Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/1567202622999241211154331
2024-12-11
2025-04-25
Loading full text...

Full text loading...

/deliver/fulltext/cnr/21/5/CNR-21-5-01.html?itemId=/content/journals/cnr/10.2174/1567202622999241211154331&mimeType=html&fmt=ahah

References

  1. FuC. LuZ. ShiJ. LiuF. SuX. Knockdown of WISP1/DKK1 restrains phenotypic plasticity in esophageal squamous cell carcinoma by suppressing epithelial–mesenchymal transition and stemness.Clin. Transl. Oncol.202460363910.1007/s12094‑024‑03639‑6 39093516
    [Google Scholar]
  2. Griñán-FerréC. Servin-MuñozI.V. Palomera-ÁvalosV. Changes in gene expression profile with age in SAMP8: Identifying transcripts involved in cognitive decline and sporadic Alzheimer’s disease.Genes20241511141110.3390/genes15111411 39596610
    [Google Scholar]
  3. MehraS. AhsanA.U. SharmaM. BudhwarM. ChopraM. Gestational fisetin exerts neuroprotection by regulating mitochondria-directed canonical WNT signaling, BBB integrity, and apoptosis in prenatal vpa-induced rodent model of autism.Mol. Neurobiol.20246174001402010.1007/s12035‑023‑03826‑6 38048031
    [Google Scholar]
  4. ZhangM. LiuQ. MengH. Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets.Signal Transduct. Target. Ther.2024911210.1038/s41392‑023‑01688‑x 38185705
    [Google Scholar]
  5. GuoT. ChenM. LiuJ. Neuropilin-1 promotes mitochondrial structural repair and functional recovery in rats with cerebral ischemia.J. Transl. Med.202321129710.1186/s12967‑023‑04125‑3 37138283
    [Google Scholar]
  6. MaieseK. The impact of aging and oxidative stress in metabolic and nervous system disorders: Programmed cell death and molecular signal transduction crosstalk.Front. Immunol.202314127357010.3389/fimmu.2023.1273570 38022638
    [Google Scholar]
  7. MaieseK. Cornerstone cellular pathways for metabolic disorders and diabetes mellitus: Non-coding rnas, WNT signaling, and AMPK.Cells20231222259510.3390/cells12222595 37998330
    [Google Scholar]
  8. FarajiN. EbadpourN. AbavisaniM. GorjiA. Unlocking hope: Therapeutic advances and approaches in modulating the WNT pathway for neurodegenerative diseases.Mol. Neurobiol.202410.1007/s12035‑024‑04462‑4 39313658
    [Google Scholar]
  9. WetzelA. LeiS.H. LiuT. Dysregulated WNT and nfat signaling in a parkinson’s disease lrrk2 g2019s knock-in model.Sci. Rep.20241411239310.1038/s41598‑024‑63130‑8 38811759
    [Google Scholar]
  10. MaieseK. Novel applications of trophic factors, WNT and wisp for neuronal repair and regeneration in metabolic disease.Neural Regen. Res.201510451852810.4103/1673‑5374.155427 26170801
    [Google Scholar]
  11. MaieseK. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders.Br. J. Clin. Pharmacol.20168251245126610.1111/bcp.12804 26469771
    [Google Scholar]
  12. MaieseK. Cognitive impairment with diabetes mellitus and metabolic disease: Innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways.Expert Rev. Clin. Pharmacol.2020131233410.1080/17512433.2020.1698288 31794280
    [Google Scholar]
  13. MaieseK. Cardiovascular and nonalcoholic fatty liver disease: Sharing common ground through SIRT1 pathways.World J. Cardiol.2024161163264310.4330/wjc.v16.i11.632 39600987
    [Google Scholar]
  14. MaieseK. LiF. ChongZ.Z. ShangY.C. The WNT signaling pathway: Aging gracefully as a protectionist?Pharmacol. Ther.20081181588110.1016/j.pharmthera.2008.01.004 18313758
    [Google Scholar]
  15. GuoT. CaoG. LiY. Signals in stem cell differentiation on fluorapatite-modified scaffolds.J. Dent. Res.201897121331133810.1177/0022034518788037 29995454
    [Google Scholar]
