene for organic field-effect transistors.Chem. Commun. (Camb.)2006333498350010.1039/b606759j16921424
    [Google Scholar]
  33. RaouafiS. AlouiF. RaouafiA. HassineB.B. Synthesis and characterization of phenanthrene derivatives for optoelectronic applications.C. R. Chim.201720769770310.1016/j.crci.2017.03.004
    [Google Scholar]
  34. WangC. DongH. HuW. LiuY. ZhuD. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics.Chem. Rev.201211242208226710.1021/cr100380z22111507
    [Google Scholar]
  35. KubozonoY. HyodoK. HamaoS. ShimoY. MoriH. NishiharaY. Transistor properties of 2,7-dialkyl-substituted phenanthro[2,1-b:7,8-b′]dithiophene.Sci. Rep.2016613853510.1038/srep3853527922104
    [Google Scholar]
  36. PschorrR. New synthesis of phenanthrene and its derivatives.Ber. Dtsch. Chem. Ges.189629149650110.1002/cber.18960290198
    [Google Scholar]
  37. LeakeP.H. The Pschorr synthesis.Chem. Rev.1956561274810.1021/cr50007a002
    [Google Scholar]
  38. HarveyR. Advances in the synthesis of polycyclic aromatic compounds.Curr. Org. Chem.20048430332310.2174/1385272043485918
    [Google Scholar]
  39. FloydA.J. DykeS.F. WardS.E. The synthesis of phenanthrenes.Chem. Rev.197676550956210.1021/cr60303a001
    [Google Scholar]
  40. BeraK. SarkarS. JalalS. JanaU. Synthesis of substituted phenanthrene by iron(III)-catalyzed intramolecular alkyne-carbonyl metathesis.J. Org. Chem.201277198780878610.1021/jo301371n22954237
    [Google Scholar]
  41. BhojgudeS.S. BhuniaA. GonnadeR.G. BijuA.T. Efficient synthesis of 9-aryldihydrophenanthrenes by a cascade reaction involving arynes and styrenes.Org. Lett.201416367667910.1021/ol403309424405077
    [Google Scholar]
  42. KuboT. FujitaT. IchikawaJ. Nickel-catalyzed [4 + 2] cycloaddition of styrenes with arynes via 1:1 cross-coupling: Synthesis of 9,10-dihydrophenanthrenes.Chem. Lett.202049326426610.1246/cl.190906
    [Google Scholar]
  43. LinS. YouT. An efficient one-pot approach to phenanthrene derivatives using a catalyzed tandem Ullmann-pinacol coupling reaction.Tetrahedron200864429906991010.1016/j.tet.2008.08.004
    [Google Scholar]
  44. LinS-Z. ChenQ-A. YouT-P. A novel nickel(0)-catalyzed cascade ullmann–pinacol coupling: From o-bromobenzaldehyde to trans-9,10-dihydroxy-9,10-dihydrophenanthrene.Synlett20071321012105
    [Google Scholar]
  45. QuintanaI. BoersmaA.J. PeñaD. PérezD. GuitiánE. Metal-catalyzed cotrimerization of arynes and alkenes.Org. Lett.20068153347334910.1021/ol061195416836402
    [Google Scholar]
  46. SambaiahT. LiL.P. HuangD.J. LinC.H. RayabarapuD.K. ChengC.H. Highly regio- and stereoselective cocyclotrimerization and linear cotrimerization of α,β-unsaturated carbonyl compounds with alkynes catalyzed by nickel complexes.J. Org. Chem.199964103663367010.1021/jo990058011674495
    [Google Scholar]
  47. HsiehJ.C. RayabarapuD.K. ChengC.H. Nickel-catalyzed highly chemoselective cocyclotrimerization of arynes with allenes: A novel method for 10-methylene-9,10-dihydrophenanthrenes.Chem. Commun. (Camb.)2004553253310.1039/b315795d14973593
    [Google Scholar]
  48. SuzukiY. NemotoT. KakugawaK. HamajimaA. HamadaY. Asymmetric synthesis of chiral 9,10-dihydrophenanthrenes using Pd-catalyzed asymmetric intramolecular Friedel-Crafts allylic alkylation of phenols.Org. Lett.20121492350235310.1021/ol300770w22509956
    [Google Scholar]
  49. HelmchenG. PfaltzA. PhosphinooxazolinesA. Phosphinooxazolines-A new class of versatile, modular P,N-ligands for asymmetric catalysis.Acc. Chem. Res.200033633634510.1021/ar990086510891051
    [Google Scholar]
  50. TrostB.M. SchäffnerB. OsipovM. WiltonD.A.A. Palladium-catalyzed decarboxylative asymmetric allylic alkylation of β-ketoesters: An unusual counterion effect.Angew. Chem. Int. Ed.201150153548355110.1002/anie.20100780321452369
    [Google Scholar]
