Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/1567202621999240223164624
2024-02-23
2025-01-24
Loading full text...

Full text loading...

/deliver/fulltext/cnr/21/2/CNR-21-2-01.html?itemId=/content/journals/cnr/10.2174/1567202621999240223164624&mimeType=html&fmt=ahah

References

  1. StraubeA. AndreouA. Primary headaches during lifespan.J. Headache Pain201920135
    [Google Scholar]
  2. DzikKP FlisDJ Kaczor-KellerKB BytowskaZK KarniaMJ ZiółkowskiW Spinal cord abnormal autophagy and mitochondria energy metabolism are modified by swim training in SOD1-G93A mice.Journal of molecular medicine (Berlin, Germany)2024
    [Google Scholar]
  3. MaieseK. Mitochondria, Mitophagy, Mitoptosis, and Programmed Cell Death: Implications from Aging to Cancer.Curr. Neurovasc. Res.2024
    [Google Scholar]
  4. BarcenaM.L. ToniniG. HaritonowN. BreiterP. MiltingH. BaczkoI. Sex and age differences in AMPK phosphorylation, mitochondrial homeostasis, and inflammation in hearts from inflammatory cardiomyopathy patients.Aging Cell2023228e13894
    [Google Scholar]
  5. BarthelsD. PrateekshaP. NozohouriS. VillalbaH. ZhangY. SharmaS. Dental Pulp-Derived Stem Cells Preserve Astrocyte Health During Induced Gliosis by Modulating Mitochondrial Activity and Functions.Cell. Mol. Neurobiol.202343521052127
    [Google Scholar]
  6. FernandesJ. UppalK. LiuK.H. HuX. OrrM. TranV. Antagonistic Interactions in Mitochondria ROS Signaling Responses to Manganese.Antioxidants2023124804
    [Google Scholar]
  7. Goulart Nacácio e SilvaS. OcchiuttoM.L. CostaV.P. The use of Nicotinamide and Nicotinamide riboside as an adjunct therapy in the treatment of glaucoma.European Journal of Ophthalmology202333518011815
    [Google Scholar]
  8. JobstM. KissE. GernerC. MarkoD. Del FaveroG. Activation of autophagy triggers mitochondrial loss and changes acetylation profile relevant for mechanotransduction in bladder cancer cells.Arch. Toxicol.2023971217233
    [Google Scholar]
  9. LeeA. HendersonR. ArachchigeB.J. RobertsonT. McCombeP.A. Proteomic investigation of ALS motor cortex identifies known and novel pathogenetic mechanisms.J. Neurol. Sci.2023452120753
    [Google Scholar]
  10. LiscoG. De TullioA. IovinoM. DisoteoO. GuastamacchiaE. GiagulliV.A. Dopamine in the Regulation of Glucose Homeostasis, Pathogenesis of Type 2 Diabetes, and Chronic Conditions of Impaired Dopamine Activity/Metabolism: Implication for Pathophysiological and Therapeutic Purposes.Biomedicines202311112993
    [Google Scholar]
  11. MaieseK. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System.Biomolecules2023135816
    [Google Scholar]
  12. MaieseK. Innovative therapeutic strategies for cardiovascular disease.EXCLI J.202322690715
    [Google Scholar]
  13. MaieseK. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk.Frontiers in immunology.202314Nov 031273570
    [Google Scholar]
  14. MehraS. AhsanA.U. SharmaM. BudhwarM. ChopraM. Gestational Fisetin Exerts Neuroprotection by Regulating Mitochondria-Directed Canonical Wnt Signaling, BBB Integrity, and Apoptosis in Prenatal VPA-Induced Rodent Model of Autism.Mol. Neurobiol.2023
    [Google Scholar]
  15. NgP.Q. Saint-GeniezM. KimL.A. ShuD.Y. Divergent Metabolomic Signatures of TGFbeta2 and TNFalpha in the Induction of Retinal Epithelial-Mesenchymal Transition.Metabolites2023132
    [Google Scholar]
  16. StojanovicD. StojanovicM. MilenkovicJ. VelickovA. IgnjatovicA. MilojkovicM. The Multi-Faceted Nature of Renalase for Mitochondrial Dysfunction Improvement in Cardiac Disease.Cells20231212
    [Google Scholar]
  17. SunC. BaiS. LiangY. LiuD. LiaoJ. ChenY. The role of Sirtuin 1 and its activators in age-related lung disease.Biomed. Pharmacother.2023162114573
    [Google Scholar]