  16. L’EpiscopoF. TiroloC. Peruzzotti-JamettiL. Neural stem cell grafts promote astroglia-driven neurorestoration in the aged parkinsonian brain via WNT/Β-catenin signaling.Stem Cells20183681179119710.1002/stem.2827 29575325
    [Google Scholar]
  17. RenL. ZhouJ. LiangS. WangX. Impaired intestinal stem cell activity in ETEC infection: Enterotoxins, cyclic nucleotides, and WNT signaling.Arch. Toxicol.20229651213122510.1007/s00204‑021‑03213‑x 35226135
    [Google Scholar]
  18. Sierra-PaganJ.E. DsouzaN. DasS. Foxk1 regulates WNT signalling to promote cardiogenesis.Cardiovasc. Res.202311981728173910.1093/cvr/cvad054 37036809
    [Google Scholar]
  19. YangX. LiX. GuQ. LiQ. CuiZ. Nucleoporin 62-like protein is required for the development of pharyngeal arches through regulation of WNT/B-catenin signaling and apoptotic homeostasis in zebrafish.Cells201989103810.3390/cells8091038 31492028
    [Google Scholar]
  20. HeW. LuQ. SherchanP. Activation of frizzled-7 attenuates blood–brain barrier disruption through dvl/β-catenin/WISP1 signaling pathway after intracerebral hemorrhage in mice.Fluids Barriers CNS20211814410.1186/s12987‑021‑00278‑9 34565396
    [Google Scholar]
  21. MaieseK. Harnessing the power of SIRT1 and non-coding rnas in vascular disease.Curr. Neurovasc. Res.2017141828810.2174/1567202613666161129112822 27897112
    [Google Scholar]
  22. OlsenJ.J. PohlS.O. DeshmukhA. The role of WNT signalling in angiogenesis.Clin. Biochem. Rev.2017383131142 29332977
    [Google Scholar]
  23. TsaiH.C. TzengH.E. HuangC.Y. Wisp-1 positively regulates angiogenesis by controlling vegf-a expression in human osteosarcoma.Cell Death Dis.201784e275010.1038/cddis.2016.421 28406476
    [Google Scholar]
  24. ChenS. LiB. Mir-128-3p post-transcriptionally inhibits WISP1 to suppress apoptosis and inflammation in human articular chondrocytes via the PI3K/AKT/NF-κB signaling pathway.Cell Transplant.20202910.1177/0963689720939131 32830547
    [Google Scholar]
  25. EnginA.B. EnginA. Alzheimer’s disease and protein kinases.Adv. Exp. Med. Biol.2021127528532110.1007/978‑3‑030‑49844‑3_11 33539020
    [Google Scholar]
  26. GaoJ. XuH. RongZ. ChenL. WNT family member 1 (WNT1) overexpression-induced m2 polarization of microglia alleviates inflammation-sensitized neonatal brain injuries.Bioengineered2022135124091242010.1080/21655979.2022.2074767 35603707
    [Google Scholar]
  27. GaudreauP.O. ClairefondS. ClassC.A. WISP1 is associated to advanced disease, emt and an inflamed tumor microenvironment in multiple solid tumors.OncoImmunology201985e158154510.1080/2162402X.2019.1581545 31069142
    [Google Scholar]
  28. González-FernándezC. GonzálezP. González-PérezF. RodríguezF.J. Characterization of ex vivo and in vitro WNT transcriptome induced by spinal cord injury in rat microglial cells.Brain Sci.202212670810.3390/brainsci12060708 35741593
    [Google Scholar]
  29. KlimontovV.V. BulumbaevaD.M. FazullinaO.N. Circulating WNT1-inducible signaling pathway protein-1 (wisp-1/ccn4) is a novel biomarker of adiposity in subjects with type 2 diabetes.J. Cell Commun. Signal.202014110110910.1007/s12079‑019‑00536‑4 31782053
    [Google Scholar]
  30. MarchettiB. Nrf2/WNT resilience orchestrates rejuvenation of glia-neuron dialogue in parkinson’s disease.Redox Biol.20203610166410.1016/j.redox.2020.101664 32863224
    [Google Scholar]
  31. Sanabria-de la TorreR. García-FontanaC. González-SalvatierraS. The contribution of WNT signaling to vascular complications in type 2 diabetes mellitus.Int. J. Mol. Sci.20222313699510.3390/ijms23136995 35805996
    [Google Scholar]
  32. MaieseK. Prospects and perspectives for WISP1 (ccn4) in diabetes mellitus.Curr. Neurovasc. Res.202017332733110.2174/1567202617666200327125257 32216738
