Skip to content
2000
Volume 29, Issue 1
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

A one-pot three/two-component reaction of 3-acetyl-coumarin (), 4/3-anisaldehyde () and malononitrile or 3-acetylcoumarin () and 2-(4/3-methoxybenzylidene)malononitrile in glacial acetic acid/ammonium acetate under reflux afforded 2-amino-4-(4/3-methoxyphenyl)-6-(2-oxo-2-chromen-3-yl)nicotinonitrile (). Spectral data helped establish the structures of the compounds. Subsequently, an antiproliferative evaluation against a selected line of tumorous cells (HepG-2, MDA-MB-231 and A549) was performed - for the novel 2-amino-4-(4/3-methoxyphenyl)-6-(2-oxo-2-chromen-3-yl)nicotinonitrile (). Compound exhibited good efficiency against the MDA-MB-231 and A549 cell lines compared with the reference drug (Vinblastine). Furthermore, the chemical reactivity of both compounds was discussed using DFT. Lastly, a molecular docking analysis was addressed and conducted for these desired molecules.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728320798240711052115
2024-07-18
2025-01-27
Loading full text...

Full text loading...

References

  1. MusaM. CooperwoodJ. KhanM.O. A review of coumarin derivatives in pharmacotherapy of breast cancer.Curr. Med. Chem.200815262664267910.2174/092986708786242877 18991629
    [Google Scholar]
  2. WitaicenisA. SeitoL.N. da Silveira ChagasA. de AlmeidaL.D.Jr LuchiniA.C. Rodrigues-OrsiP. CestariS.H. Di StasiL.C. Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives.Phytomedicine201421324024610.1016/j.phymed.2013.09.001 24176844
    [Google Scholar]
  3. NasrT. BondockS. YounsM. Anticancer activity of new coumarin substituted hydrazide-hydrazone derivatives.Eur. J. Med. Chem.20147653954810.1016/j.ejmech.2014.02.026 24607878
    [Google Scholar]
  4. BronikowskaJ. SzliszkaE. JaworskaD. CzubaZ.P. KrolW. The coumarin psoralidin enhances anticancer effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).Molecules20121766449646410.3390/molecules17066449 22643355
    [Google Scholar]
  5. Abd-El-AzizA.S. MohamedH.M. MohammedS. ZahidS. AtaA. BedairA.H. El-AgrodyA.M. HarveyP.D. Synthesis of novel coumarin and benzocoumarin derivatives and their biological and photophysical studies.J. Heterocycl. Chem.20074461287130110.1002/jhet.5570440610
    [Google Scholar]
  6. Murat BilginH. AtmacaM. Deniz ObayB. ÖzekinciS. TaşdemirE. KetaniA. Protective effects of coumarin and coumarin derivatives against carbon tetrachloride-induced acute hepatotoxicity in rats.Exp. Toxicol. Pathol.201163432533010.1016/j.etp.2010.02.006 20207117
    [Google Scholar]
  7. SashidharaK.V. PalnatiG.R. SonkarR. AvulaS.R. AwasthiC. BhatiaG. Coumarin chalcone fibrates: A new structural class of lipid lowering agents.Eur. J. Med. Chem.20136442243110.1016/j.ejmech.2013.04.026 23665798
    [Google Scholar]
  8. Abd-El-AzizA.S. ShipmanP.O. NeelandE.G. CorkeryT.C. MohammedS. HarveyP.D. MohamedH.M. BedairA.H. El-AgrodyA.M. AguiarP.M. KroekerS. Benzo[f] and BENZO[h]coumarin‐containing poly(methyl methacrylate)s and poly(methyl methacrylate)s with pendant coumarin‐containing azo dyes.Macromol. Chem. Phys.200820918410310.1002/macp.200700476