  18. TramutolaA. LanzillottaS. AcetoG. PagnottaS. RuffoloG. CifelliP. Intranasal Administration of KYCCSRK Peptide Rescues Brain Insulin Signaling Activation and Reduces Alzheimer’s Disease-like Neuropathology in a Mouse Model for Down Syndrome.Antioxidants (Basel, Switzerland)2023121111
    [Google Scholar]
  19. ZhongS. ChenW. WangB. GaoC. LiuX. SongY. Energy stress modulation of AMPK/FoxO3 signaling inhibits mitochondria-associated ferroptosis.Redox biology.202363102760
    [Google Scholar]
  20. AmidfarM. GarcezM.L. KimY.K. The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer’s disease: The role of circadian rhythm disturbances.Prog. Neuropsychopharmacol. Biol. Psychiatry2023123110721
    [Google Scholar]
  21. BirnieM.T. ClaydonM.D.B. TroyO. FlynnB.P. YoshimuraM. KershawY.M. Circadian regulation of hippocampal function is disrupted with corticosteroid treatment.Proc. Natl. Acad. Sci. USA202312015e2211996120
    [Google Scholar]
  22. FeltenM. DameC. LachmannG. SpiesC. RubarthK. BalzerF. Circadian rhythm disruption in critically ill patients.Acta Physiol. (Oxf.)20232381e13962
    [Google Scholar]
  23. HuangC. ZhangC. CaoY. LiJ. BiF. Major roles of the circadian clock in cancer.Cancer Biol. Med.2023201124
    [Google Scholar]
  24. KalamF. JamesD.L. LiY.R. ColemanM.F. KieselV.A. Cespedes FelicianoE.M. Intermittent fasting interventions to leverage metabolic and circadian mechanisms for cancer treatment and supportive care outcomes.J. Natl. Cancer Inst. Monogr.202320236184103
    [Google Scholar]
  25. WaltonJ.C. NelsonR.J. Therapeutic Aspects of Circadian Rhythms.Biomolecules20231381169
    [Google Scholar]
  26. XuY. WangY. JiangY. LiuM. ZhongW. GeZ. Relationship between cognitive dysfunction and the promoter methylation of PER1 and CRY1 in patients with cerebral small vessel disease.Frontiers in aging neuroscience.2023151174541
    [Google Scholar]
  27. BenvenisteH. LeeH. VolkowN.D. The Glymphatic Pathway: Waste Removal from the CNS via Cerebrospinal Fluid Transport.Neuroscientist2017235454465
    [Google Scholar]
  28. MaieseK. Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways.Biomolecules20211171002
    [Google Scholar]
  29. MaieseK. Sleep Disorders, Neurodegeneration, Glymphatic Pathways, and Circadian Rhythm Disruption.Curr. Neurovasc. Res.2021183269270
    [Google Scholar]
  30. ParkK.M. KimK.T. LeeD.A. MotamediG.K. ChoY.W. Glymphatic system dysfunction in restless legs syndrome: evidenced by diffusion tensor imaging along the perivascular space.Sleep20234611
    [Google Scholar]
  31. BramanteC.T. BeckmanK.B. MehtaT. KargerA.B. OddeD.J. TignanelliC.J. Metformin reduces SARS-CoV-2 in a Phase 3 Randomized Placebo Controlled Clinical Trial.medRxiv2023
    [Google Scholar]
  32. EhtewishH. MeslehA. PonirakisG. De la FuenteA. ParrayA. BensmailI. Blood-Based Proteomic Profiling Identifies Potential Biomarker Candidates and Pathogenic Pathways in Dementia.International journal of molecular sciences.2023249
    [Google Scholar]
  33. EspinozaS.E. KhoslaS. BaurJ.A. de CaboR. MusiN. Drugs Targeting Mechanisms of Aging to Delay Age-Related Disease and Promote Healthspan: Proceedings of a National Institute on Aging Workshop.J. Gerontol. A Biol. Sci. Med. Sci.202378Supplement_15360
    [Google Scholar]
  34. FangX. SongJ. ChenY. ZhuS. TuW. KeB. LncRNA SNHG1 knockdown inhibits hyperglycemia induced ferroptosis viamiR‐16‐5p/ACSL4 axis to alleviate diabetic nephropathy.Journal of Diabetes Investigation.202314910561069
    [Google Scholar]
  35. JiangW. DingK. YueR. LeiM. Therapeutic effects of icariin and icariside II on diabetes mellitus and its complications.Critical reviews in food science and nutrition.2023Jan 2126
    [Google Scholar]
  36. MaieseK. The Metabolic Basis for Nervous System Dysfunction in Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease.Curr. Neurovasc. Res.2023203314333
    [Google Scholar]