    [Google Scholar]
  33. WangS. Zhong ChongZ. Chen ShangY. MaieseK. WISP1 (ccn4) autoregulates its expression and nuclear trafficking of β-catenin during oxidant stress with limited effects upon neuronal autophagy.Curr. Neurovasc. Res.2012929110110.2174/156720212800410858 22475393
    [Google Scholar]
  34. LiuD. ZhangM. TianJ. WNT1-inducible signalling pathway protein 1 stabilizes atherosclerotic plaques in apolipoprotein-e-deficient mice via the focal adhesion kinase/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase pathway.J. Hypertens.20224091666168110.1097/HJH.0000000000003195 35881419
    [Google Scholar]
  35. MaieseK. Novel Stem Cell Strategies with mTOR. In: Molecules to Medicine with mTOR: Translating Critical Pathways into Novel Therapeutic Strategies.Newark, NJ, USAAcademic Press, Elsevier201632210.1016/B978‑0‑12‑802733‑2.00020‑7
    [Google Scholar]
  36. ShangY.C. ChongZ.Z. HouJ. MaieseK. WNT1, FOXO3A, and NF-κB oversee microglial integrity and activation during oxidant stress.Cell. Signal.20102291317132910.1016/j.cellsig.2010.04.009 20462515
    [Google Scholar]
  37. XuD. LiF. HouK. GouX. FangW. LiY. XQ‐1H attenuates ischemic injury in PC12 cells via WNT/B‐catenin signaling though inhibition of apoptosis and promotion of proliferation.Cell Biol. Int.202044112363236910.1002/cbin.11438 32761926
    [Google Scholar]
  38. ZhuY. LiW. YangY. LiY. ZhaoY. WISP1 indicates poor prognosis and regulates cell proliferation and apoptosis in gastric cancer via targeting AKT/mTOR signaling pathway.Am. J. Transl. Res.2020121172977311 33312368
    [Google Scholar]
  39. ShangY.C. ChongZ.Z. WangS. MaieseK. Prevention of β-amyloid degeneration of microglia by erythropoietin depends on WNT1, the pi 3-k/mTOR pathway, bad, and bcl-xl.Aging20124318720110.18632/aging.100440 22388478
    [Google Scholar]
  40. WangS. Zhong ChongZ. Chen ShangY. MaieseK. WNT1 inducible signaling pathway protein 1 (WISP1) blocks neurodegeneration through phosphoinositide 3 kinase/AKT1 and apoptotic mitochondrial signaling involving bad, bax, bim, and bcl-xl.Curr. Neurovasc. Res.201291203110.2174/156720212799297137 22272766
    [Google Scholar]
  41. WeiL. SunC. LeiM. Activation of WNT/B-catenin pathway by exogenous WNT1 protects SH-SY5Y cells against 6-hydroxydopamine toxicity.J. Mol. Neurosci.201349110511510.1007/s12031‑012‑9900‑8 23065334
    [Google Scholar]
  42. AslanidiG. KroutovV. PhilipsbergG. Ectopic expression of WNT10b decreases adiposity and improves glucose homeostasis in obese rats.Am. J. Physiol. Endocrinol. Metab.20072933E726E73610.1152/ajpendo.00248.2007 17578883
    [Google Scholar]
  43. BarchettaI. CiminiF.A. CapocciaD. WISP1 is a marker of systemic and adipose tissue inflammation in dysmetabolic subjects with or without type 2 diabetes.J. Endocr. Soc.20171666067010.1210/js.2017‑00108 29264519
    [Google Scholar]
  44. LiuL. HuJ. YangL. Association of WISP1/ccn4 with risk of overweight and gestational diabetes mellitus in chinese pregnant women.Dis. Markers2020202011010.1155/2020/4934206 32377270
    [Google Scholar]
  45. MaieseK. Erythropoietin and diabetes mellitus.World J. Diabetes20156141259127310.4239/wjd.v6.i14.1259 26516410
    [Google Scholar]
  46. WangA. YanX. ZhangC. Characterization of WNT1-inducible signaling pathway protein-1 in obese children and adolescents.Curr. Med. Sci.201838586887410.1007/s11596‑018‑1955‑5 30341522
    [Google Scholar]
  47. AhmadR. KhanA. RehmanI.U. LeeH.J. KhanI. KimM.O. Lupeol treatment attenuates activation of glial cells and oxidative-stress-mediated neuropathology in mouse model of traumatic brain injury.Int. J. Mol. Sci.20222311608610.3390/ijms23116086 35682768