    [Google Scholar]
  9. VenugopalaK.N. RashmiV. OdhavB. Review on natural coumarin lead compounds for their pharmacological activity. Biomed. Res. Int., 201311496324810.1155/2013/963248
    [Google Scholar]
  10. BasileA. SorboS. SpadaroV. BrunoM. MaggioA. FaraoneN. RosselliS. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae).Molecules200914393995210.3390/molecules14030939 19255552
    [Google Scholar]
  11. Hueso-FalcónI. AmestyÁ. Anaissi-AfonsoL. Lorenzo-CastrillejoI. MachínF. Estévez-BraunA. Synthesis and biological evaluation of naphthoquinone-coumarin conjugates as topoisomerase II inhibitors.Bioorg. Med. Chem. Lett.201727348448910.1016/j.bmcl.2016.12.040 28040393
    [Google Scholar]
  12. El-AgrodyA.M. FoudaA.M. AssiriM.A. MoraA. AliT.E. AlamM.M. AlfaifiM.Y. In vitro anticancer activity of pyrano[3, 2-c]chromene derivatives with both cell cycle arrest and apoptosis induction.Med. Chem. Res.202029461762910.1007/s00044‑019‑02494‑3
    [Google Scholar]
  13. MohamedH.M. EL-Wahab, A.H.F.A.; EL-Agrody, A.M.; Bedair, A.H.; Eid, F.A.; Khafagy, M.M.; Abd-EL-Rehem, K.A. Synthesis and characterization of new diiodocoumarin derivatives with promising antimicrobial activities.Beilstein J. Org. Chem.201171688169610.3762/bjoc.7.199 22238548
    [Google Scholar]
  14. ZheF LinjieZ SijinH ShiyiW NaL XiaojingS ZianW RuilongS FangW WenhuiW.; G RuihuaG Synthesis of coumarin derivatives: a new class of coumarin-based G protein-coupled receptor activators and inhibitors; polymers (Basel), 2021141011310.3390/polym14102021
    [Google Scholar]
  15. BhattacharyyaS.S. PaulS. MandalS.K. BanerjeeA. BoujedainiN. Khuda-BukhshA.R. BelonP. Khuda-BukhshA.R.A. A synthetic coumarin (4-Methyl-7 hydroxy coumarin) has anti-cancer potentials against DMBA-induced skin cancer in mice.Eur. J. Pharmacol.20096141-312813610.1016/j.ejphar.2009.04.015 19393233
    [Google Scholar]
  16. GuptaJ.K. SharmaP.K. DudheR. ChaudharyA. VermaP.K. Synthesis, analgesic and ulcerogenic activity of novel pyrimidine derivative of coumarin moiety. Anal. Univ.Bucuresti-Chim.201019921
    [Google Scholar]
  17. WeigtS. HueblerN. StreckerR. BraunbeckT. BroschardT.H. Developmental effects of coumarin and the anticoagulant coumarin derivative warfarin on zebrafish (Danio rerio) embryos.Reprod. Toxicol.201233213314110.1016/j.reprotox.2011.07.001 21798343
    [Google Scholar]
  18. AbdelhafezO.M. AminK.M. BatranR.Z. MaherT.J. NadaS.A. SethumadhavanS. Synthesis, anticoagulant and PIVKA-II induced by new 4-hydroxycoumarin derivatives.Bioorg. Med. Chem.201018103371337810.1016/j.bmc.2010.04.009 20435480
    [Google Scholar]
  19. SuzukiA.Z. WatanabeT. KawamotoM. NishiyamaK. YamashitaH. IshiiM. IwamuraM. FurutaT. Coumarin-4-ylmethoxycarbonyls as phototriggers for alcohols and phenols.Org. Lett.20035254867487010.1021/ol0359362 14653694
    [Google Scholar]
  20. SunthitikawinsakulA. KongkathipN. KongkathipB. PhonnakhuS. DalyJ.W. SpandeT.F. NimitY. RochanaruangraiS. Coumarins and carbazoles from Clausena excavata exhibited antimycobacterial and antifungal activities.Planta Med.200369215515710.1055/s‑2003‑37716 12624822