  37. MaieseK. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK.Cells202312222595
    [Google Scholar]
  38. MohamadiN. Baradaran RahimiV. FadaeiM.R. SharifiF. AskariV.R. A mechanistic overview of sulforaphane and its derivatives application in diabetes and its complications.Inflammopharmacology202331628852899
    [Google Scholar]
  39. MoheghiA. Noori MougehiS.M.H. AminiA. MostafaviniaA. RezaeiF. Bagheri TadiF. Anti-inflammatory, Antioxidant, and Wound-Healing Effects of Photobiomodulation on Type-2 Diabetic Rats.J. Lasers Med. Sci.202314e45
    [Google Scholar]
  40. RaghuvanshiD.S. ChakoleS. KumarM. Relationship Between Vitamins and Diabetes.Cureus2023153e36815
    [Google Scholar]
  41. SonsallaM.M. LammingD.W. Geroprotective interventions in the 3xTg mouse model of Alzheimer’s disease.Geroscience202345313431381
    [Google Scholar]
  42. WangJ. ChenS. ZhaoX. GuoQ. YangR. ZhangC. Effect of PPARgamma on oxidative stress in diabetes-related dry eye.Exp. Eye Res.2023231109498
    [Google Scholar]
  43. YangL. ChengC.F. LiZ.F. HuangX.J. CaiS.Q. YeS.Y. Berberine blocks inflammasome activation and alleviates diabetic cardiomyopathy via the miR-18a-3p/Gsdmd pathway.Int. J. Mol. Med.202351649
    [Google Scholar]
  44. ZhouL. LiuJ. ZhouM. A comprehensive meta-analysis on the association between vitamin C intake and gestational diabetes mellitus: Insights and novel perspectives.Medicine202310232e34740
    [Google Scholar]
  45. AminiJ. SanchooliN. MilajerdiM.H. BaeeriM. HaddadiM. SanadgolN. The interplay between tauopathy and aging through interruption of UPR/Nrf2/autophagy crosstalk in the Alzheimer’s disease transgenic experimental models.The International journal of neuroscience.2023May 10119
    [Google Scholar]
  46. DongL. HouB. LiuC. MaoC. HuangX. ShangL. Association Between Wnt Target Genes and Cortical Volumes in Alzheimer’s Disease.J. Mol. Neurosci.20237311-1210101016
    [Google Scholar]
  47. JuD.T. HuangR.S. TsaiB.C. SuY.C. ChiuP.L. ChangY.M. Folic Acid and Folinic Acid Protect Hearts of Aging Triple-transgenic Alzheimer’s Disease mice via IGF1R/PI3K/AKT and SIRT1/AMPK Pathways.Neurotox. Res.2023416648659
    [Google Scholar]
  48. KuanX.Y. FauziN.S.A. NgK.Y. BakhtiarA. Exploring the Causal Relationship Between Telomere Biology and Alzheimer’s Disease.Mol. Neurobiol.202360841694183
    [Google Scholar]
  49. LaiK.Y. WebsterC. KumariS. GallacherJ.E.J. SarkarC. The associations of socioeconomic status with incident dementia and Alzheimer’s disease are modified by leucocyte telomere length: a population-based cohort study.Scientific reports.20231316163
    [Google Scholar]
  50. LatheR. St ClairD. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer’s disease. Biological reviews of the Cambridge Philosophical Society.202398414241458
    [Google Scholar]
  51. MaieseK. The Implications of Telomere Length: Advanced Aging, Cell Senescence, MRI Phenotypes, Stem Cells and Alzheimer’s Disease.Curr. Neurovasc. Res.2023202171174
    [Google Scholar]
  52. MatysekA. SunL. KimmantudawageS.P. FengL. MaierA.B. Targeting impaired nutrient sensing via the sirtuin pathway with novel compounds to prevent or treat dementia: A systematic review.Ageing research reviews.202390102029
    [Google Scholar]
  53. OlejniczakI. PilorzV. OsterH. Circle(s) of Life: The Circadian Clock from Birth to Death.Biology (Basel)2023123383
    [Google Scholar]
  54. SlezakovaD. KadlicP. JezberovaM. BolekovaV. ValkovicP. MinarM. Brain volume loss in multiple sclerosis is independent of disease activity and might be prevented by early disease-modifying therapy.Neurol. Neurochir. Pol.2023573282288
    [Google Scholar]
  55. TopiwalaA. NicholsT.E. WilliamsL.Z.J. RobinsonE.C. Alfaro-AlmagroF. TaschlerB. Telomere length and brain imaging phenotypes in UK Biobank.PLoS One2023183e0282363
    [Google Scholar]