    [Google Scholar]
  48. AssognaM. Di LorenzoF. MartoranaA. KochG. Synaptic effects of palmitoylethanolamide in neurodegenerative disorders.Biomolecules2022128116110.3390/biom12081161 36009055
    [Google Scholar]
  49. IbrahimW.W. SayedR.H. AbdelhameedM.F. Neuroprotective potential of erigeron bonariensis ethanolic extract against ovariectomized/d-galactose-induced memory impairments in female rats in relation to its metabolite fingerprint as revealed using uplc/ms.Inflammopharmacology20243221091111210.1007/s10787‑023‑01418‑3 38294617
    [Google Scholar]
  50. KaratiD. MeurS. RoyS. Glycogen synthase kinase 3 (gsk3) inhibition: A potential therapeutic strategy for Alzheimer’s disease.Naunyn Schmiedebergs Arch. Pharmacol.202410.1007/s00210‑024‑03500‑1 39432068
    [Google Scholar]
  51. MaieseK. Cellular metabolism: A fundamental component of degeneration in the nervous system.Biomolecules202313581610.3390/biom13050816 37238686
    [Google Scholar]
  52. MaieseK. Cognitive impairment in multiple sclerosis.Bioengineering202310787110.3390/bioengineering10070871 37508898
    [Google Scholar]
  53. MishraP. DaviesD.A. AlbensiB.C. The interaction between NF-κB and estrogen in Alzheimer’s disease.Mol. Neurobiol.20236031515152610.1007/s12035‑022‑03152‑3 36512265
    [Google Scholar]
  54. MosharafM.P. AlamK. GowJ. MahumudR.A. MollahM.N.H. Common molecular and pathophysiological underpinnings of delirium and Alzheimer’s disease: Molecular signatures and therapeutic indications.BMC Geriatr.202424171610.1186/s12877‑024‑05289‑3 39210294
    [Google Scholar]
  55. WangQ. ZhengJ. PetterssonS. ReynoldsR. TanE.K. The link between neuroinflammation and the neurovascular unit in synucleinopathies.Sci. Adv.202397eabq114110.1126/sciadv.abq1141 36791205
    [Google Scholar]
  56. MaieseK. Biological gases, oxidative stress, artificial intelligence, and machine learning for neurodegeneration and metabolic disorders.Med. Gas Res.202515114514710.4103/mgr.MEDGASRES‑D‑24‑00059 39436188
    [Google Scholar]
  57. MaieseK. Diabetes mellitus and glymphatic dysfunction: Roles for oxidative stress, mitochondria, circadian rhythm, artificial intelligence, and imaging.World J. Diabetes20251619894810.4239/wjd.v16.i1.98948
    [Google Scholar]
  58. XieL. CuiS. GuoN. LiA. ZhangJ. Research hotspots and frontiers of stem cells for Alzheimer’s disease.Chinese Journal of Tissue Engineering Research202529714751485
    [Google Scholar]
  59. ZhangZ. WuG. YangJ. Integrated network pharmacology, transcriptomics and metabolomics to explore the material basis and mechanism of danggui-baishao herb pair for treating hepatic fibrosis.J. Ethnopharmacol.2025337Pt 111883410.1016/j.jep.2024.118834 39299362
    [Google Scholar]
  60. AbdallaM.M.I. Insulin resistance as the molecular link between diabetes and Alzheimer’s disease.World J. Diabetes20241571430144710.4239/wjd.v15.i7.1430 39099819
    [Google Scholar]
  61. CaberlottoL. NguyenT.P. LauriaM. Cross-disease analysis of Alzheimer’s disease and type-2 diabetes highlights the role of autophagy in the pathophysiology of two highly comorbid diseases.Sci. Rep.201991396510.1038/s41598‑019‑39828‑5 30850634
    [Google Scholar]
  62. KlionskyD.J. Abdel-AzizA.K. AbdelfatahS. AbdellatifM. AbdoliA. AbelS. Guidelines for the use and interpretation of assays for monitoring autophagy (4th Edition).Autophagy2016171138210.1080/15548627.2020.1797280
    [Google Scholar]
  63. MaieseK. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease.Int. Rev. Neurobiol.202015513510.1016/bs.irn.2020.01.009 32854851
    [Google Scholar]