  51. TrostB.M. LehrK. MichaelisD.J. XuJ. BucklA.K. Palladium-catalyzed asymmetric allylic alkylation of 2-acylimidazoles as ester enolate equivalents.J. Am. Chem. Soc.2010132268915891710.1021/ja103771w20550121
    [Google Scholar]
  52. JanaR. ChatterjeeI. SamantaS. RayJ.K. Novel and rapid palladium-assisted 6π electrocyclic reaction affording 9,10-dihydrophenanthrene and its analogues.Org. Lett.200810214795479710.1021/ol801882t18828592
    [Google Scholar]
  53. LanY. WangC. SowaJ.R.Jr WuY.D. A theoretical investigation on the mechanism of a palladium-mediated formal 6π electrocyclic synthesis of 9,10-dihydrophenanthrenes.J. Org. Chem.201075395195410.1021/jo902163v20039689
    [Google Scholar]
  54. PeñaD. EscuderoS. PérezD. GuitiánE. CastedoL. Efficient palladium-catalyzed cyclotrimerization of arynes: Synthesis of triphenylenes.Angew. Chem. Int. Ed.199837192659266129711619
    [Google Scholar]
  55. PeñaD. PérezD. GuitiánE. CastedoL. Palladium-catalyzed cocyclization of arynes with alkynes: Selective synthesis of phenanthrenes and naphthalenes.J. Am. Chem. Soc.1999121245827582810.1021/ja9907111
    [Google Scholar]
  56. YoshikawaE. RadhakrishnanK.V. YamamotoY. Palladium-catalyzed controlled carbopalladation of benzyne.J. Am. Chem. Soc.2000122307280728610.1021/ja001205a
    [Google Scholar]
  57. YoshikawaE. YamamotoY. Palladium-catalyzed intermolecular controlled insertion of benzyne-benzyne-alkene and benzyne-alkyne-alkene—Synthesis of phenanthrene and naphthalene derivatives.Angew. Chem. Int. Ed.200039117317510649365
    [Google Scholar]
  58. LiuY.L. LiangY. PiS.F. HuangX.C. LiJ.H. Palladium-catalyzed cocyclotrimerization of allenes with arynes: Selective synthesis of phenanthrenes.J. Org. Chem.20097483199320210.1021/jo900117c19296667
    [Google Scholar]
  59. HwuJ.R. SwainS.P. Silicon-induced phenanthrene formation from benzynes and allenylsilanes.Chemistry201319216556656010.1002/chem.20120373823576185
    [Google Scholar]
  60. WestmijzeH. VermeerP. A new and general route to 1-Trimethylsilyl-1,2-alkadienes.Synthesis19791979539039210.1055/s‑1979‑28697
    [Google Scholar]
  61. CarrollL. PachecoM.C. GarciaL. GouverneurV. Synthesis of propargylic fluorides from allenylsilanes.Chem. Commun. (Camb.)2006394113411510.1039/b610013a17024266
    [Google Scholar]
  62. MarshallJ.A. Chiral allylic and allenic metal reagents for organic synthesis.J. Org. Chem.200772228153816610.1021/jo070787c17595141
    [Google Scholar]
  63. ColvinE. Silicon in Organic Synthesis. PerlmutterP. BuckommghamA.D. DanishefskyS. LondonElsevier, Butterworths198116510.1016/B978‑0‑408‑10831‑7.50019‑6
    [Google Scholar]
  64. TadrossP.M. StoltzB.M. A comprehensive history of arynes in natural product total synthesis.Chem. Rev.201211263550357710.1021/cr200478h22443517
    [Google Scholar]
  65. WenkH.H. WinklerM. SanderW. One century of aryne chemistry.Angew. Chem. Int. Ed.200342550252810.1002/anie.20039015112569480
    [Google Scholar]
  66. HwuJ.R. Chang HsuY. Stereospecific benzyne-induced olefination from β-amino alcohols and its application to the total synthesis of (-)-1-deoxy-D-fructose.Chemistry201117174727473110.1002/chem.20100173521365692
    [Google Scholar]
  67. Chang HsuY. HwuJ.R. Deoxygenative olefination reaction as the key step in the syntheses of deoxy and iminosugars.Chemistry201218257686769010.1002/chem.20120106022615220
    [Google Scholar]
  68. WassermanH.H. KellerL.S. The reactions of benzyne with allenes.J. Chem. Soc. D1970221483b148410.1039/c2970001483b
    [Google Scholar]
  69. GuY. SunX. WanB. LuZ. ZhangY. C(sp 3 )–H activation-enabled cross-coupling of two aryl halides: An approach to 9,10-dihydrophenanthrenes.Chem. Commun. (Camb.)20205674109421094510.1039/D0CC04602G32940283
    [Google Scholar]