  56. WangM.D. ZhangS. LiuX.Y. WangP.P. ZhuY.F. ZhuJ.R. Salvianolic acid B ameliorates retinal deficits in an early-stage Alzheimer’s disease mouse model through downregulating BACE1 and Abeta generation.Acta Pharmacol. Sin.2023441121512168
    [Google Scholar]
  57. CascianoF. ZauliE. CeleghiniC. CarusoL. GonelliA. ZauliG. Retinal Alterations Predict Early Prodromal Signs of Neurodegenerative Disease.International journal of molecular sciences.20242531689
    [Google Scholar]
  58. OkoduwaI. AshiwajuB. OguguaJ. ArowoogunJ. AwonugaK. AnyanwuE. Reviewing the progress of cancer research in the USA.World Journal of Biology Pharmacy and Health Sciences.20241726879
    [Google Scholar]
  59. ShariqM. KhanM.F. RajR. AhsanN. KumarP. PRKAA2, MTOR, and TFEB in the regulation of lysosomal damage response and autophagy.J. Mol. Med. (Berl.)2024
    [Google Scholar]
  60. DhillonV. ShahidM. DeoP. FenechM. Reduced SIRT1 and SIRT3 and Lower Antioxidant Capacity of Seminal Plasma Is Associated with Shorter Sperm Telomere Length in Oligospermic Men.International journal of molecular sciences.2024252718
    [Google Scholar]
  61. BegumM.K. KonjaD. SinghS. ChlopickiS. WangY. Endothelial SIRT1 as a Target for the Prevention of Arterial Aging: Promises and Challenges.J. Cardiovasc. Pharmacol.202178Suppl. 6S63S77
    [Google Scholar]
  62. EgstrandS. OlgaardK. LewinE. Circadian rhythms of mineral metabolism in chronic kidney disease-mineral bone disorder.Curr. Opin. Nephrol. Hypertens.2020294367377
    [Google Scholar]
  63. KurkiS.N. KantonenJ. KaivolaK. HokkanenL. MayranpaaM.I. PuttonenH. APOE epsilon4 associates with increased risk of severe COVID-19, cerebral microhaemorrhages and post-COVID mental fatigue: a Finnish biobank, autopsy and clinical study.Acta neuropathologica communications.202191199
    [Google Scholar]
  64. LeeF.K. LeeJ.C. ShuiB. ReiningS. JibilianM. SmallD.M. Genetically engineered mice for combinatorial cardiovascular optobiology.eLife202110
    [Google Scholar]
  65. MaieseK. Warming Up to New Possibilities with the Capsaicin Receptor TRPV1: mTOR, AMPK, and Erythropoietin.Curr. Neurovasc. Res.2017142184189
    [Google Scholar]
  66. MaieseK. Forkhead Transcription Factors: Formulating a FOXO Target for Cognitive Loss.Curr. Neurovasc. Res.2017144415420
    [Google Scholar]
  67. MaieseK. Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors.Curr. Neurovasc. Res.20181518191
    [Google Scholar]
  68. MehdipourM. ParkS. HuangG.N. Unlocking cardiomyocyte renewal potential for myocardial regeneration therapy.J. Mol. Cell. Cardiol.2023177920
    [Google Scholar]
  69. NiY.Q. LinX. ZhanJ.K. LiuY.S. Roles and Functions of Exosomal Non-coding RNAs in Vascular Aging.Aging Dis.2020111164178
    [Google Scholar]
  70. OrkabyA.R. DushkesR. WardR. DjousseL. BuringJ.E. LeeI.M. Effect of Vitamin D3 and Omega-3 Fatty Acid Supplementation on Risk of Frailty: An Ancillary Study of a Randomized Clinical Trial.JAMA Netw. Open202259e2231206
    [Google Scholar]
  71. SimioniC. ZauliG. MartelliA.M. VitaleM. SacchettiG. GonelliA. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging.Oncotarget20189241718117198
    [Google Scholar]
  72. WahlD. Solon-BietS.M. CoggerV.C. FontanaL. SimpsonS.J. Le CouteurD.G. Aging, lifestyle and dementia.Neurobiol. Dis.2019130104481
    [Google Scholar]
  73. WangN. LuoZ. JinM. ShengW. WangH.T. LongX. Exploration of age-related mitochondrial dysfunction and the anti-aging effects of resveratrol in zebrafish retina.Aging (Albany NY)2019111031173137
    [Google Scholar]
  74. WangS. SchianchiF. NeumannD. WongL.Y. SunA. van NieuwenhovenF.A. Specific amino acid supplementation rescues the heart from lipid overload-induced insulin resistance and contractile dysfunction by targeting the endosomal mTOR-v-ATPase axis.Mol. Metab.202153101293
    [Google Scholar]