  64. PengX. FanR. XieL. A growing link between circadian rhythms, type 2 diabetes mellitus and Alzheimer’s disease.Int. J. Mol. Sci.202223150410.3390/ijms23010504 35008933
    [Google Scholar]
  65. SonsallaM.M. LammingD.W. Geroprotective interventions in the 3xtg mouse model of Alzheimer’s disease.Geroscience20234531343138110.1007/s11357‑023‑00782‑w 37022634
    [Google Scholar]
  66. YamashimaT. OtaT. MizukoshiE. Intake of ω-6 polyunsaturated fatty acid-rich vegetable oils and risk of lifestyle diseases.Adv. Nutr.20201161489150910.1093/advances/nmaa072 32623461
    [Google Scholar]
  67. LiY. WangF. LiuT. LvN. YuanX. LiP. WISP1 induces ovarian cancer via the igf1/αvβ3/WNT axis.J. Ovarian Res.20221519410.1186/s13048‑022‑01016‑x 35964060
    [Google Scholar]
  68. LiuL. XuS. LiP. LiL. A novel adipokine WISP1 attenuates lipopolysaccharide-induced cell injury in 3t3-l1 adipocytes by regulating the PI3K/AKT pathway.Obes. Res. Clin. Pract.202216212212910.1016/j.orcp.2022.03.001 35431155
    [Google Scholar]
  69. LiuY. QinW. ZhangF. Association between WNT-1-inducible signaling pathway protein-1 (WISP1) genetic polymorphisms and the risk of gastric cancer in guangxi chinese.Cancer Cell Int.202121140510.1186/s12935‑021‑02116‑2 34330284
    [Google Scholar]
  70. MaieseK. Picking a bone with WISP1 (ccn4): New strategies against degenerative joint disease.J. Transl. Sci.201621838510.15761/JTS.1000120 26893943
    [Google Scholar]
  71. BerschneiderB. MaieseK. Wnt1 inducible signaling pathway protein 1 (WISP1): A novel mediator linking development and disease.Int. J. Biochem. Cell Biol.201743330630910.1016/j.biocel.2010.11.013 21109017
    [Google Scholar]
  72. MaieseK. ChongZ.Z. ShangY.C. WangS. Targeting disease through novel pathways of apoptosis and autophagy.Expert Opin. Ther. Targets201216121203121410.1517/14728222.2012.719499 22924465
    [Google Scholar]
  73. SinghK. OladipupoS.S. An overview of ccn4 (WISP1) role in human diseases.J. Transl. Med.202422160110.1186/s12967‑024‑05364‑8 38937782
    [Google Scholar]
  74. SinghK. WitekM. BrahmbhattJ. McEntireJ. ThirunavukkarasuK. OladipupoS.S. Stage-dependent fibrotic gene profiling of WISP1-mediated fibrogenesis in human fibroblasts.Cells20241323200510.3390/cells13232005
    [Google Scholar]
  75. YegerH. Ccn proteins: Opportunities for clinical studies—a personal perspective.J. Cell Commun. Signal.202317233335210.1007/s12079‑023‑00761‑y 37195381
    [Google Scholar]
  76. MaieseK. WISP1: Clinical insights for a proliferative and restorative member of the ccn family.Curr. Neurovasc. Res.201411437838910.2174/1567202611666140912115107 25219658
    [Google Scholar]
  77. Sahin ErsoyG. Altun EnsariT. SubasS. GirayB. SimsekE.E. CevikO. WISP1 is a novel adipokine linked to metabolic parameters in gestational diabetes mellitus.J. Matern. Fetal Neonatal Med.201730894294610.1080/14767058.2016.1192118 27267804
    [Google Scholar]
  78. MurahovschiV. PivovarovaO. IlkavetsI. WISP1 is a novel adipokine linked to inflammation in obesity.Diabetes201564385686610.2337/db14‑0444 25281430
    [Google Scholar]
  79. Fernandez-RuizR. García-AlamánA. EstebanY. WISP1 is a circulating factor that stimulates proliferation of adult mouse and human beta cells.Nat. Commun.2020111598210.1038/s41467‑020‑19657‑1 33239617
    [Google Scholar]
  80. MaieseK. Forkhead transcription factors: Formulating a foxo target for cognitive loss.Curr. Neurovasc. Res.201814441542010.2174/1567202614666171116102911 29149835
    [Google Scholar]
  81. KitaghendaF.K. WangJ. LiT. HongJ. YaoL. ZhuX. Normalization of WISP1 circulating level and tissue expression following metabolic and bariatric surgery using rat model.Updates Surg.20247682841284910.1007/s13304‑024‑01977‑2 39407056