  70. AmatoreC. AzzabiM. JutandA. Role and effects of halide ions on the rates and mechanisms of oxidative addition of iodobenzene to low-ligated zerovalent palladium complexes Pd0(PPh3)2.J. Am. Chem. Soc.1991113228375838410.1021/ja00022a026
    [Google Scholar]
  71. PiberM. JensenA.E. RottländerM. KnochelP. New efficient nickel- and palladium-catalyzed cross-coupling reactions mediated by tetrabutylammonium iodide.Org. Lett.1999191323132610.1021/ol9907872
    [Google Scholar]
  72. ZhaoQ. FuW.C. KwongF.Y. Palladium‐catalyzed regioselective aromatic extension of internal alkynes through a norbornene‐controlled reaction sequence.Angew. Chem. Int. Ed.201857133381338510.1002/anie.20171320729385308
    [Google Scholar]
  73. CaiS.L. LiY. YangC. ShengJ. WangX.S. NHC ligand-enabled, palladium-catalyzed non-directed C(sp 3 )–H carbonylation to access indanone cores.ACS Catal.2019911102991030410.1021/acscatal.9b03426
    [Google Scholar]
  74. Gutiérrez-BonetÁ. Juliá-HernándezF. de LuisB. MartinR. Pd-catalyzed C(sp 3 )–H functionalization/carbenoid insertion: All-carbon quaternary centers via multiple C–C bond formation.J. Am. Chem. Soc.2016138206384638710.1021/jacs.6b0286727145029
    [Google Scholar]
  75. TanB. BaiL. DingP. LiuJ. WangY. LuanX. Palladium‐catalyzed intermolecular [4+1] spiroannulation by C(sp 3 )−H activation and naphthol dearomatization.Angew. Chem. Int. Ed.20195851474147810.1002/anie.20181320230537202
    [Google Scholar]
  76. SunX. WuZ. QiW. JiX. ChengC. ZhangY. Synthesis of indolines by palladium-catalyzed intermolecular amination of unactivated C(sp 3 )–H bonds.Org. Lett.201921166508651210.1021/acs.orglett.9b0238631380645
    [Google Scholar]
  77. BarderT.E. WalkerS.D. MartinelliJ.R. BuchwaldS.L. Catalysts for Suzuki-Miyaura coupling processes: Scope and studies of the effect of ligand structure.J. Am. Chem. Soc.2005127134685469610.1021/ja042491j15796535
    [Google Scholar]
  78. DykerG. Palladium‐catalyzed C-H activation of tert ‐butyl groups: A simple synthesis of 1,2‐dihydrocyclobutabenzene derivatives.Angew. Chem. Int. Ed. Engl.199433110310510.1002/anie.199401031
    [Google Scholar]
  79. GouB.B. YangH. SunH.R. ChenJ. WuJ. ZhouL. Phenanthrene synthesis by palladium(II)-catalyzed γ-C(sp 2 )–H arylation, cyclization, and migration Tandem reaction.Org. Lett.2019211808410.1021/acs.orglett.8b0351130543434
    [Google Scholar]
  80. CareyF.A. SunbergR.J. Reactions involving transition metals. In: Advanced Organic Chemistry; Springer: Boston200710.1007/978‑0‑387‑71481‑3_8.
    [Google Scholar]
  81. JonesS.B. HeL. CastleS.L. Total synthesis of (+/-)-hasubanonine.Org. Lett.20068173757376010.1021/ol061356416898810
    [Google Scholar]
  82. IulianoA. PiccioliP. FabbriD. Ring-closing olefin metathesis of 2,2′-divinylbiphenyls: A novel and general approach to phenanthrenes.Org. Lett.20046213711371410.1021/ol048668w15469330
    [Google Scholar]
  83. KatzT.J. RothchildR. Mechanism of the olefin metathesis of 2,2′-divinylbiphenyl.J. Am. Chem. Soc.19769892519252610.1021/ja00425a021
    [Google Scholar]
  84. GrubbsR.H. Olefin metathesis.Tetrahedron200460347117714010.1016/j.tet.2004.05.124
    [Google Scholar]
  85. WalkerE.R. LeungS.Y. BarrettA.G.M. Studies towards the total synthesis of Sch 56036; Isoquinolinone synthesis and the synthesis of phenanthrenes.Tetrahedron Lett.200546386537654010.1016/j.tetlet.2005.07.084
    [Google Scholar]
  86. SamantaK. KarG.K. SarkarA.K. Intramolecular gold(III) catalysed Diels–Alder reaction of 1-(2-furyl)-hex-1-en-5-yn-3-ol derivatives: A short and generalised route for the synthesis of hydroxyphenanthrene derivatives.Tetrahedron Lett.201253111376137910.1016/j.tetlet.2012.01.018
    [Google Scholar]
/content/journals/coc/10.2174/0113852728327237241006203431
Loading
/content/journals/coc/10.2174/0113852728327237241006203431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test