  75. ZhouY. XuJ. HouY. LeverenzJ.B. KallianpurA. MehraR. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment.Alzheimers Res. Ther.2021131110
    [Google Scholar]
  76. AliN.H. Al-KuraishyH.M. Al-GareebA.I. AlnaaimS.A. AlexiouA. PapadakisM. Autophagy and autophagy signaling in Epilepsy: possible role of autophagy activator.Mol. Med.2023291142
    [Google Scholar]
  77. ChenG. ZengL. YanF. LiuJ. QinM. WangF. Long-term oral administration of naringenin counteracts aging-related retinal degeneration via regulation of mitochondrial dynamics and autophagy.Front. Pharmacol.202213919905
    [Google Scholar]
  78. EshraghiM. AhmadiM. AfsharS. LorzadehS. AdlimoghaddamA. Rezvani JalalN. Enhancing autophagy in Alzheimer’s disease through drug repositioning.Pharmacol. Ther.2022237108171
    [Google Scholar]
  79. Gonzalez-AlcocerA. Gopar-CuevasY. Soto-DominguezA. Loera-AriasM.J. Saucedo-CardenasO. Montes de Oca-LunaR. Peripheral tissular analysis of rapamycin’s effect as a neuroprotective agent in vivo.Naunyn Schmiedebergs Arch. Pharmacol.20223951012391255
    [Google Scholar]
  80. LiuL. CaoQ. GaoW. LiB.Y. ZengC. XiaZ. Melatonin ameliorates cerebral ischemia-reperfusion injury in diabetic mice by enhancing autophagy via the SIRT1-BMAL1 pathway.FASEB J.20213512e22040
    [Google Scholar]
  81. MaieseK. Disease onset and aging in the world of circular RNAs.J. Transl. Sci.201626327329
    [Google Scholar]
  82. MaieseK. Harnessing the Power of SIRT1 and Non-coding RNAs in Vascular Disease.Curr. Neurovasc. Res.20171418288
    [Google Scholar]
  83. MaieseK. Sirtuins: Developing Innovative Treatments for Aged-Related Memory Loss and Alzheimer’s Disease.Curr. Neurovasc. Res.2018154367371
    [Google Scholar]
  84. Mocayar MaronF.J. FerderL. ReiterR.J. ManuchaW. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin.J. Steroid Biochem. Mol. Biol.2020199105595
    [Google Scholar]
  85. OjoJ.O. ReedJ.M. CrynenG. VallabhaneniP. EvansJ. ShackletonB. APOE genotype dependent molecular abnormalities in the cerebrovasculature of Alzheimer’s disease and age-matched non-demented brains.Molecular brain.2021141110
    [Google Scholar]
  86. PerluigiM. Di DomenicoF. BaroneE. ButterfieldD.A. mTOR in Alzheimer disease and its earlier stages: Links to oxidative damage in the progression of this dementing disorder.Free Radic. Biol. Med.2021169382396
    [Google Scholar]
  87. RapakaD. BitraV.R. ChallaS.R. AdiukwuP.C. mTOR signaling as a molecular target for the alleviation of Alzheimer’s disease pathogenesis.Neurochem. Int.2022155105311
    [Google Scholar]
  88. MaieseK. New Insights for Oxidative Stress and Diabetes Mellitus.Oxid Med Cell Longev.201520152015:875961875961
    [Google Scholar]
  89. MaieseK. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders.Br. J. Clin. Pharmacol.201682512451266
    [Google Scholar]
  90. MaieseK. ChongZ.Z. ShangY.C. WangS. Targeting disease through novel pathways of apoptosis and autophagy.Expert opinion on therapeutic targets.2012161212031214
    [Google Scholar]
  91. HeC. XuY. SunJ. LiL. ZhangJ.H. WangY. Autophagy and Apoptosis in Acute Brain Injuries: From Mechanism to Treatment.Antioxid. Redox Signal.2023381-3234257
    [Google Scholar]
  92. QinD. LiD. WangC. GuoS. Ferroptosis and central nervous system demyelinating diseases.J. Neurochem.20231656759771
    [Google Scholar]
  93. ZhangW.B. HuangY. GuoX.R. ZhangM.Q. YuanX.S. ZuH.B. DHCR24 reverses Alzheimer’s disease-related pathology and cognitive impairment via increasing hippocampal cholesterol levels in 5xFAD mice.Acta Neuropathol. Commun.2023111102
    [Google Scholar]
  94. ZhengY. SukochevaO. TseE. NeganovaM. AleksandrovaY. ZhaoR. MicroRNA-183 cluster: a promising biomarker and therapeutic target in gastrointestinal malignancies.Am. J. Cancer Res.2023131261476175
    [Google Scholar]