    [Google Scholar]
  82. NagarajanA. LairdJ. UgochukwuO. Network analysis of brain and bone tissue transcripts reveals shared molecular mechanisms underlying Alzheimer’s disease and related dementias and osteoporosis.J. Gerontol. A Biol. Sci. Med. Sci.20247911glae21110.1093/gerona/glae211 39194133
    [Google Scholar]
  83. BerwickD.C. JavaheriB. WetzelA. Pathogenic lrrk2 variants are gain-of-function mutations that enhance lrrk2-mediated repression of β-catenin signaling.Mol. Neurodegener.2017121910.1186/s13024‑017‑0153‑4 28103901
    [Google Scholar]
  84. CaiD. HongS. YangJ. SanP. The effects of microrna-515-5p on the toll-like receptor 4 (tlr4)/jnk signaling pathway and WNT1-inducible-signaling pathway protein 1 (wisp-1) expression in rheumatoid arthritis fibroblast-like synovial (rafls) cells following treatment with receptor activator of nuclear factor-kappa-b ligand (rankl).Med. Sci. Monit.202026e92061110.12659/MSM.920611 32361708
    [Google Scholar]
  85. IyerS. HanL. BartellS.M. Sirtuin1 (SIRT1) promotes cortical bone formation by preventing β-catenin sequestration by foxo transcription factors in osteoblast progenitors.J. Biol. Chem.201428935240692407810.1074/jbc.M114.561803 25002589
    [Google Scholar]
  86. JoengK.S. LeeY.C. LimJ. Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis.J. Clin. Invest.201712772678268810.1172/JCI92617 28628032
    [Google Scholar]
  87. Colín-MartínezE. Espino-de-la-FuenteC. AriasC. Age- and sex-associated WNT signaling dysregulation is exacerbated from the early stages of neuropathology in an Alzheimer’s disease model.Neurochem. Res.202449113094310410.1007/s11064‑024‑04224‑7 39167347
    [Google Scholar]
  88. ChristopoulouM.E. AletrasA.J. PapakonstantinouE. StolzD. SkandalisS.S. WISP1 and macrophage migration inhibitory factor in respiratory inflammation: Novel insights and therapeutic potentials for asthma and copd.Int. J. Mol. Sci.202425181004910.3390/ijms251810049 39337534
    [Google Scholar]
  89. de CavanaghE.M.V. InserraF. FerderL. Renin–angiotensin system inhibitors positively impact on multiple aging regulatory pathways: Could they be used to protect against human aging?Physiol. Rep.20241212e1609410.14814/phy2.16094 38924381
    [Google Scholar]
  90. GonzálezD. CamposG. PütterL. Role of WISP1 in stellate cell migration and liver fibrosis.Cells20241319162910.3390/cells13191629 39404393
    [Google Scholar]
  91. ChenY. HuangC. ZhuS.Y. ZouH.C. XuC.Y. ChenY.X. Overexpression of hotair attenuates pi-induced vascular calcification by inhibiting WNT/B-catenin through regulating mir-126/klotho/SIRT1 axis.Mol. Cell. Biochem.2021476103551356110.1007/s11010‑021‑04164‑8 34014438
    [Google Scholar]
  92. JenwitheesukA. ParkS. WongchitratP. Comparing the effects of melatonin with caloric restriction in the hippocampus of aging mice: Involvement of sirtuin1 and the foxos pathway.Neurochem. Res.201843115316110.1007/s11064‑017‑2369‑7 28770437
    [Google Scholar]
  93. MaieseK. Foxo proteins in the nervous system.Anal. Cell. Pathol.2015201511510.1155/2015/569392 26171319
    [Google Scholar]
  94. MaieseK. Forkhead transcription factors: New considerations for Alzheimer’s disease and dementia.J. Transl. Sci.20162424124710.15761/JTS.1000146 27390624
    [Google Scholar]
  95. MaieseK. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): Oversight for neurodegenerative disorders.Biochem. Soc. Trans.201846235136010.1042/BST20170121 29523769
    [Google Scholar]
  96. MaieseK. Neurodegeneration, memory loss, and dementia: The impact of biological clocks and circadian rhythm.Frontiers in Bioscience-Landmark202126961462710.52586/4971 34590471