    [Google Scholar]
  21. KeizoS. HiromichiO. ShigeruA. Selective inhibition of platelet lipoxygenase by esculetin.Biochim. Biophys. Acta Lipids Metab.19827131687210.1016/0005‑2760(82)90167‑9 6814494
    [Google Scholar]
  22. YunE.S. ParkS.S. ShinH.C. ChoiY.H. KimW.J. MoonS.K. p38 MAPK activation is required for esculetin-induced inhibition of vascular smooth muscle cells proliferation.Toxicol. In Vitro20112571335134210.1016/j.tiv.2011.05.001 21600278
    [Google Scholar]
  23. ZhangL JiangG YaoF HeY LiangG ZhangY HuB WuY LiY LiuH Growth inhibition and apoptosis induced by osthole, a natural coumarin, in hepatocellular carcinoma.PLoS One201275e37865e10
    [Google Scholar]
  24. YangD. GuT. WangT. TangQ. MaC. Effects of osthole on migration and invasion in breast cancer cells.Biosci. Biotechnol. Biochem.20107471430143410.1271/bbb.100110 20622464
    [Google Scholar]
  25. DongY. ShiQ. LiuY.N. WangX. BastowK.F. LeeK.H. Antitumor agents. 266. Design, synthesis, and biological evaluation of novel 2-(furan-2-yl)naphthalen-1-ol derivatives as potent and selective antibreast cancer agents.J. Med. Chem.200952113586359010.1021/jm9001567 19425534
    [Google Scholar]
  26. JamierV. MarutW. ValenteS. ChereauC. ChouzenouxS. NiccoC. LemarechalH. WeillB. KirschG. JacobC. BatteuxF. Chalcone-Coumarin derivatives as potential anti-cancer drugs: An in vitro and in vivo investigation.Anticancer. Agents Med. Chem.201414796397410.2174/1871520613666131224124445 24372527
    [Google Scholar]
  27. BellutiF. FontanaG. BoL.D. CareniniN. GiommarelliC. ZuninoF. Design, synthesis and anticancer activities of stilbene-coumarin hybrid compounds: Identification of novel proapoptotic agents.Bioorg. Med. Chem.201018103543355010.1016/j.bmc.2010.03.069 20409723
    [Google Scholar]
  28. El-AgrodyA.M. Al-DiesA.A.M. FoudaA.M. Microwave assisted synthesis of 2-amino-6-methoxy-4H-benzo[h]chromene derivatives.Eur. J. Chem.20145113313710.5155/eurjchem.5.1.133‑137.923
    [Google Scholar]
  29. El GaafaryM. SyrovetsT. MohamedH.M. ElhenawyA. El-AgrodyA.M. AmrA.E-G. GhabbourH.A. AlmehiziaA.A. Synthesis, cytotoxic activity, crystal structure, DFT studies and molecular docking of 3-amino-1-(2,5-dichlorophenyl)-8-methoxy-1H-benzo-[f]chromene-2-carbonitrile.Crystals (Basel)20211118420610.3390/cryst11020184
    [Google Scholar]
  30. FoudaA.M. AssiriM.A. MoraA. AliT.E. AfifiT.H. El-AgrodyA.M. Microwave synthesis of novel halogenated β-enaminonitriles linked 9-bromo-1H-benzo[f]chromene moieties: Induces cell cycle arrest and apoptosis in human cancer cells via dual inhibition of topoisomerase I and II.Bioorg. Chem.20199310328910.1016/j.bioorg.2019.103289 31586716
    [Google Scholar]
  31. El-WahabA.H.F.A. MohamedH.M. El-AgrodyA.M. El-NassagM.A. BedairA.H. Synthesis and biological screening of 4-benzyl-2H-phthalazine derivatives.Pharmaceuticals (Basel)2011481158117010.3390/ph4081158
    [Google Scholar]