  95. ZhengZ. XieJ. MaL. HaoZ. ZhangW. LiL. VitaminD. Receptor Activation Targets ROS-Mediated Crosstalk Between Autophagy and Apoptosis in Hepatocytes in Cholestasic Mice.Cellular and Molecular Gastroenterology and Hepatology.2023154887901
    [Google Scholar]
  96. CiesielskaK. GajewskaM. Fatty Acids as Potent Modulators of Autophagy Activity in White Adipose Tissue.Biomolecules2023132255
    [Google Scholar]
  97. GuoY. ZengQ. BrooksD. GeisbrechtE.R. A conserved STRIPAK complex is required for autophagy in muscle tissue.Mol. Biol. Cell2023349ar91
    [Google Scholar]
  98. JoD.H. LeeS.H. JeonM. ChoC.S. KimD.E. KimH. Activation of Lysosomal Function Ameliorates Amyloid-β-Induced Tight Junction Disruption in the Retinal Pigment Epithelium.Mol. Cells20234611675687
    [Google Scholar]
  99. MastrapasquaM. RossiR. De CosmoL. RestaA. ErredeM. BizzocaA. Autophagy increase in Merosin-Deficient Congenital Muscular Dystrophy type 1A.Eur. J. Transl. Myol.202333311501
    [Google Scholar]
  100. MaieseK. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders.Biochem. Soc. Trans.2018462351360
    [Google Scholar]
  101. MaieseK. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease.Int. Rev. Neurobiol.2020155135
    [Google Scholar]
  102. ChenX. JiangL. ZhouZ. YangB. HeQ. ZhuC. The Role of Membrane-Associated E3 Ubiquitin Ligases in Cancer.Front. Pharmacol.202213928794
    [Google Scholar]
  103. DingM.R. QuY.J. HuB. AnH.M. Signal pathways in the treatment of Alzheimer’s disease with traditional Chinese medicine.Biomed. Pharmacother.2022152113208
    [Google Scholar]
  104. HeW. GaoY. ZhouJ. ShiY. XiaD. ShenH.M. Friend or Foe? Implication of the autophagy-lysosome pathway in SARS-CoV-2 infection and COVID-19.Int. J. Biol. Sci.2022181246904703
    [Google Scholar]
  105. ChenY. HuangC. ZhuS.Y. ZouH.C. XuC.Y. ChenY.X. Overexpression of HOTAIR attenuates Pi-induced vascular calcification by inhibiting Wnt/beta-catenin through regulating miR-126/Klotho/SIRT1 axis.Mol. Cell. Biochem.20214761035513561
    [Google Scholar]
  106. CsiszarA. TarantiniS. YabluchanskiyA. BalasubramanianP. KissT. FarkasE. Role of endothelial NAD(+) deficiency in age-related vascular dysfunction.Am. J. Physiol. Heart Circ. Physiol.20193166H1253H66
    [Google Scholar]
  107. FischerF. GrigolonG. BennerC. RistowM. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection.Physiol. Rev.2022102314491494
    [Google Scholar]
  108. GengK. MaX. JiangZ. HuangW. GaoC. PuY. Innate Immunity in Diabetic Wound Healing: Focus on the Mastermind Hidden in Chronic Inflammatory.Front. Pharmacol.202112653940
    [Google Scholar]
  109. KahminiF.R. GhalehH.D. ShahgaldiS. Sirtuins: Subtle Regulators Involved in Convoluted Mechanisms of Pregnancy.Cell. Physiol. Biochem.2022566644662
    [Google Scholar]
  110. MaieseK. ChongZ.Z. HouJ. ShangY.C. The vitamin nicotinamide: translating nutrition into clinical care.Molecules200914934463485
    [Google Scholar]
  111. MaieseK. LiF. ChongZ.Z. ShangY.C. The Wnt signaling pathway: aging gracefully as a protectionist?Pharmacol. Ther.200811815881
    [Google Scholar]
  112. SinghA. KukretiR. SasoL. KukretiS. Mechanistic Insight into Oxidative Stress-Triggered Signaling Pathways and Type 2 Diabetes.Molecules2022273950
    [Google Scholar]
  113. WasserfurthP. NeblJ. RuhlingM.R. ShammasH. BednarczykJ. KoehlerK. Impact of Dietary Modifications on Plasma Sirtuins 1, 3 and 5 in Older Overweight Individuals Undergoing 12-Weeks of Circuit Training.Nutrients202113113824
    [Google Scholar]
  114. ZhangY. YuanY. ZhangJ. ZhaoY. ZhangY. FuJ. Astragaloside IV supplementation attenuates cognitive impairment by inhibiting neuroinflammation and oxidative stress in type 2 diabetic mice.Front. Aging Neurosci.2022141004557
    [Google Scholar]