    [Google Scholar]
  97. MaieseK. ChongZ.Z. ShangY.C. WangS. Translating cell survival and cell longevity into treatment strategies with SIRT1.Rom. J. Morphol. Embryol.201152411731185 22203920
    [Google Scholar]
  98. TulsulkarJ. NadaS.E. SlotterbeckB.D. McInerneyM.F. ShahZ.A. Obesity and hyperglycemia lead to impaired post-ischemic recovery after permanent ischemia in mice.Obesity201624241742310.1002/oby.21388 26694743
    [Google Scholar]
  99. ApiraksattayakulS. PingaewR. PrachayasittikulV. Neuroprotective potential of aminonaphthoquinone derivatives against amyloid beta-induced neuronal cell death through modulation of SIRT1 and bace1.Neurochem. Res.20255015010.1007/s11064‑024‑04281‑y 39644364
    [Google Scholar]
  100. CacabelosR. CarrilJ.C. CacabelosN. Sirtuins in Alzheimer’s disease: Sirt2-related genophenotypes and implications for pharmacoepigenetics.Int. J. Mol. Sci.2019205124910.3390/ijms20051249 30871086
    [Google Scholar]
  101. DingM.R. QuY.J. HuB. AnH.M. Signal pathways in the treatment of Alzheimer’s disease with traditional chinese medicine.Biomed. Pharmacother.202215211320810.1016/j.biopha.2022.113208 35660246
    [Google Scholar]
  102. JahanR. YousafM. KhanH. Zinc ortho methyl carbonodithioate improved pre and post-synapse memory impairment via SIRT1/P-JNK pathway against scopolamine in adult mice.J. Neuroimmune Pharmacol.2023181-218319410.1007/s11481‑023‑10067‑w 37261605
    [Google Scholar]
  103. JongwachirachaiP. RuankhamW. ApiraksattayakulS. Neuroprotective properties of coriander-derived compounds on neuronal cell damage under oxidative stress-induced SH-SY5Y neuroblastoma and in silico admet analysis.Neurochem. Res.202449123308332510.1007/s11064‑024‑04239‑0 39298035
    [Google Scholar]
  104. JuD.T. HuangR.F.S. TsaiB.C.K. Folic acid and folinic acid protect hearts of aging triple-transgenic Alzheimer’s disease mice via IGF1R/PI3K/AKT and SIRT1/AMPK pathways.Neurotox. Res.202341664865910.1007/s12640‑023‑00666‑z 37707697
    [Google Scholar]
  105. MaieseK. SIRT1 and stem cells: In the forefront with cardiovascular disease, neurodegeneration and cancer.World J. Stem Cells20157223524210.4252/wjsc.v7.i2.235 25815111
    [Google Scholar]
  106. MaieseK. Moving to the rhythm with clock (circadian) genes, autophagy, mTOR, and SIRT1 in degenerative disease and cancer.Curr. Neurovasc. Res.2017143299304 28721811
    [Google Scholar]
  107. MaieseK. Targeting the core of neurodegeneration: Foxo, mTOR, and SIRT1.Neural Regen. Res.202116344845510.4103/1673‑5374.291382 32985464
    [Google Scholar]
  108. MatysekA. SunL. KimmantudawageS.P. FengL. MaierA.B. Targeting impaired nutrient sensing via the sirtuin pathway with novel compounds to prevent or treat dementia: A systematic review.Ageing Res. Rev.20239010202910.1016/j.arr.2023.102029 37549873
    [Google Scholar]
  109. DesaiS.C. MacrinA.D. SenthilvelanT. PandaR.C. Identification of genes associated with accelerated biological ageing through computational analysis: A systematic review.Biotechnol. Bioprocess Eng.; BBE202429463664910.1007/s12257‑024‑00113‑6
    [Google Scholar]
  110. FaridH.A. SayedR.H. El-ShamarkaM.E.S. Abdel-SalamO.M.E. El SayedN.S. PI3K/AKT signaling activation by roflumilast ameliorates rotenone-induced parkinson’s disease in rats.Inflammopharmacology20243221421143710.1007/s10787‑023‑01305‑x 37541971
    [Google Scholar]
  111. LiuZ. HuangH. YuY. Exploring the potential mechanism of action of ursolic acid against gastric cancer and covid-19 using network pharmacology and bioinformatics analysis.Curr. Pharm. Des.202329161274129210.2174/1381612829666230510124716 37218202