  32. Abd El-WahabA.H.F. Synthesis, reactions and evaluation of the antimicrobial activity of some 4-(p-Halophenyl)-4H-naphthopyran, pyranopyrimidine and pyranotriazolopyrimidine derivatives.Pharmaceuticals20125774575710.3390/ph5070745 24281710
    [Google Scholar]
  33. RadiniI.A. Abd El-WahabA.H.F. Heteroaromatization with 4-phenyldiazenyl-1-naphthol. Part I: Synthesis of some new naphthopyrans and naphthopyranopyrimidines.Eur. J. Chem.20167223023710.5155/eurjchem.7.2.230‑237.1432
    [Google Scholar]
  34. Abd El-WahabA.H.F. MohamedH.M. Synthesis and DFT study of 7-bromophenylnaphthopyran moieties.Asian J. Chem.20233581819182610.14233/ajchem.2023.28032
    [Google Scholar]
  35. MohamedH.M. Abd El-WahabA.H.F. Heteroaromatization with 4-Phenyldiazenyl-1-naphthol. Part IV: Synthesis of some new heterocyclic compounds with potential biological activity.Curr. Org. Synth.201916693193810.2174/1570179416666190719101727 31984914
    [Google Scholar]
  36. Abd El-WahabA.H.F. MosaH.M.K. AliH.H.A. MohammadY.M.A. Synthesis, antimicrobial, and antitumor activity of some new chromene compounds.Indian J. Heterocycl. Chem.202030369379
    [Google Scholar]
  37. AbdelwahabA.H.F. FekryS.A.H. Anti-cancerous properties of the synthesized substituted chromene compounds and their pharmacological activities.Lett. Drug Des. Discov.20232081098110610.2174/1570180819666220811102040
    [Google Scholar]
  38. RadiniI.A. HamedH.M. KharirM.A.Y. ElwahabA.H.F.A. Heteroaromatization with 4-phenyldiazenyl-1-naphthol. Part II: Synthesis of some new benzochromens, benzochromenopyrimidines, benzochromenotriazolopyrimidines, benzochromenopyrimidotriazepine and antimicrobial activities.Eur. J. Chem.20178324024710.5155/eurjchem.8.3.240‑247.1599
    [Google Scholar]
  39. RitaM.A.B. NasserJ.H.A. YousefE.M. AshrafH.F.A. HanyM.M. DiaaA.I. AhmedD.H. Design, synthesis, reactions, molecular docking, antitumor activities of novel naphthopyran, naphthopyranopyrimidines, and naphthoyranotriazolopyrimidine derivatives.Curr. Org. Chem.202327191717172710.2174/0113852728264994231018063921
    [Google Scholar]
  40. RitaM.A.B. AshrafH.F.A. Heteroaromatization of Coumarin Part I: Design, synthesis, reactions, antitumor activities of novel pyridine and naphthyridine derivatives.Curr. Org. Synth.202421457158110.2174/0115701794265924230920061222 38174438
    [Google Scholar]
  41. PaullK.D. ShoemakerR.H. BoydM.R. ParsonsJ.L. RisboodP.A. BarberaW.A. SharmaM.N. BakerD.C. HandE. ScudieroD.A. MonksA. AlleyM.C. GroteM. The synthesis of XTT: A new tetrazolium reagent that is bioreducible to a water‐soluble formazan.J. Heterocycl. Chem.198825391191410.1002/jhet.5570250340
    [Google Scholar]
  42. ScudieroD.A. ShoemakerR.H. PaullK.D. MonksA. TierneyS. NofzigerT.H. CurrensM.J. SeniffD. BoydM.R. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines.Cancer Res.1988481748274833 3409223
    [Google Scholar]
  43. FukuiK. Role of frontier orbitals in chemical reactions.Science1982218457474775410.1126/science.218.4574.747 17771019
    [Google Scholar]
  44. HofmannP. Arvi Rauk: Orbital interaction theory of organic chemistry.Ber. Bunsenges. Phys. Chem19959999799910.1002/bbpc.199500017
    [Google Scholar]