  115. HassaneinE.H.M. SalehF.M. AliF.E.M. RashwanE.K. AtwaA.M. Abd El-GhafarO.A.M. Neuroprotective effect of canagliflozin against cisplatin-induced cerebral cortex injury is mediated by regulation of HO-1/PPAR-gamma, SIRT1/FOXO-3, JNK/AP-1, TLR4/iNOS, and Ang II/Ang 1-7 signals.Immunopharmacol. Immunotoxicol.2023453304316
    [Google Scholar]
  116. MerinoM. GonzálezS. TronchM.C. Sánchez-SánchezA.V. ClaresM.P. García-EspañaA. Small Molecule Pytren-4QMn Metal Complex Slows down Huntington’s Disease Progression in Male zQ175 Transgenic Mice.Int. J. Mol. Sci.20232420
    [Google Scholar]
  117. PouresmaeilV. Al AbudiA.H. MahimidA.H. Sarafraz YazdiM. Es-HaghiA. Evaluation of Serum Selenium and Copper Levels with Inflammatory Cytokines and Indices of Oxidative Stress in Type 2 Diabetes.Biol. Trace Elem. Res.20232012617626
    [Google Scholar]
  118. YamamotoH. ShimomuraN. OuraK. HasegawaY. Nacre Extract from Pearl Oyster Shell Prevents D-Galactose-Induced Brain and Skin Aging.Mar. Biotechnol. (NY)2023254503518
    [Google Scholar]
  119. AndrianovV.V. KulchitskyV.A. YafarovaG.G. BazanL.V. BogodvidT.K. DeryabinaI.B. Investigation of NO Role in Neural Tissue in Brain and Spinal Cord Injury.Molecules20232821
    [Google Scholar]
  120. InoueM. TanidaT. KondoT. TakenakaS. NakajimaT. Oxygen-glucose deprivation-induced glial cell reactivity in the rat primary neuron-glia co-culture.J. Vet. Med. Sci.2023858799808
    [Google Scholar]
  121. MaieseK. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes.Curr. Neurovasc. Res.2020175765783
    [Google Scholar]
  122. MaieseK. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders.Curr. Neurovasc. Res.2021181134149
    [Google Scholar]
  123. MaieseK. ChongZ.Z. ShangY.C. OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins.Trends Mol. Med.2008145219227
    [Google Scholar]
  124. AlSalehA. ShahidM. FaridE. BindaynaK. The Effect of Ascorbic Acid and Nicotinamide on Panton-Valentine Leukocidin Cytotoxicity: An Ex Vivo Study.Toxins (Basel)202315138
    [Google Scholar]
  125. LiM. ZhangL. PanL. ZhouP. YuR. ZhangZ. Nicotinamide Efficiently Suppresses Porcine Epidemic Diarrhea Virus and Porcine Deltacoronavirus Replication.Viruses20231571591
    [Google Scholar]
  126. MaieseK. Cognitive Impairment in Multiple Sclerosis.Bioengineering (Basel)2023107871
    [Google Scholar]
  127. Ramirez-CruzA. Gomez-GonzalezB. Baiza-GutmanL.A. Manuel-ApolinarL. Angeles-MejiaS. Lopez-CervantesS.P. Nicotinamide, an acetylcholinesterase uncompetitive inhibitor, protects the blood‒brain barrier and improves cognitive function in rats fed a hypercaloric diet.Eur. J. Pharmacol.2023959176068
    [Google Scholar]
  128. TaiS.H. ChaoL.C. HuangS.Y. LinH.W. LeeA.H. ChenY.Y. Nicotinamide Deteriorates Post-Stroke Immunodepression Following Cerebral Ischemia-Reperfusion Injury in Mice.Biomedicines20231182145
    [Google Scholar]
  129. MaieseK. New Insights for nicotinamide: Metabolic disease, autophagy, and mTOR.Frontiers in bioscience (Landmark edition).2020251119251973
    [Google Scholar]
  130. GuoT. ChenM. LiuJ. WeiZ. YuanJ. WuW. Neuropilin-1 promotes mitochondrial structural repair and functional recovery in rats with cerebral ischemia.J. Transl. Med.2023211297
    [Google Scholar]
  131. MosharafM.P. AlamK. GowJ. MahumudR.A. Exploration of key drug target proteins highlighting their related regulatory molecules, functional pathways and drug candidates associated with delirium: evidence from meta-data analyses.BMC Geriatr.2023231767
    [Google Scholar]
  132. ChenL. XuW. ZhangY. ChenH. HanY. Gandouling alleviates nerve injury through PI3K/Akt/FoxO1 and Sirt1/FoxO1 signaling pathway to inhibit autophagy in the rats model of Wilson’s disease.Brain Behav.20231312e3325
    [Google Scholar]
  133. MelecchiA. AmatoR. Dal MonteM. RuscianoD. BagnoliP. CammalleriM. Restored retinal physiology after administration of niacin with citicoline in a mouse model of hypertensive glaucoma.Front. Med. (Lausanne)2023101230941
