Skip to content
2000
Volume 18, Issue 5
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Background: PPAR gamma co-activator 1α (PGC-1α) is known as the master regulator of mitochondrial biogenesis. It is also a co-activator of peroxisome proliferator-activated receptor-gamma (PPARγ) and plays a role in preventing mitochondrial dysfunction in several neurodegenerative disorders, including Parkinson’s disease (PD). Depletion in the levels of these proteins has been linked to oxidative stress, inflammation, and DNA damage, all of which are known to contribute to the pathogenesis of PD. Objective: In the present study, combination therapy of PPARγ agonist (GW1929) and PGC-1α activator (alpha-lipoic acid) was employed to ameliorate cognitive deficits, oxidative stress, and inflammation associated with the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. Methods: PD was induced using a bilateral intranigral administration of MPTP in Sprague Dawley rats, and different parameters were evaluated. Results: Our study showed that MPTP-induced PD rats exhibited an increase in oxidative stress and inflammation, leading to cognitive deficits. Furthermore, MPTP-induced PD rats also exhibited reduced mitochondrial biogenesis in comparison to control and sham animals. Intraperitoneal administration of GW 1929 and alpha-lipoic acid in doses lower than those earlier reported individually in literature led to an improvement in the cognitive deficits in comparison to MPTP-induced PD rats. These improvements were accompanied by a reduction in the levels of oxidative stress and inflammation. In addition, an increase in mitochondrial biogenesis was also observed after the combination of these pharmacological agents. Conclusion: Our results provide a rationale for the development of agents targeting PPARγ and PGC-1α as potent therapeutics for the treatment of neurological diseases like PD.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/1567202619666211217140954
2021-10-01
2025-05-12
Loading full text...

Full text loading...

/content/journals/cnr/10.2174/1567202619666211217140954
Loading

  • Article Type:
    Research Article
Keyword(s): alpha lipoic acid; MPTP; oxidative stress; Parkinson's disease; PGC 1α; PPARγ
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test