  45. WildmanS.A. CrippenG.M. Prediction of physicochemical parameters by atomic contributions.J. Chem. Inf. Comput. Sci.199939586887310.1021/ci990307l
    [Google Scholar]
  46. AyersP.W. ParrR.G. Variational principles for describing chemical reactions: The Fukui function and chemical hardness revisited.J. Am. Chem. Soc.200012292010201810.1021/ja9924039
    [Google Scholar]
  47. LamakaS.V. ZheludkevichM.L. YasakauK.A. SerraR. PoznyakS.K. FerreiraM.G.S. Nanoporous titania interlayer as reservoir of corrosion inhibitors for coatings with self-healing ability.Prog. Org. Coat.2007582-312713510.1016/j.porgcoat.2006.08.029
    [Google Scholar]
  48. KomorowskiL. LipińskiJ. SzarekP. OrdonP. Polarization justified Fukui functions: The theory and applications for molecules.J. Chem. Phys.2011135101410910.1063/1.3603449 21744890
    [Google Scholar]
  49. Mendoza-HuizarL.H. Rios-ReyesC.H. Álvarez-RomeroG.A. Palomar-PardavéM.E. Ramírez-SilvaM.T. Electrophilic and nucleophilic chemical reactivity of neutral and anionic forms of 4-cpa, 24d-cpa, 34-cpa and 245t-cpa through conceptual dft reactivity descriptors.J. Chil. Chem. Soc.20176213411341610.4067/S0717‑97072017000100022
    [Google Scholar]
  50. BochevarovA.D. HarderE. HughesT.F. GreenwoodJ.R. BradenD.A. PhilippD.M. RinaldoD. HallsM.D. ZhangJ. FriesnerR.A. Jaguar: A high‐performance quantum chemistry software program with strengths in life and materials sciences.Int. J. Quantum Chem.2013113182110214210.1002/qua.24481
    [Google Scholar]
  51. FriesnerR.A. BanksJ.L. MurphyR.B. HalgrenT.A. KlicicJ.J. MainzD.T. RepaskyM.P. KnollE.H. ShelleyM. PerryJ.K. ShawD.E. FrancisP. ShenkinP.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.J. Med. Chem.20044771739174910.1021/jm0306430 15027865
    [Google Scholar]
  52. ParrR.G. SzentpályL. LiuS. Electrophilicity index.J. Am. Chem. Soc.199912191922192410.1021/ja983494x
    [Google Scholar]
  53. ParrR.G. DonnellyR.A. LevyM. PalkeW.E. Electronegativity: The density functional viewpoint.J. Chem. Phys.19786883801380710.1063/1.436185
    [Google Scholar]
  54. Tidjani RahmouniN. BensiradjN.H. MegatliS.A. DjebbarS. Benali BaitichO. New mixed amino acids complexes of iron(III) and zinc(II) with isonitrosoacetophenone: Synthesis, spectral characterization, DFT study and anticancer activity.Spectrochim. Acta A Mol. Biomol. Spectrosc.201921323524810.1016/j.saa.2019.01.042 30695742
    [Google Scholar]
  55. Pérez-TenorioG. StålO. Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients.Br. J. Cancer200286454054510.1038/sj.bjc.6600126
    [Google Scholar]
  56. ShahK.N. MehtaK.R. PetersonD. EvangelistaM. LiveseyJ.C. FaridiJ.S. AKT-induced tamoxifen resistance is overturned by RRM2 inhibition.Mol. Cancer Res.201412339440710.1158/1541‑7786.MCR‑13‑0219 24362250
    [Google Scholar]
/content/journals/coc/10.2174/0113852728320798240711052115
Loading
/content/journals/coc/10.2174/0113852728320798240711052115
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): 3-Acetylcoumarin; anticoagulant; antimalarial; antitumor activity; DFT; docking study
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test