    [Google Scholar]
  134. PonzettiM. RucciN. FaloneS. RNA methylation and cellular response to oxidative stress-promoting anticancer agents.Cell Cycle2023228870905
    [Google Scholar]
  135. ScrimieriR. LocatelliL. CazzanigaA. CazzolaR. MalucelliE. SorrentinoA. Ultrastructural features mirror metabolic derangement in human endothelial cells exposed to high glucose.Sci. Rep.202313115133
    [Google Scholar]
  136. HardelandR. Redox Biology of Melatonin: Discriminating Between Circadian and Noncircadian Functions.Antioxid. Redox Signal.20223710-12704725
    [Google Scholar]
  137. HsuN.W. ChouK.C. WangY.T. HungC.L. KuoC.F. TsaiS.Y. Building a model for predicting metabolic syndrome using artificial intelligence based on an investigation of whole-genome sequencing.J. Transl. Med.2022201190
    [Google Scholar]
  138. ShkodinaA.D. TanS.C. HasanM.M. AbdelgawadM. ChopraH. BilalM. Roles of clock genes in the pathogenesis of Parkinson’s disease.Ageing Res. Rev.202274101554
    [Google Scholar]
  139. YalcinM. MundorfA. ThielF. Amatriain-FernandezS. KalthoffI.S. BeuckeJ.C. It’s About Time: The Circadian Network as Time-Keeper for Cognitive Functioning, Locomotor Activity and Mental Health.Front. Physiol.202213873237
    [Google Scholar]
  140. MaieseK. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer.Curr. Neurovasc. Res.2017143299304
    [Google Scholar]
  141. MaieseK. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm.Frontiers in bioscience (Landmark edition).2021269614627
    [Google Scholar]
  142. FingerA.M. KramerA. Mammalian circadian systems: Organization and modern life challenges.Acta Physiol. (Oxf.)20212313e13548
    [Google Scholar]
  143. YalcinM. MalhanD. BastiA. PeraltaA.R. FerreiraJ.J. RelogioA. A Computational Analysis in a Cohort of Parkinson’s Disease Patients and Clock-Modified Colorectal Cancer Cells Reveals Common Expression Alterations in Clock-Regulated Genes.Cancers20211323
    [Google Scholar]
  144. DialloA.B. GayL. CoiffardB. LeoneM. MezouarS. MegeJ.L. Daytime variation in SARS-CoV-2 infection and cytokine production.Microb. Pathog.2021158105067
    [Google Scholar]
  145. WangW. BalfeP. EyreD.W. LumleyS.F. O’DonnellD. WarrenF. Time of Day of Vaccination Affects SARS-CoV-2 Antibody Responses in an Observational Study of Health Care Workers.J. Biol. Rhythms2022371124129
    [Google Scholar]
  146. MaieseK. The Mechanistic Target of Rapamycin (mTOR): Novel Considerations as an Antiviral Treatment.Curr. Neurovasc. Res.2020173332337
    [Google Scholar]
  147. RautS.K. KhullarM. Oxidative stress in metabolic diseases: current scenario and therapeutic relevance.Mol. Cell. Biochem.20234781185196
    [Google Scholar]
  148. CaiW. RudolphJ.L. SengokuT. AndresD.A. Rit GTPase regulates a p38 MAPK-dependent neuronal survival pathway.Neurosci. Lett.20125312125130
    [Google Scholar]
  149. FinelliM.J. OliverP.L. TLDc proteins: new players in the oxidative stress response and neurological disease.Mamm. Genome2017289-10395406
    [Google Scholar]
  150. TouretteC. LiB. BellR. O’HareS. KaltenbachL.S. MooneyS.D. A large scale Huntingtin protein interaction network implicates Rho GTPase signaling pathways in Huntington disease.J. Biol. Chem.20142891067096726
    [Google Scholar]
  151. De VecchisD. BrandnerA. BaadenM. CohenM.M. TalyA. A Molecular Perspective on Mitochondrial Membrane Fusion: From the Key Players to Oligomerization and Tethering of Mitofusin.J. Membr. Biol.20192524-5293306
    [Google Scholar]
  152. LiuY. XuY. YuM. MicroRNA-4722-5p and microRNA-615-3p serve as potential biomarkers for Alzheimer’s disease.Exp. Ther. Med.2022233241
    [Google Scholar]
/content/journals/cnr/10.2174/1567202621999240223164624
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test