Skip to content
2000
Volume 18, Issue 5
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Objective: Cerebral ischemic stroke (CIS) remains a primary cause of death worldwide. The current knowledge has identified the implication of microRNAs (miRNAs) in the pathophysiology of CIS. This study investigated the mechanism of miR-302a-3p in nerve repair post CIS. Methods: A middle cerebral artery occlusion (MCAO) model was established in mice to simulate CIS. miR-302a-3p expression in brain tissues of MCAO mice was up-regulated by injecting agomiR-302a-3p. Neurological deficits of MCAO mice were evaluated through neurological function score, forelimb placing test, and balance beam walking test. Neuronal damage was measured using Nissl staining. The concentrations of nerve injury-related factors (S100B and GFAP) and the contents of neuroinflammatory factors (TNF-α and IL-1β) in serum were examined using ELISA kits. miR-302a-3p, E2F1, and long non-coding RNA (lncRNA) SNHG3 expressions in brain tissues of MCAO mice were determined using RT-qPCR and Western blot. The binding relationships between miR-302a-3p and E2F1 and E2F1 and SNHG3 were validated using dual-luciferase and ChIP assays, respectively. Results: miR-302a-3p expression was reduced in brain tissues of MCAO mice. miR-302a-3p overexpression increased the number of neurons, decreased the concentrations of S100B and GFAP, reduced the contents of TNF-α and IL-1β, promoted nerve repair, and alleviated CIS-induced brain injury. miR-302a-3p targeted E2F1 expression, and E2F1 activated SNHG3 transcription. E2F1 overexpression or SNHG3 overexpression reversed the effect of miR-302a-3p overexpression on nerve repair in MCAO mice. Conclusion: miR-302a-3p overexpression repressed SNHG3 transcription by targeting E2F1 expression, thereby promoting nerve repair and alleviating CIS.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/1567202618666211210155715
2021-10-01
2025-06-17
Loading full text...

Full text loading...

/content/journals/cnr/10.2174/1567202618666211210155715
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test