    [Google Scholar]
  112. AgarwalD. KumariR. IlyasA. TyagiS. KumarR. PoddarN.K. Crosstalk between epigenetics and mTOR as a gateway to new insights in pathophysiology and treatment of Alzheimer’s disease.Int. J. Biol. Macromol.202119289590310.1016/j.ijbiomac.2021.10.026 34662652
    [Google Scholar]
  113. AminiJ. SanchooliN. MilajerdiM.H. BaeeriM. HaddadiM. SanadgolN. The interplay between tauopathy and aging through interruption of upr/nrf2/autophagy crosstalk in the Alzheimer’s disease transgenic experimental models.Int. J. Neurosci.2024134101049106710.1080/00207454.2023.2210409 37132251
    [Google Scholar]
  114. BurilloJ. MarquésP. JiménezB. González-BlancoC. BenitoM. GuillénC. Insulin resistance and diabetes mellitus in Alzheimer’s disease.Cells2021105123610.3390/cells10051236 34069890
    [Google Scholar]
  115. EshraghiM. AhmadiM. AfsharS. Enhancing autophagy in Alzheimer’s disease through drug repositioning.Pharmacol. Ther.202223710817110.1016/j.pharmthera.2022.108171 35304223
    [Google Scholar]
  116. HouS.J. ZhangS.X. LiY. XuS.Y. Rapamycin responds to Alzheimer’s disease: A potential translational therapy.Clin. Interv. Aging2023181629163910.2147/CIA.S429440 37810956
    [Google Scholar]
  117. LiJ.B. HuX.Y. ChenM.W. P85s6k sustains synaptic glua1 to ameliorate cognitive deficits in Alzheimer’s disease.Transl. Neurodegener.2023121110.1186/s40035‑022‑00334‑w 36624510
    [Google Scholar]
  118. MaieseK. Nicotinamide as a foundation for treating neurodegenerative disease and metabolic disorders.Curr. Neurovasc. Res.202118113414910.2174/18755739MTEzaMDMw2 33397266
    [Google Scholar]
  119. MaieseK. The metabolic basis for nervous system dysfunction in Alzheimer’s disease, parkinson’s disease, and huntington’s disease.Curr. Neurovasc. Res.202320331433310.2174/1567202620666230721122957 37488757
    [Google Scholar]
  120. MaieseK. ChongZ.Z. ShangY.C. WangS. MTOR: On target for novel therapeutic strategies in the nervous system.Trends Mol. Med.2013191516010.1016/j.molmed.2012.11.001 23265840
    [Google Scholar]
  121. MovahedpourA. VakiliO. KhalifehM. Mammalian target of rapamycin (mTOR) signaling pathway and traumatic brain injury: A novel insight into targeted therapy.Cell Biochem. Funct.202240323224710.1002/cbf.3692 35258097
    [Google Scholar]
  122. PoddarN.K. KhanA. FatimaF. SaxenaA. GhaleyG. KhanS. Association of mTOR pathway and conformational alterations in c-reactive protein in neurodegenerative diseases and infections.Cell. Mol. Neurobiol.20234383815383210.1007/s10571‑023‑01402‑z 37665407
    [Google Scholar]
  123. RapakaD. BitraV.R. ChallaS.R. AdiukwuP.C. MTOR signaling as a molecular target for the alleviation of Alzheimer’s disease pathogenesis.Neurochem. Int.202215510531110.1016/j.neuint.2022.105311 35218870
    [Google Scholar]
  124. SubramanianA. TamilanbanT. AlsayariA. Trilateral association of autophagy, mTOR and Alzheimer’s disease: Potential pathway in the development for Alzheimer’s disease therapy.Front. Pharmacol.202213109435110.3389/fphar.2022.1094351 36618946
    [Google Scholar]
  125. TrisalA. SinghA.K. Clinical insights on caloric restriction mimetics for mitigating brain aging and related neurodegeneration.Cell. Mol. Neurobiol.20244416710.1007/s10571‑024‑01493‑2 39412683
    [Google Scholar]
  126. XuP. WuZ. PengY. Neuroprotection of triptolide against amyloid-beta1-42-induced toxicity via the AKT/mTOR/p70s6k-mediated autophagy pathway.An. Acad. Bras. Cienc.2022942e2021093810.1590/0001‑3765202220210938 35946645
    [Google Scholar]
/content/journals/cnr/10.2174/1567202622999241211154331
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test